JPH02126532A - Electron emission element - Google Patents

Electron emission element

Info

Publication number
JPH02126532A
JPH02126532A JP63278707A JP27870788A JPH02126532A JP H02126532 A JPH02126532 A JP H02126532A JP 63278707 A JP63278707 A JP 63278707A JP 27870788 A JP27870788 A JP 27870788A JP H02126532 A JPH02126532 A JP H02126532A
Authority
JP
Japan
Prior art keywords
layer
thin
electron
insulator layer
metal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63278707A
Other languages
Japanese (ja)
Inventor
Akira Kaneko
彰 金子
Kaoru Tomii
冨井 薫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63278707A priority Critical patent/JPH02126532A/en
Priority to EP19890120124 priority patent/EP0367195A3/en
Priority to US07/429,526 priority patent/US5202605A/en
Publication of JPH02126532A publication Critical patent/JPH02126532A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cold Cathode And The Manufacture (AREA)

Abstract

PURPOSE:To obtain a good electron emission element having no ununiformity in characteristics of each of the element by making the surface of a thin first insulator layer and a second insulator layer into a same plane without a difference in level and a metal layer formed thereon into a film without recessed and projecting parts. CONSTITUTION:An electron emission element is constituted such that a part of a conductive layer 11 is convexly formed, and a thin insulating layer 12 is formed on the convex part of the conductive layer 11, and an insulator layer 13 with such a thickness that can make the same plane with the surface of the thin insulator layer 12 is formed on the conductive layer 11 excluding the convex part. Moreover, a thin metal layer 14 is formed on the insulators 12 and 13 of the above 2 parts. It is possible, therefore, to form the thin insulator layer 12 and the thin metal layer 14 from which an electron is emitted as an uniform film without recessed and projecting parts. Thereby, it is possible to form a good electron emission element free from a crack, unstability and deterioration in the characteristics of the element at a part without a difference in level.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電子顕微鏡、電子ビーム露出装置、CRT等
、各種電子ビーム応用装置の電子発生源として利用でき
る電子放出素子に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an electron-emitting device that can be used as an electron source for various electron beam application devices such as electron microscopes, electron beam exposure devices, and CRTs.

従来の技術 電子ビーム装置、例えば電子顕微鏡やCRT等における
電子発生源として、従来熱陰極からの熱電子放出が用い
られていた。しかし、この様な熱陰極を用いた電子放出
は加熱手段が必要であったり、加熱によるエネルギーロ
スがある等問題があった。そこで、加熱によらない電子
放出素子の研究、いわゆる冷陰極に関する研究が行われ
、いくつかの型の電子放出素子が提案されてきた。
BACKGROUND OF THE INVENTION Conventionally, thermionic emission from a hot cathode has been used as an electron source in electron beam devices such as electron microscopes and CRTs. However, electron emission using such a hot cathode has problems such as the need for heating means and energy loss due to heating. Therefore, research has been conducted on electron-emitting devices that do not rely on heating, that is, so-called cold cathodes, and several types of electron-emitting devices have been proposed.

たとえば、PN接合に逆バイアス電圧を印加し。For example, apply a reverse bias voltage to the PN junction.

電子なだれ降伏現象を起こさせて素子外へ電子を放出さ
せるものや、電界集中の生じ易い形状の金属に対し電圧
を印加して局所的に高密度な電界を発生させ、金属から
素子外へ電子を放出させる電界効果型のものや、金属−
絶縁体層−金属層の構成で、この2つの金属の間に電圧
を印加することてより、トンネル効果で絶縁体層を通過
してきた電子を金属層から素子外へ放出させるMIM型
のもの等の電子放出素子が提案されてきた。
A voltage is applied to a metal that causes an avalanche breakdown phenomenon to emit electrons out of the device, or a metal with a shape that tends to cause electric field concentration to generate a locally high-density electric field, and electrons are emitted from the metal to the outside of the device. Field-effect type devices that emit
MIM type, etc., which have an insulator layer-metal layer structure, and by applying a voltage between these two metals, electrons that have passed through the insulator layer are emitted from the metal layer to the outside of the element due to a tunnel effect. Electron-emitting devices have been proposed.

上記冷陰極のうちMIM型電子放出素子に関して第4図
を用いて詳しく説明する。
Among the cold cathodes, the MIM type electron-emitting device will be described in detail with reference to FIG.

MIM型の電子放出素子は、第4図に示すように金属層
41上に薄い絶縁体層42を介して薄い金属層43が積
層形成された構造を有している。
The MIM type electron-emitting device has a structure in which a thin metal layer 43 is laminated on a metal layer 41 with a thin insulating layer 42 interposed therebetween, as shown in FIG.

そして、電源44によって金属層43の仕事関数より大
きな″電圧を金属層41および金属層43に印加するこ
とによって、絶縁体層42をトンネルした電子のうち真
空準位より大きなエネルギーを有するものが金属層43
表面から放出電子45として放出される。なお、高い放
出効果を得るためには。
By applying a voltage higher than the work function of the metal layer 43 to the metal layer 41 and the metal layer 43 by the power source 44, electrons having energy higher than the vacuum level among the electrons tunneled through the insulator layer 42 are transferred to the metal layer 43. layer 43
They are emitted from the surface as emitted electrons 45. In addition, in order to obtain a high release effect.

絶縁体層42を絶縁破壊が生じない範囲で、また金属層
43を電流が十分流れる範囲で、各々可能な限り薄く形
成することが望ましい。
It is desirable to form the insulator layer 42 as thin as possible within a range that does not cause dielectric breakdown, and the metal layer 43 as thin as possible within a range that allows sufficient current to flow.

このMIM型電子放出素子としては、従来テレビジョン
学会電子装置研究委員会資料の[トンネルカソードを用
いた陰極線管J (1968年4月30日)で提示され
ている第5図のような構成のものや、特開昭63−67
17号公報に記載されている第6図のような構成のもの
がある。即ち、第5図のものは、ガラス基板51上にA
lの金属層52を形成し、その上に絶縁体層53として
Al2O3、絶縁体層54としてSiOを形成し、更愕
その上にAuの金属層55を形成した構成であり、金属
層52と金属層550間に電圧を印加することにより、
金属層55の電子放出領域56から電子を放出させるも
のである。また、第6図のものは、基板61の上に金属
層62を形成し、さらにその上に絶縁体層63を形成す
る。そして、金属層62の方向と直角方向に金属層64
を形成し、金属層62と金属層64との間に電圧を印す
ロすることにより、金属層62と金属層64の交叉する
領域から電子を放出させるものである。
Conventionally, this MIM type electron-emitting device has a configuration as shown in Fig. 5 presented in "Cathode Ray Tube Using Tunnel Cathode J (April 30, 1968)" of the Materials of the Electronic Equipment Research Committee of the Television Society. Monoya, Japanese Patent Publication No. 63-67
There is a structure as shown in FIG. 6, which is described in Japanese Patent No. 17. That is, in the case of FIG.
The structure is such that a metal layer 52 of l is formed, Al2O3 is formed as an insulator layer 53 on it, SiO is formed as an insulator layer 54, and a metal layer 55 of Au is formed thereon. By applying a voltage between the metal layer 550,
This is to cause electrons to be emitted from the electron emission region 56 of the metal layer 55. In the case shown in FIG. 6, a metal layer 62 is formed on a substrate 61, and an insulator layer 63 is further formed on the metal layer 62. Then, a metal layer 64 is formed in a direction perpendicular to the direction of the metal layer 62.
By applying a voltage between the metal layer 62 and the metal layer 64, electrons are emitted from the region where the metal layer 62 and the metal layer 64 intersect.

発明が解決しようとする課題 しかし、従来提案されていた上記MIM型電子放出素子
は、その構成上、トンネルによって電子が透過する薄い
絶縁体層および、電子が放出される薄い金属層が、凹凸
を持った下地の上に形成されているため、形成された絶
縁体層および金属層も凹凸を持ち、その膜厚が不均一と
なり、その特性が不安定となる傾向にあった。特に、薄
い金属層は凹凸があると、その段差の部分で亀裂による
導通不良や、膜厚不均一による特性劣化が生じ易く、ま
た、これらをアレー化して複数個形成すると、各素子の
特性の不均一が著しくなるという課題があった。本発明
はこのような従来技術の課題を解決することを目的とす
る。
Problems to be Solved by the Invention However, due to the structure of the previously proposed MIM type electron-emitting device, the thin insulating layer through which electrons pass through tunnels and the thin metal layer through which electrons are emitted are uneven. Since the insulator layer and the metal layer are formed on a solid base, the formed insulator layer and metal layer also tend to have unevenness, the film thickness becomes non-uniform, and the characteristics thereof tend to become unstable. In particular, when a thin metal layer has irregularities, it is easy to cause poor conduction due to cracks at the stepped portions, and deterioration of characteristics due to uneven film thickness.Furthermore, if multiple layers of these are formed in an array, the characteristics of each element will be affected. There was a problem that the non-uniformity became significant. The present invention aims to solve the problems of the prior art.

課題を解決するだめの手段 第1の本発明は、一部凸状に形成された導電層と、その
凸状に形成された導電層の上に形成された薄い第1の絶
縁体層と、前記導電層の上に形成され、前記薄い第1の
絶縁体層表面と同一平面となるように形成された第2の
絶縁体層と、前記2つの部分の絶縁体層上に形成された
金属層とを有するものである。
Means for Solving the Problems The first invention provides a conductive layer formed in a partially convex shape, a thin first insulating layer formed on the conductive layer formed in a convex shape, a second insulator layer formed on the conductive layer so as to be flush with the surface of the thin first insulator layer; and a metal formed on the two portions of the insulator layer. It has a layer.

また、第2の本発明は、基板と、その上の所定の部分に
形成された導電層と、前記導電層上に形成された薄い第
1の絶縁体層と、前記薄い第1の絶縁体層表面と同一平
面となるように基板上の所定の部分に形成された第2の
絶縁体層と、前記2つの部分の絶縁体層上に形成された
金属層とを有するものである。
Further, a second aspect of the present invention provides a substrate, a conductive layer formed on a predetermined portion thereof, a thin first insulator layer formed on the conductive layer, and a thin first insulator layer formed on the conductive layer. The second insulator layer is formed on a predetermined portion of the substrate so as to be flush with the layer surface, and the metal layer is formed on the insulator layer in the two portions.

作    用 本発明は上記構成により、薄い絶縁体層と電子が放出さ
れる薄い金属層とを、凹凸の無い、均一な膜として形成
することができるため、段差の部分での亀裂や素子の特
性の不安定性および劣化の無い、良好な電子放出素子を
提供することができるものであり、アレー化して複数個
形成しても、各素子の特性の不均一性の無い、良好な電
子放出素子を提供することができるものである。
According to the above structure, the present invention can form a thin insulator layer and a thin metal layer from which electrons are emitted as a uniform film with no unevenness, so cracks at step portions and device characteristics can be avoided. It is possible to provide a good electron-emitting device without instability or deterioration, and even if a plurality of devices are formed in an array, a good electron-emitting device without non-uniformity in the characteristics of each device can be provided. It is something that can be provided.

実施例 以下、本発明について図面を用いて詳細に説明する。Example Hereinafter, the present invention will be explained in detail using the drawings.

第1図は本発明の第1の実施例における電子放出素子の
概略断面図である。
FIG. 1 is a schematic cross-sectional view of an electron-emitting device according to a first embodiment of the present invention.

同図において、 11は導電層、12は薄い絶縁体層、
 13は絶縁体層、 14は金属層、 15は電子放出
領域を示す。本発明の電子放出素子は、導電層11の一
部が凸状に形成され、この導電層11の凸状部分の上に
薄い絶縁体層12が、また凸状部分以外の導電層11の
上には、薄い絶縁体層120表面と同一平面となるよう
な厚さに絶縁体層13が形成されている。さらに、この
2つの部分の絶縁体層12および13の上に薄い金属層
14が形成されている。そして、金属層14を“+”、
導電層11を“−”に電圧を印加することにより、電子
放出領域15の下側の薄い絶縁体層12に強電界を形成
し、導電層11より電子を引き出し、薄い絶縁体層12
の中をトンネル現象によって金属層14に電子を透過さ
せ、金属層15の仕事関数以上のエネルギーを持った電
子を電子放出領域15より放出させる。
In the same figure, 11 is a conductive layer, 12 is a thin insulating layer,
13 is an insulator layer, 14 is a metal layer, and 15 is an electron emission region. In the electron-emitting device of the present invention, a part of the conductive layer 11 is formed in a convex shape, a thin insulating layer 12 is formed on the convex part of the conductive layer 11, and a thin insulating layer 12 is formed on the conductive layer 11 other than the convex part. An insulator layer 13 is formed to a thickness such that it is flush with the surface of a thin insulator layer 120 . Furthermore, a thin metal layer 14 is formed on the insulator layers 12 and 13 of these two parts. Then, the metal layer 14 is set to “+”,
By applying a negative voltage to the conductive layer 11, a strong electric field is formed in the thin insulator layer 12 below the electron emission region 15, electrons are extracted from the conductive layer 11, and the thin insulator layer 12
Electrons are transmitted through the metal layer 14 by a tunneling phenomenon, and electrons having an energy higher than the work function of the metal layer 15 are emitted from the electron emission region 15.

本発明の構成により、段差の部分が無くなるため薄い絶
縁体層12と金属層14とが平面状に形成でき、容易に
その膜厚の均一化が図れ、その結果素子特性の安定化を
図ることができた。
According to the structure of the present invention, since there is no step part, the thin insulating layer 12 and the metal layer 14 can be formed in a planar shape, and the film thickness can be easily made uniform, thereby stabilizing the device characteristics. was completed.

次に第2図(al〜+g+を用いて1本発明の電子放出
素子の製造工程を示す。まず、ガラス基板21の上に導
電層22として1例えばAt、Ta等からなる金属を、
例えば抵抗加熱蒸着法、電子ビーム蒸着法、スパッター
蒸着法等により、膜厚0.1〜1μm程度形成した(第
2図(a))。次に、導電層22の上に5通常のフォト
リソグラフィー技術によってレジスト層23を形成しく
第2図(b))、そして、例えばイオンミーリング法、
湿式エツチング法等により導電層22を厚さd、例えば
0.05〜0.5μm程度エツチングしく第2図(C)
)、さらにその上に例えば5iOz、Al 203.T
azOs等の絶縁物を例えば電子ビーム蒸着法、スパッ
ター蒸着法等で厚さdだけ形成した後(第2図(d))
、レジスト層23をリフトオフして除去した(第2図(
e))。次に酸素雰囲気中での熱酸化、あるいは陽極酸
化等で薄い絶縁体層25、例えばAlz03あるいはT
a 205を厚t、例えば、50〜200八程度形成し
た(第2図(f))。そして、前記2つの部分の絶縁体
層24および25の上に金属層26、例えばAμ。
Next, FIG. 2 (al~+g+) shows the manufacturing process of the electron-emitting device of the present invention. First, a metal made of, for example, At, Ta, etc. is placed on a glass substrate 21 as a conductive layer 22.
For example, a film having a thickness of about 0.1 to 1 μm was formed by a resistance heating vapor deposition method, an electron beam vapor deposition method, a sputter vapor deposition method, etc. (FIG. 2(a)). Next, a resist layer 23 is formed on the conductive layer 22 by a conventional photolithography technique (FIG. 2(b)), and then, for example, by an ion milling method.
The conductive layer 22 is etched to a thickness d, for example, about 0.05 to 0.5 μm, using a wet etching method or the like as shown in FIG. 2(C).
), and further thereon, for example, 5iOz, Al 203. T
After forming an insulator such as azOs to a thickness of d using, for example, electron beam evaporation or sputter evaporation (Fig. 2(d))
, the resist layer 23 was lifted off and removed (Fig. 2 (
e)). Next, a thin insulator layer 25, such as Alz03 or T, is formed by thermal oxidation in an oxygen atmosphere or anodic oxidation.
A 205 was formed to have a thickness t, for example, about 50 to 200 mm (FIG. 2(f)). Then, a metal layer 26, for example Aμ, is formed on the insulator layers 24 and 25 of the two parts.

AI 、Mo 、W等を抵抗加熱蒸着法、電子ビーム蒸
着法、スパッター蒸着法等により、厚さ50〜200八
程度形成し、本発明の電子放出素子を形成した(第2図
(g))。その結果、均一な電子放出特性で、安定性の
良い電子放出素子を得た。
AI, Mo, W, etc. were formed to a thickness of about 50 to 200 mm by resistance heating evaporation, electron beam evaporation, sputter evaporation, etc., to form an electron-emitting device of the present invention (FIG. 2(g)). . As a result, an electron-emitting device with uniform electron-emitting characteristics and good stability was obtained.

なお、上述の実際例においては導電層の下に基板を有す
る例を示したが、基板がなくても本発明の効果を失うも
のではない。
Note that although the above-mentioned practical example shows an example in which a substrate is provided under the conductive layer, the effects of the present invention are not lost even if the substrate is not provided.

次に、本発明の第2の実施例について説明する。Next, a second embodiment of the present invention will be described.

第3図は本発明の第2の実施例における電子放出素子の
概略断面図であり、31は基板、32は導電層、33は
絶縁体層、34は薄い絶縁体層、35は金属層を示す。
FIG. 3 is a schematic cross-sectional view of an electron-emitting device according to a second embodiment of the present invention, in which 31 is a substrate, 32 is a conductive layer, 33 is an insulator layer, 34 is a thin insulator layer, and 35 is a metal layer. show.

本実施例の電子放出素子の構成は基板31上の所定の部
分に導電層32が形成され、この導電層32の上に薄い
絶縁体層34が形成されており、さらに、基板31上で
導電層32が形成されている部分以外の所定の部分に絶
縁体層33が、薄い絶縁体層340表面と同一平面とな
るように形成されている0そして1、この2つの部分の
絶縁体層33および34の上に薄い金属層35が形成さ
れた構成となっている。本発明の電子放出素子は、第1
の実施例における製造工程の導電層を凸状にエツチング
した後の工程と全く同様の方法で作成することができ、
その結果電子放出素子の特性は均一で全く安定した、良
好なものであった。
The structure of the electron-emitting device of this example is that a conductive layer 32 is formed at a predetermined portion on a substrate 31, a thin insulating layer 34 is formed on this conductive layer 32, and a conductive layer 34 is further formed on the substrate 31. An insulator layer 33 is formed in a predetermined part other than the part where the layer 32 is formed so as to be flush with the surface of the thin insulator layer 340.0 and 1, the insulator layer 33 in these two parts A thin metal layer 35 is formed on and 34. The electron-emitting device of the present invention has a first
It can be created in exactly the same way as the process after etching the conductive layer into a convex shape in the manufacturing process in the example of
As a result, the characteristics of the electron-emitting device were uniform, completely stable, and good.

なお、ここでは単体の電子放出素子に関する実施例を述
べたが、電子放出素子を複数個形成したアレー化された
ものに関しても本発明の効果は発揮される。
Note that, although an embodiment relating to a single electron-emitting device has been described here, the effects of the present invention are also exhibited in an array formed by forming a plurality of electron-emitting devices.

発明の効果 以上のように本発明は、薄い第1の絶縁体層と第2の絶
縁体層との表面を段差の無い同一平面とし、かつ、この
上に形成した金属層を凹凸の無い膜とすることにより、
段差の部分での亀裂の無い、均一な膜が得られ、電子放
出素子として特性の安定した、均一なものとすることが
できた。また、アレー化して複数個電子放出素子を形成
しても。
Effects of the Invention As described above, the present invention makes the surfaces of the thin first insulating layer and the second insulating layer the same plane with no steps, and the metal layer formed thereon is a film with no unevenness. By doing so,
A uniform film with no cracks at the step portions was obtained, and an electron-emitting device with stable and uniform characteristics could be obtained. Alternatively, a plurality of electron-emitting devices may be formed in an array.

各素子の特性は不均一性の無い、良好な電子放出素子を
提供することができる。
It is possible to provide a good electron-emitting device with no non-uniformity in the characteristics of each device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例における電子放出素子の
概略断面図、第2図(a+〜(mは本発明の第1の実施
例における電子放出素子の作成工程断面図、第3図は本
発明の第2の実施例における電子放出素子の概略断面図
、第4図、第5図、第6図は従来の電子放出素子の概略
断面図である。 11、22.32・・・導電層、 12.13.24.
25.33゜34・・・絶縁体層、14.26.35・
・・金属層、 21.31・・・基板。 代理人の氏名 弁理士 粟 野 重 孝 ほか1名菓 図 第 図 (0’1 第 図 第 図 ■■■■■ 第 図 55會^冶 第 図
FIG. 1 is a schematic cross-sectional view of an electron-emitting device according to the first embodiment of the present invention, FIG. The figure is a schematic cross-sectional view of an electron-emitting device according to a second embodiment of the present invention, and FIGS. 4, 5, and 6 are schematic cross-sectional views of conventional electron-emitting devices. 11, 22, 32, etc. - Conductive layer, 12.13.24.
25.33°34...Insulator layer, 14.26.35.
...metal layer, 21.31...substrate. Name of agent: Patent attorney Shigetaka Awano and one other famous confectionery diagram (0'1 Figure 55)

Claims (2)

【特許請求の範囲】[Claims] (1)一部凸状に形成された導電層と、その凸状に形成
された導電層の上に形成された薄い第1の絶縁体層と、
前記導電層の上に形成され、前記薄い第1の絶縁体層表
面と同一平面となるように形成された第2の絶縁体層と
、前記2つの部分の絶縁体層上に形成された金属層とを
有することを特徴とする電子放出素子。
(1) a partially convex conductive layer; a thin first insulator layer formed on the convex conductive layer;
a second insulator layer formed on the conductive layer so as to be flush with the surface of the thin first insulator layer; and a metal formed on the two portions of the insulator layer. An electron-emitting device characterized by having a layer.
(2)基板と、前記基板上の所定の部分に形成された導
電層と、前記導電層上に形成された薄い第1の絶縁体層
と、前記薄い第1の絶縁体層表面と同一平面となるよう
に、前記基板上の所定の部分に形成された第2の絶縁体
層と、前記2つの部分の絶縁体層上に形成された金属層
とを有することを特徴とする電子放出素子。
(2) a substrate, a conductive layer formed on a predetermined portion of the substrate, a thin first insulator layer formed on the conductive layer, and a surface flush with the surface of the thin first insulator layer; An electron-emitting device comprising: a second insulator layer formed on a predetermined portion of the substrate; and a metal layer formed on the insulator layer of the two portions. .
JP63278707A 1988-10-31 1988-11-04 Electron emission element Pending JPH02126532A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63278707A JPH02126532A (en) 1988-11-04 1988-11-04 Electron emission element
EP19890120124 EP0367195A3 (en) 1988-10-31 1989-10-30 Mim cold-cathode electron emission elements and methods of manufacture thereof
US07/429,526 US5202605A (en) 1988-10-31 1989-10-31 Mim cold-cathode electron emission elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63278707A JPH02126532A (en) 1988-11-04 1988-11-04 Electron emission element

Publications (1)

Publication Number Publication Date
JPH02126532A true JPH02126532A (en) 1990-05-15

Family

ID=17601072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63278707A Pending JPH02126532A (en) 1988-10-31 1988-11-04 Electron emission element

Country Status (1)

Country Link
JP (1) JPH02126532A (en)

Similar Documents

Publication Publication Date Title
US5214346A (en) Microelectronic vacuum field emission device
US5192240A (en) Method of manufacturing a microelectronic vacuum device
US5757344A (en) Cold cathode emitter element
KR19980063544A (en) Method of manufacturing field emission device to reduce heat-to-row leakage
JP3094459B2 (en) Method of manufacturing field emission cathode array
JP3033179B2 (en) Field emission type emitter and method of manufacturing the same
JPH02126532A (en) Electron emission element
JP3033178B2 (en) Field emission type emitter
JPH02121227A (en) Electron emission element and manufacture thereof
JP3086445B2 (en) Method of forming field emission device
JPH02306520A (en) Electron emitting element
JP3079086B2 (en) Method for manufacturing field emission electron source
JPH04206124A (en) Manufacture of electron emission element
KR100282261B1 (en) Field emission cathode array and its manufacturing method
JPH02170327A (en) Electron releasing element
JPH03295130A (en) Electron emission device
JPH02172127A (en) Electron emission element and its manufacture
KR100405971B1 (en) Structure and formation method for focusing electrode in field emssion display
JP3156265B2 (en) Method for manufacturing functional electron-emitting device
JPH0233823A (en) Electron emission element
JPH02239537A (en) Electron emitting element
KR100246254B1 (en) Manufacturing method of field emission device having silicide as emitter and gate
JPH0817332A (en) Field emission electronic device and its manufacture
JPH01311534A (en) Surface conductive emitting element
JPH04118829A (en) Electron emission device