JPH0212635B2 - - Google Patents

Info

Publication number
JPH0212635B2
JPH0212635B2 JP57197567A JP19756782A JPH0212635B2 JP H0212635 B2 JPH0212635 B2 JP H0212635B2 JP 57197567 A JP57197567 A JP 57197567A JP 19756782 A JP19756782 A JP 19756782A JP H0212635 B2 JPH0212635 B2 JP H0212635B2
Authority
JP
Japan
Prior art keywords
water
super
over
layer
auxiliary agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57197567A
Other languages
Japanese (ja)
Other versions
JPS5987090A (en
Inventor
Toshio Ogawa
Tetsuro Adachi
Katsuya Ebara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57197567A priority Critical patent/JPS5987090A/en
Publication of JPS5987090A publication Critical patent/JPS5987090A/en
Publication of JPH0212635B2 publication Critical patent/JPH0212635B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Filtration Of Liquid (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は過助剤をプリコートする過脱塩装
置に係り、特に、原子力発電所の復水等の浄化に
使用する多管式過脱塩装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an over-desalination device that pre-coats a super-aid agent, and in particular, a multi-tube over-desalination device used for purifying condensate, etc. in a nuclear power plant. Regarding.

〔従来技術〕[Prior art]

原子力発電所(BWR)の復水浄化系及び炉水
浄化系の水処理系統を第1図に示す。図において
原子炉1で発生した蒸気(286℃、70Kg/cm2)は
蒸気管2を経てタービン3を回転駆動し発電を行
ない、その後復水器4に流入し、凝縮して水に復
水する。復水器4からの水は復水浄化系配管15
によつて導びかれポンプ5により過脱塩器6に
送られる。過脱塩器6では、復水浄化系内で発
生するクラツド(クラツドとは復水浄化系内の腐
食生成物が主体で通常0.45μmのシリボアフイル
ターを通過しない微細な懸濁物の総称で主成分は
Fe2O3、Fe3O4等である。)及び核種イオンを円筒
形過エレメントに陽イオン及び陰イオンの粉末
イオン交換樹脂を特定割合で混合した樹脂を均等
に数mm厚みに外径面にプリコートした樹脂層で
過脱塩して水の浄化を行なう。過脱塩器6で浄
化された水は、次に脱塩器7に送られ、脱塩器内
に陰及び陽イオンの粒状イオン交換樹脂を積んだ
積層によつて、過脱塩器6で除去されなかつた
残留クラツド及び核種イオンが捕足脱塩される。
脱塩器7を経た浄化水は、低圧給水加熱器8で加
熱されてポンプ9により高圧給水加熱器10へ送
られ、再び高圧で加熱されて原子炉1へ戻るよう
に構成されている。このように、原子炉で発生し
た蒸気はタービンを駆動した後、復水浄化して、
原子炉に戻すので復水浄化系を常時循環している
ことになる。
Figure 1 shows the water treatment systems of a nuclear power plant (BWR) condensate purification system and reactor water purification system. In the figure, steam (286°C, 70 kg/cm 2 ) generated in reactor 1 passes through steam pipe 2 to rotate turbine 3 to generate electricity, and then flows into condenser 4 where it condenses into water. do. Water from the condenser 4 is transferred to the condensate purification system piping 15
and is sent to a super-demineralizer 6 by a pump 5. The super desalination device 6 removes crud generated in the condensate purification system (crud is a general term for fine suspended particles that are mainly corrosion products in the condensate purification system and do not normally pass through a 0.45 μm Silibor filter). The main component is
These include Fe 2 O 3 and Fe 3 O 4 . ) and nuclide ions are removed by excessive desalination using a resin layer pre-coated on the outer diameter surface to a thickness of several mm evenly with a resin mixture of powdered ion exchange resin of cations and anions in a specific ratio in a cylindrical filter element. Perform purification. The water purified by the super-demineralizer 6 is then sent to the demineralizer 7, where the water is purified in the super-demineralizer 6 by stacking anion and cation granular ion exchange resins inside the demineralizer. Residual cladding and nuclide ions that have not been removed are trapped and desalted.
The purified water that has passed through the demineralizer 7 is heated by a low-pressure feedwater heater 8, sent to a high-pressure feedwater heater 10 by a pump 9, heated again at high pressure, and returned to the reactor 1. In this way, the steam generated in the nuclear reactor drives the turbine and then is purified by condensation.
Since it is returned to the reactor, it is constantly circulated through the condensate purification system.

一方、原子炉の炉水は炉水浄化系配管16を経
て一部はポンプ11により原子炉へ戻され他は冷
却器12へ送られる。冷却器12で冷却された炉
水はポンプ13により炉水浄化器14へ送られ
て、浄化された後、再び原子炉へ戻るように構成
されている。炉水浄化器14の構造は復水過脱
塩器と同一で、炉水を循環させて過脱塩し浄化
するようになつている。
On the other hand, some of the reactor water is returned to the reactor by the pump 11 through the reactor water purification system piping 16, and the rest is sent to the cooler 12. The reactor water cooled by the cooler 12 is sent to a reactor water purifier 14 by a pump 13, and after being purified, is returned to the reactor. The structure of the reactor water purifier 14 is the same as that of the condensate demineralizer, and the reactor water is circulated to be demineralized and purified.

第2図は従来の過脱塩器の内部構造の概要を
示した立断面図である。過脱塩器内には、外径
50φ、全長1.5m程の円筒状ろ過エレメント30が
約80mmの間隔で200数本設置されている多管式
過器である。過エレメントは上端が吊り金具に
よつて、天井板22に装着、下端は過水の抜き
出し管が底板21を貫通して、設置されており、
各過エレメントからの過脱塩水18は室25
に集合する。過脱塩器内への給水管15の吐出
部には、傘形状案内板23,24が設けてあり、
導入水をエレメント群間に平均して流入するよう
にしてある。
FIG. 2 is a vertical cross-sectional view showing an outline of the internal structure of a conventional over-desalination device. Inside the over demineralizer, the outer diameter
It is a multi-tube type filter in which over 200 cylindrical filtration elements 30 with a diameter of 50 mm and a total length of about 1.5 m are installed at intervals of about 80 mm. The upper end of the overflow element is attached to the ceiling plate 22 by a hanging fitting, and the lower end is installed with an overwater extraction pipe passing through the bottom plate 21.
Super-demineralized water 18 from each filter element enters chamber 25.
Gather at. Umbrella-shaped guide plates 23 and 24 are provided at the discharge part of the water supply pipe 15 into the super-demineralizer.
The introduced water is made to flow in an average amount between the element groups.

第3図は過エレメント構造の概要と過脱塩
時の状態を示したものである。過エレメントは
極細繊維糸を束ねて撚り合せたものを設孔円筒支
持材32に巻装して10数mm厚みの過支持層31
を形成してなり、それ自体でミクロンオーダ粒径
の過除去が出来る。表面には平均粒径数十μm
の粉状イオン交換樹脂をプリコートした助剤過
層33が形成されている。導入水17はエレメン
トに沿つて、上昇し、過層を透過することによ
り、過脱塩され、過脱塩水18を内部から抜
き出す方式である。
FIG. 3 shows an outline of the over-element structure and the state during over-desalination. The over-element is made by bundling and twisting ultra-fine fiber threads and wrapping it around a cylindrical support material 32 with holes to form an over-supporting layer 31 with a thickness of about 10 mm.
By itself, it is possible to remove excess particles with a particle size on the micron order. On the surface, the average particle size is several tens of μm.
An auxiliary agent overlayer 33 is formed by precoating powdered ion exchange resin. Introduced water 17 rises along the element, passes through the overlayer, is over-desalinated, and over-desalinated water 18 is extracted from the inside.

過助剤のエレメントへのプリコートは、水の
過時と同一給水管から導入して行なう。スラリ
ー(樹脂混合水で樹脂濃度0.5〜1wt%)をエレメ
ント表面積に対する線速度(L、V)、通常3〜
4m/hで導入してプリコートする方式がとられ
るが、助剤のプリコート形成層がエレメント全体
に対し、平均しておらず、第4図に示すように
LV4m/hでは、位置1000以上になると極端に薄
くなる。またLV、6.5、10m/hの場合のプリコ
ート状態は上位置のプリコート形成は改良される
が、0位置近傍の流速が大となるため、下位置の
過助剤の形成が悪く、剥離しやすい。このよう
な助剤の形成層厚が不均一の状態で、過脱塩処
理をすると、層厚が薄い部分では処理水の過脱
塩率が低く、また、過機構に於ける体積過の
状態が悪いので、プリコート層形成が均一状態で
はその過差圧が徐々に上昇するのに比べ急激に
上昇するため、過寿命が短縮する。過差圧が
設定圧以上に達すとプリコートしてある助剤を剥
離して新しい助剤と交換する。従がつて、交換回
数が多くなり、使用済の廃樹脂量すなわち放射性
廃棄物の量が増大する。
Pre-coating of the super-assistant onto the element is carried out by introducing it from the same water supply pipe as that used for water. Slurry (resin concentration 0.5 to 1 wt% in resin mixed water) is applied at linear velocity (L, V) relative to element surface area, usually 3 to
A method is used in which the auxiliary agent is introduced at a speed of 4 m/h and precoated, but the precoat forming layer of the auxiliary agent is not evenly distributed over the entire element, as shown in Figure 4.
At LV4m/h, it becomes extremely thin at positions 1000 and above. In addition, in the case of LV, 6.5, and 10 m/h, the precoat formation at the upper position is improved, but because the flow velocity near the 0 position is high, the formation of super-aid agent at the lower position is poor, and it is easy to peel off. . If over-desalination treatment is carried out when the thickness of the layer formed by the auxiliary agent is uneven, the over-desalination rate of the treated water will be low in areas where the layer thickness is thin, and the excessive volume of the over-water mechanism will increase. Because of this, when the precoat layer is uniformly formed, the differential pressure rises rapidly rather than gradually, which shortens the overlife. When the differential pressure reaches the set pressure or higher, the pre-coated auxiliary agent is peeled off and replaced with a new auxiliary agent. As a result, the number of replacements increases, and the amount of used waste resin, that is, the amount of radioactive waste increases.

〔発明の概要〕[Summary of the invention]

本発明は過エレメントへの助剤プリコート形
成層厚を全体に均一化するためのものである。第
5図はエレメントにLV4m/hで助剤をプリコー
トした後、エレメントの各位置からプリコート助
剤を採取し、その助剤の静水中の沈降速度を測定
した結果である。エレメント位置により、その付
着助剤の沈降速度は位置1000以上から急激に減少
する。これは比重の軽いものが上部位置に薄くプ
リコートされていることを意味し、重いものは上
部位置まで到達出来ない結果から起ることと考え
られる。そこで、エレメント群間における水流動
の上昇速度を各LVに対して示したのが第6図で
ある。LV4m/hでは、位置1000以上になるとエ
レメント群間の上昇速度が樹脂の沈降速度36m/
h以下となつてしまうので、それ以上の位置で
は、スラリー水の到達がゆるやかとなるので樹脂
の到達量が少ないためにプリコート形成層厚が薄
くなる。また、LVを6、10m/hと上昇させる
と沈降速度線以上となるエレメントの位置も上方
へ移動するが完全でないことがわかつた。従がつ
て、プリコート形成層厚を全体的に均一化するた
めには、エレメント全域において、上昇速度が樹
脂沈降速度より大であることが必要条件である。
本発明は上記のことがらを考慮して、なされたも
のである。
The purpose of the present invention is to make the thickness of the auxiliary pre-coat layer formed on the over-element uniform throughout. FIG. 5 shows the results of precoating the auxiliary agent onto the element at LV4 m/h, collecting the precoating auxiliary agent from each position of the element, and measuring the sedimentation rate of the auxiliary agent in still water. Depending on the element position, the sedimentation rate of the adhesion aid decreases sharply from position 1000 and above. This means that a material with a light specific gravity is thinly pre-coated at the upper position, and it is thought that this is caused by the fact that a heavy material cannot reach the upper position. Therefore, FIG. 6 shows the rising speed of water flow between element groups for each LV. At LV4m/h, when the position exceeds 1000, the rising speed between the element groups becomes the resin settling speed of 36m/h.
Since the slurry water reaches the position below h, the slurry water reaches the position more slowly, and the amount of the resin reaching the position is small, so that the thickness of the precoat forming layer becomes thinner. It was also found that when the LV was increased to 6 or 10 m/h, the position of the element whose velocity was above the sedimentation velocity line also moved upward, but not completely. Therefore, in order to make the thickness of the precoat forming layer uniform throughout, it is necessary that the rising speed be higher than the resin settling speed over the entire element.
The present invention has been made in consideration of the above matters.

〔発明の実施例〕[Embodiments of the invention]

第7図は本発明の過脱塩器の内部構造を示し
た立断面図である。過エレメントの上端は過
脱塩室を形成する天井板22に装着、下端はろ過
脱塩水抜き出し部管が底板21を貫通し、導入水
と過脱塩水をシールするように具備してある。
給水管15には、エレメントと対応して、エレメ
ント下部位置からエレメント群間に水流を導びく
案内板23,24を設けてあり、案内板23は水
流が器側壁部まで達するように、案内板24は近
傍域を対象にして設けてある。案内板24上には
上部まで達する管26を設けて導入水の一部が上
昇して上端から流出するようにしてあり、管上端
には、エレメント上端部と対応して、案内板2
7,28が設けてある。案内27は近傍域にある
エレメント群を、案内板28は、遠傍域のエレメ
ント群を対象にして設けてある。ろ過脱塩水は下
端部から抜き出す構造である。次に過助剤をエ
レメントにプリコートする場合は、所定濃度スラ
リーを管15より所定流量にて導入する。導入ス
ラリーの1部は案内板23,24によつて、水平
方向に拡散し、案内板23からのスラリーは遠方
へ、案内板24からのスラリーは近傍に拡がり、
エレメント群間を上昇する。
FIG. 7 is an elevational sectional view showing the internal structure of the over-desalination device of the present invention. The upper end of the over-element is attached to the ceiling plate 22 forming the over-demineralization chamber, and the lower end is provided with a filtered demineralized water outlet pipe passing through the bottom plate 21 to seal introduced water and over-demineralized water.
The water supply pipe 15 is provided with guide plates 23 and 24 corresponding to the elements to guide the water flow from the lower part of the element to between the element groups. 24 is provided for the nearby area. A pipe 26 reaching the upper part is provided on the guide plate 24 so that a part of the introduced water rises and flows out from the upper end.
7 and 28 are provided. The guide 27 is provided for a group of elements in a nearby area, and the guide plate 28 is provided for a group of elements in a far area. The structure is such that filtered demineralized water is extracted from the bottom end. Next, when precoating the element with a super-aid agent, a slurry of a predetermined concentration is introduced from the pipe 15 at a predetermined flow rate. A part of the introduced slurry is spread horizontally by the guide plates 23 and 24, the slurry from the guide plate 23 is spread far away, the slurry from the guide plate 24 is spread nearby,
Ascend between groups of elements.

一方、一部スラリーは管26を上昇し、上部に
於いて、案内27,28によつて、水平方向に拡
散し、案内板28からは遠傍、案内板27からは
近傍に拡散し、これらスラリーがエレメント群間
を流動している間、過エレメント内部から過
水を連続して抜きとることによつて、過エレメ
ント30表面に助剤29をプリコートし過助剤
層を形成する。過助剤層の厚さは、第8図に示
すエレメント群間の流動速度によつて変化し、第
9図に示す過助剤層を形成する。底部から上方
への流動速度vb、上部から下方向への流動速度を
vaとすると、図はエレメントに対するLV4m/h
の場合であるが、は流動流量をエレメント間の
空間面積で除した値、単位面積当りの線速度LV
がa位置でva=105.5m/h、vb=12m/h、
はva=9.5m/h、vb=108.5m/hの条件で助剤
をプリコートした結果である。は上部位置に達
する助剤量が少ないため、その部分のプリコート
形成層は薄い。では比較的均一にプリコート層
が形成されるが、上部からの下向流によつて、樹
脂の沈降速度が加速されるので、上部LVが大の
場合は下部位のプリコート層が厚くなる。またエ
レメントにプリコートされないで沈降する樹脂量
も多い。はVa=5.0m/h、Vb=113m/hの
条件で助剤をプリコートした結果である。上下方
向からの水流動はエレメント中央位置で溜留が起
るが、プリコート形成層はエレメント全体に対し
均一に形成される。
On the other hand, a part of the slurry rises up the pipe 26, and at the upper part, it is spread horizontally by the guides 27 and 28, and is spread far from the guide plate 28 and near the guide plate 27. While the slurry is flowing between the element groups, by continuously drawing out superhydrant from inside the superelement, the surface of the superelement 30 is precoated with the auxiliary agent 29 to form a superaid agent layer. The thickness of the super-aid layer varies depending on the flow rate between the elements shown in FIG. 8, forming the super-aid layer shown in FIG. 9. The flow velocity from the bottom upward is v b , and the flow velocity from the top downward is
If v a , the figure shows LV4m/h for the element.
In the case of , is the value obtained by dividing the flow rate by the spatial area between elements, and the linear velocity per unit area LV
is at position a, v a = 105.5 m/h, v b = 12 m/h,
is the result of precoating the auxiliary agent under the conditions of v a =9.5 m/h and v b =108.5 m/h. Because the amount of auxiliary agent reaching the upper position is small, the precoat forming layer in that area is thin. In this case, the precoat layer is formed relatively uniformly, but the sedimentation speed of the resin is accelerated by the downward flow from the top, so when the upper LV is large, the precoat layer in the lower part becomes thicker. Also, there is a large amount of resin that settles out without being precoated on the element. is the result of precoating the auxiliary agent under the conditions of V a =5.0 m/h and V b =113 m/h. Although water flowing from the top and bottom directions accumulates at the center of the element, the precoat forming layer is formed uniformly over the entire element.

以上、エレメントへ助剤をプリコートするの
に、上下方向からエレメント外周部に導水し行な
う場合、使用助剤の沈降速度を考慮して行なえば
均一なプリコート層を形成することが出来る。助
剤プリコート完了後ろ過脱塩処理の運転に入るが
徐々にエレメントに対するLVを上昇し、通常8
〜10m/hで運転される。
As described above, when precoating an auxiliary agent onto an element by introducing water to the outer periphery of the element from above and below, a uniform precoat layer can be formed if the sedimentation rate of the auxiliary agent used is taken into account. After completion of the auxiliary pre-coating, over-desalination treatment begins, but the LV for the element gradually increases, usually reaching 8.
It runs at ~10m/h.

〔発明の効果〕〔Effect of the invention〕

本方式では、エレメントへの導入水を2方向か
ら行なうため、従来1方向からのに比べLVを上
昇することによつて起つていた導入口近傍のエレ
メントプリコート層が流速増大による剥離するの
を防止出来、均一プリコート層を形成しているの
で、本発明は過脱塩性能並びに過寿命の向上
に効果大である。
In this method, water is introduced into the element from two directions, which prevents the element precoat layer near the inlet port from peeling off due to increased flow velocity, which would occur due to an increase in LV compared to the conventional method of introducing water from one direction. Since a uniform precoat layer is formed, the present invention is highly effective in improving over-desalination performance and over-life.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は原子力発電所(BWR)の水の浄化系
統図、第2図は従来の過脱塩器の立断面構造
図、第3図は過エレメントの過モデル図、第
4図はプリコート層状態図、第5図は樹脂の沈降
速度線図、第6図は流動速度線図、第7図は本発
明の過脱塩器の立断面構造図、第8図は過エ
レメント外の流動モデル図、第9図は本発明によ
るプリコート形成層状態図である。 6……過脱塩器、21……底部板、22……
天井板、23,24,27,28……案内板、2
6……管、29……樹脂(助剤)、30……過
エレメント、31……過エレメント繊維層、3
2……繊維層支持円筒、33……過助剤プリコ
ート形成層。
Figure 1 is a water purification system diagram at a nuclear power plant (BWR), Figure 2 is a cross-sectional structural diagram of a conventional demineralizer, Figure 3 is an over-element model diagram, and Figure 4 is a pre-coat layer. Fig. 5 is a sedimentation velocity diagram of the resin, Fig. 6 is a flow velocity diagram, Fig. 7 is an elevation cross-sectional structural diagram of the super-demineralizer of the present invention, and Fig. 8 is a flow model outside the super-element. FIG. 9 is a state diagram of a precoat forming layer according to the present invention. 6... Super demineralizer, 21... Bottom plate, 22...
Ceiling board, 23, 24, 27, 28...information board, 2
6... Pipe, 29... Resin (auxiliary agent), 30... Perelement, 31... Perelement fiber layer, 3
2...Fiber layer support cylinder, 33...Superior agent precoat forming layer.

Claims (1)

【特許請求の範囲】[Claims] 1 表面を過助剤をプリコートし、助剤過
層、過支持層と水を透過させ、過エレメント
内部から過水を抜き過脱塩をする過エレメ
ント内部に多数設置した過脱塩装置に於いて、
立設の前記過エレメント群のほぼ中央部に給水
管を位置させ、前記過エレメントの下端位置及
び上端位置と対応する位置の該給水管に水流の案
内を設けたことを特徴とする過脱塩装置。
1 The surface is pre-coated with a super-assistant, water is allowed to permeate through the super-aid layer and super-support layer, and super-water is removed from the inside of the super-element for super-desalination. There,
A water supply pipe is located approximately in the center of the vertically arranged group of superelements, and water flow guides are provided in the water supply pipes at positions corresponding to the lower and upper end positions of the superelements. Device.
JP57197567A 1982-11-12 1982-11-12 Filtering desalinator Granted JPS5987090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57197567A JPS5987090A (en) 1982-11-12 1982-11-12 Filtering desalinator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57197567A JPS5987090A (en) 1982-11-12 1982-11-12 Filtering desalinator

Publications (2)

Publication Number Publication Date
JPS5987090A JPS5987090A (en) 1984-05-19
JPH0212635B2 true JPH0212635B2 (en) 1990-03-22

Family

ID=16376644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57197567A Granted JPS5987090A (en) 1982-11-12 1982-11-12 Filtering desalinator

Country Status (1)

Country Link
JP (1) JPS5987090A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607917A (en) * 1983-06-28 1985-01-16 Kurita Water Ind Ltd Precoated filtration apparatus
JPS61268308A (en) * 1985-05-23 1986-11-27 Mitaka Kogyosho:Kk Method for filtering liquid to be treated
JPH0328887Y2 (en) * 1985-10-24 1991-06-20
JPH033416U (en) * 1989-06-01 1991-01-14

Also Published As

Publication number Publication date
JPS5987090A (en) 1984-05-19

Similar Documents

Publication Publication Date Title
JPH0212635B2 (en)
JPS6159196B2 (en)
US4053397A (en) Method of recovering backwash liquid with exhausted resin
JPS6068092A (en) Desalter
JPS6048108A (en) Process for precoating filter aid
JPS61138589A (en) Method for packing ion-exchange resin into condensate desalting tower
JPH0353999B2 (en)
JPS58189017A (en) Method for washing filter element
JPH0214114B2 (en)
JP2007033352A (en) Method for zinc supply to reactor
JPS6490041A (en) Ion exchange tower used for upflow regeneration
JPH0747242A (en) Non-aid type filter
JPH0427487A (en) Treatment of condensed water
JPS62185200A (en) Radioactive high-conductivity waste-liquor processing facility
JPS56141844A (en) Regeneration method for ion exchange resin of sugar solution desalting apparatus
JPS62144706A (en) Structure of hollow yarn membrane module
JPH0153116B2 (en)
JPH05154474A (en) Condensate desalter
JPS58137486A (en) Column for desalinating condensed water
JP2003315487A (en) Water treating method for removing iron component from water supply for steam generator, water supply for reactor, water supply for boiler, or heater drain water in electric power plant
JPS589095A (en) Filting and desalting device for atomic power plant
JPS649600B2 (en)
JPS58214389A (en) System of desalination column for condensed water
JPH07155757A (en) Mixed bed desalting device
JPH07323280A (en) Pure water supply device