JPH0353999B2 - - Google Patents

Info

Publication number
JPH0353999B2
JPH0353999B2 JP57195287A JP19528782A JPH0353999B2 JP H0353999 B2 JPH0353999 B2 JP H0353999B2 JP 57195287 A JP57195287 A JP 57195287A JP 19528782 A JP19528782 A JP 19528782A JP H0353999 B2 JPH0353999 B2 JP H0353999B2
Authority
JP
Japan
Prior art keywords
condensate
suspended solids
permeable membrane
filter
passed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57195287A
Other languages
Japanese (ja)
Other versions
JPS5987092A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP57195287A priority Critical patent/JPS5987092A/en
Publication of JPS5987092A publication Critical patent/JPS5987092A/en
Publication of JPH0353999B2 publication Critical patent/JPH0353999B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 本発明は原子力発電所の原子炉一次冷却系もし
くは二次冷却系の復水あるいは火力発電所ボイラ
復水等の復水の処理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating condensate such as condensate of a reactor primary cooling system or secondary cooling system of a nuclear power plant or a boiler condensate of a thermal power plant.

これらの復水中には復水系統の配管、機器が主
として鉄鋼から成るため、必ず鉄を主成分とする
腐食生成物などの懸濁固形分が含まれる。当該懸
濁固形分は主としてFe3O4、α−Fe2O3、γ−
Fe2O3、FeooH等、種々な化学形態のものが含ま
れ、その形状も様々であり、また粒子の大きさ
は、0.1μ〜数10μと幅広い分布を有している。
Since the piping and equipment of the condensate system are mainly made of steel, these condensates always contain suspended solids such as corrosion products mainly composed of iron. The suspended solid content is mainly Fe 3 O 4 , α−Fe 2 O 3 , γ−
It includes various chemical forms such as Fe 2 O 3 and FeooH, and its shape is also various, and the particle size has a wide distribution from 0.1 μm to several tens of μm.

当該懸濁固形分は蒸気発生器例えば原子炉、ボ
イラー、あるいは蒸気タービンに沈着付着し、こ
れらの装置、機器の機能を損なうばかりでなく、
特に原子力発電所においては放射性物質の増加を
起すので、復水から当該懸濁固形分を極力除去し
なければならない。
The suspended solids deposit in steam generators such as nuclear reactors, boilers, or steam turbines not only impair the functionality of these devices and equipment, but also
Particularly in nuclear power plants, since radioactive substances increase, it is necessary to remove the suspended solids from condensate as much as possible.

従来から復水中の懸濁固形分を除去する場合、
一般にプレコート過が行なわれていた。このプ
レコート過は、素焼筒、カーボン筒、あるいは
金網、糸を巻きつけた円筒などからなる過エレ
メントにケイソウ土、セルロース、微粒子状イオ
ン交換樹脂、炭素粉、粉末状の合成繊維などの
過助剤をプレコートしたプレコート過エメレン
トを多数収容配設してなる過塔に懸濁固形分を
含有する復水を通水せしめ、過エレメントの当
該プレコート層で過を行なうものである。また
最近では前記プレコート過を行なう過塔に代
えて電磁フイルタを用いた過塔で復水中の懸濁
固形分を過除去することも行なわれるようにな
つて来ている。
Traditionally, when removing suspended solids from condensate,
Generally, precoating was carried out. This pre-coated filter is applied to a filter element consisting of an unglazed cylinder, a carbon cylinder, a wire mesh, a cylinder wrapped with thread, etc., and a supercharging aid such as diatomaceous earth, cellulose, particulate ion exchange resin, carbon powder, or powdered synthetic fiber. Condensate containing suspended solids is passed through a filter tower which houses a large number of pre-coated emeralds, and is filtered through the pre-coated layer of the filter element. Furthermore, recently, in place of the filter tower that performs the precoat filtration, a filter tower using an electromagnetic filter has been used to excessively remove suspended solids in condensate.

しかしながら復水中に含まれる懸濁固形分は前
述したとおり、0.1μ〜数10μと幅広く分布してお
り、時として大部分が1μ以下の場合もある。し
たがつて前記のプレコート過では微細な懸濁固
形分がリークするという欠点を有している。また
プレコート層が比較的速く目詰りを起こし、その
ため前記過助剤の廃棄物量も増加し、さらに
過エレメント自体にも微細な懸濁固形分が目詰り
し、そのため過エレメントを時々超音波、化学
薬品などで洗浄したりする余分な操作を必要と
し、かつ当該洗浄で回復しない過エレメントは
交換しなければならない。一方電磁フイルタにお
いてはα−Fe2O3、FeOOHなどの常磁性体の懸
濁固形分は除去困難であり、したがつて復水中に
常磁性体が多く含まれている場合は採用できない
という欠点がある。
However, as mentioned above, the suspended solids contained in the condensate are widely distributed from 0.1 μm to several tens of μm, and in some cases, most of the suspended solids are 1 μm or less. Therefore, the pre-coating method described above has the disadvantage that fine suspended solids leak. Additionally, the pre-coat layer becomes clogged relatively quickly, which increases the amount of super-aid waste, and the filter element itself is also clogged with fine suspended solids, so that the filter element is sometimes Excessive elements that require extra operations such as cleaning with chemicals and cannot be recovered by such cleaning must be replaced. On the other hand, electromagnetic filters have the disadvantage that it is difficult to remove suspended solids of paramagnetic substances such as α-Fe 2 O 3 and FeOOH, so they cannot be used when condensate contains a large amount of paramagnetic substances. There is.

従来復水の処理としては、たとえば、原子炉で
発生したスチームをタービンをへて復水器で復水
したのち原子炉に循環させるために浄化するに当
つて、復水器からの復水をまず逆洗型のプレコー
ト過エレメントを備えた過塔に通して、該
過塔により主として復水中の懸濁固形分(クラツ
ド)を除去し、その流出側からの復水をイオン交
換樹脂を充填した脱塩塔に通して脱塩したのち原
子炉へ循環させることが行なわれており、その復
水全量は1100万kW級の原子力発電所になると、
6000m3/hrにも及ぶものであるが、かかる大量の
復水をプレコート過法によつて処理するには
過塔の逆洗を度々行なわなければならず、逆洗後
にはプレコートする作業が必要となり、特に原子
力発電所設備における復水浄化系においては放射
性廃棄物量を増大するという問題が生ずる。
Conventional condensate treatment is, for example, when steam generated in a nuclear reactor is purified in order to be circulated to the reactor after passing through a turbine and condensing in a condenser. First, the condensate was passed through a filter column equipped with a backwash type pre-coated filter element to mainly remove suspended solids (crads) in the condensate, and the condensate from the outflow side was filled with an ion exchange resin. After being desalinated through a desalination tower, it is circulated to the nuclear reactor, and the total amount of condensed water is required for an 11 million kW class nuclear power plant.
However, in order to treat such a large amount of condensate using the precoat filtration method, the filtration tower must be backwashed frequently, and precoating is required after backwashing. This poses the problem of increasing the amount of radioactive waste, especially in condensate purification systems in nuclear power plant equipment.

本発明は復水中の懸濁固形分を除去するにあた
り、従来の処理方法の欠点を解決することを目的
とするもので、容器内に横設固定されて該容器を
流入側と流出側とに区画する支持板および上記流
入側で上記支持板に立設された多数の過エレメ
ントを備えてなる過塔に、鉄を主成分とする腐
食生成物などの懸濁固形分を含む復水を通水させ
過処理する復水の処理方法において、上記過
エレメントは、中空毛細管からなる透過膜チユー
ブを多数本束ねて構成されるとともに、各透過膜
チユーブの中空部が上記流出側に連通されてお
り、上記懸濁固形分を含む復水の全量を上記各透
過膜チユーブの膜面を通して上記流入側から上記
流出側へ通水させ、該膜面での過により上記懸
濁固形分を除去することを特徴とするものであ
る。
The purpose of the present invention is to solve the drawbacks of conventional treatment methods in removing suspended solids from condensate. Condensate containing suspended solids such as corrosion products mainly composed of iron is passed through a filter column comprising a partitioning support plate and a large number of filter elements installed upright on the support plate on the inflow side. In the method for treating condensate by watering and over-treating, the above-mentioned permeation element is composed of a large number of permeable membrane tubes made of hollow capillary tubes bundled together, and the hollow part of each permeable membrane tube is communicated with the above-mentioned outflow side. , passing the entire amount of condensate containing the suspended solids from the inflow side to the outflow side through the membrane surface of each permeable membrane tube, and removing the suspended solids by passing through the membrane surface; It is characterized by:

本発明に用いる過エレメントの具体例をあげ
ると0.001〜0.1μの微細孔径を有する透過膜、あ
るいは分画分子量10000〜100000の性能を示す透
過膜を外径0.5〜2mm、内径0.2〜1.5mmの中空毛細
管状に形成した透過膜チユーブを多数本、例えば
500本以上束ねたものである。このような過エ
レメントを用い、懸濁固形分を含む復水の全量を
前記過膜チユーブの膜面を通して過塔の流入
側から流出側へ通水させ、該膜面での過によ
り、つまり透過膜の微細孔によつて復水中の懸濁
固形分を除去し、また透過膜の微細孔径を適当な
ものに選定することにより、0.1μ程度の微細な懸
濁固形分をも確実に除去することができる。
A specific example of the permeable element used in the present invention is a permeable membrane with a micropore size of 0.001 to 0.1μ, or a permeable membrane with a molecular weight cutoff of 10,000 to 100,000, with an outer diameter of 0.5 to 2 mm and an inner diameter of 0.2 to 1.5 mm. A large number of permeable membrane tubes formed in the shape of hollow capillaries, e.g.
It is a bundle of over 500 pieces. Using such a filtration element, the entire amount of condensate containing suspended solids is passed through the membrane surface of the filtration membrane tube from the inflow side to the outflow side of the filtration column, and by filtration on the membrane surface, that is, permeation is carried out. Suspended solids in condensate are removed by the fine pores of the membrane, and even suspended solids as small as 0.1μ can be reliably removed by selecting an appropriate fine pore size for the permeable membrane. be able to.

従来のプレコート過法においては通常、外径
1〜4インチ、長さ1〜2mの円筒状の過エレ
メントが用いられ、当該過エレメントの外周面
に前述した種々の過助剤をプレコートし、当該
プレコート層で懸濁固形分を除去するが、このよ
うな過エレメントの場合、例えば外径2イン
チ、長さ1.5mの過エレメント1本当りの過
面積は約0.24m2である。一方本発明で用いる過
エレメントは前述した透過膜チユーブを多数本束
ねたものであり、当該束ねた過膜チユーブのそ
れぞれが過能力を持つているのでその過面積
は極めて大きい。例えば、前述の従来の外径2イ
ンチ、長さ1.5mの過エレメントと同じ容積内
に外径1.4mm、長さ1.5mの過膜チユーブを約
800本束ねることが可能であり、この本発明の
過エレメント1本当りの過面積は約5.3m2であ
る。このように本発明の過エレメントと従来の
過エレメントの過面積を比較すると、前者は
後者の約22倍もあるので、本発明の過エレメン
トはこの過時間を大幅に長くすることができ
る。
In the conventional precoat filter method, a cylindrical filter element with an outer diameter of 1 to 4 inches and a length of 1 to 2 m is usually used, and the various filter aids described above are precoated on the outer peripheral surface of the filter element. Suspended solids are removed in the precoat layer, and in the case of such a perforation element, for example, the perforation area of one perforation element having an outer diameter of 2 inches and a length of 1.5 m is about 0.24 m 2 . On the other hand, the over-element used in the present invention is a bundle of a large number of the above-mentioned permeable membrane tubes, and since each of the bundled permeable membrane tubes has a over-capacity, its over-area is extremely large. For example, a membrane tube with an outer diameter of 1.4 mm and a length of 1.5 m can be placed in the same volume as the conventional membrane tube with an outer diameter of 2 inches and a length of 1.5 m.
It is possible to bundle 800 elements, and the area of each element of the present invention is approximately 5.3 m 2 . As described above, when comparing the overarea of the overelement of the present invention and the conventional overelement, the former is about 22 times as large as the latter, so the overelement of the present invention can significantly lengthen this elapsed time.

たとえば前述の従来の外径2インチ、長さ1.5
mのプレコート過エレメントは通常当該過エ
レメント1本あたり約2T/Hの復水を通水する
が、復水中に約30ppbの懸濁固形分が含まれてい
る場合、15日前後で圧力損失が規定値に達し、プ
レコート層を剥離して新たなプレコート層を形成
せねばならない。
For example, the previously mentioned conventional outer diameter of 2 inches and length of 1.5 inches.
Normally, approximately 2 T/H of condensate is passed through a pre-coated filter element of 1.5 m, but if the condensate contains approximately 30 ppb of suspended solids, the pressure drop will increase after about 15 days. Once the specified value is reached, the precoat layer must be peeled off and a new precoat layer formed.

一方本発明の過エレメントにおいては、同一
条件で比較した場合、その過時間を約30日以上
とすることができる。また本発明の過エレメン
トは、透過膜チユーブの表面に懸濁固形分が付着
し圧力損失が増加した場合、復水の通水方向とは
逆向きに洗浄水を通水することにより、容易に膜
表面から懸濁固形分を洗浄剥離することができ、
この洗浄後ふたたび通水を続行することができ
る。
On the other hand, in the over-element of the present invention, when compared under the same conditions, the elapsed time can be about 30 days or more. In addition, the filtering element of the present invention can easily solve the problem by passing cleaning water in the opposite direction to the direction of condensate water flow when suspended solids adhere to the surface of the permeable membrane tube and pressure loss increases. Suspended solids can be washed and peeled off from the membrane surface.
After this cleaning, water flow can be continued again.

本発明に先行する特開昭49−86800号公報に開
示される限外過膜装置で液体中の懸濁固形分を
除去する場合、透過膜を掃流するように被処理液
を通液する、いわゆるクロスフロー通液が行なわ
れている。当該クロスフロー通液は50%前後の被
処理液を透過膜を掃流するようにして流すことに
より、懸濁固形分を濃縮した非透過液を得るとと
もに、残余の被処理水を透過膜に透過させて懸濁
固形分が除去された透過液を得るものであるが、
原子力発電所や火力発電所等の復水の場合、当該
復水の全量を循環使用しなければならないのでこ
のようなクロスフロー通液は採用し難い。
When removing suspended solids in a liquid using the ultrafiltration membrane device disclosed in Japanese Patent Application Laid-Open No. 49-86800, which precedes the present invention, the liquid to be treated is passed through the permeable membrane in a sweeping manner. , so-called cross-flow liquid passage is performed. The cross-flow liquid passes approximately 50% of the treated liquid through the permeable membrane to obtain a non-permeated liquid with concentrated suspended solids, and the remaining treated water is passed through the permeable membrane. It is used to obtain a permeate from which suspended solids have been removed by permeation.
In the case of condensate from nuclear power plants, thermal power plants, etc., the entire amount of condensate must be recycled and used, so it is difficult to employ such cross-flow liquid passage.

本発明を実施するに当つて、過塔内に多数立
設して備えられる過エレメントに使用する透過
膜チユーブとしては、外径0.5〜2.0mm程度のもの
が好適であり、それは以下の理由による。
In carrying out the present invention, it is preferable that the permeation membrane tubes used in the permeation elements installed in large numbers in the permeation column have an outer diameter of approximately 0.5 to 2.0 mm, and this is due to the following reasons. .

たとえば当該チユーブの外径を0.5mm以下とす
ると、一定容積内に束ねる当該チユーブの本数を
増加することができ、それにより過面積を大と
することができるという利点がある反面、内径が
細くなりすぎ、そこを通過する流体の圧力損失が
大となつて好ましくなく、また当該チユーブの外
径を2mm以上とするとそれ程多数本の当該チユー
ブを束ねることができなくなり、過面積を大き
くすることができなくなり好ましくない。
For example, if the outer diameter of the tube is 0.5 mm or less, the number of tubes bundled within a certain volume can be increased, which has the advantage of increasing the excess area, but on the other hand, the inner diameter will be thinner. If the outer diameter of the tube is too large, the pressure loss of the fluid passing through it will become large, which is undesirable, and if the outer diameter of the tube is set to 2 mm or more, it will not be possible to bundle a large number of tubes together, making it impossible to increase the overarea. It disappears and is not desirable.

したがつて当該チユーブの外径を0.5〜2mmと
することが望ましく、好ましくは0.8〜1.2mmのも
のを使用するとよい、また微細孔径が0.001μ以下
や、分画分子量が10000以下の透過膜を用いると
初期圧力損失が大きすぎて実用的でなく、また微
細孔径が0.1μ以上や分画分子量が100000以上の透
過膜では微細な懸濁固形分がリークしやすいので
好ましくない。したがつて0.001〜0.1μの微細孔
径を有するか、あるいは分画分子量が10000〜
100000の性能を有する透過膜を用いることが好ま
しい。
Therefore, it is desirable to use a tube with an outer diameter of 0.5 to 2 mm, preferably 0.8 to 1.2 mm, and a permeable membrane with a micropore diameter of 0.001 μ or less and a molecular weight cut-off of 10,000 or less. If used, the initial pressure loss will be too large to be practical, and a permeable membrane with a micropore diameter of 0.1 μ or more or a molecular weight cut-off of 100,000 or more is undesirable because fine suspended solids tend to leak. Therefore, it has a micropore diameter of 0.001 to 0.1μ, or a molecular weight cut-off of 10,000 to 10,000.
Preferably, a permeable membrane with a performance of 100,000 is used.

以上説明したように本発明の復水の処理方法
は、従来のプレコート過方法と比較して単位容
積当りの過エレメントの過時間を相当延長さ
せることができ、したがつて逆洗の頻度が少なく
てすみ、逆洗後においてプレコートする作業は不
要となり、本発明方法を実施した原子力発電所設
備では放射性廃棄物量が大幅に減容されることに
なる。
As explained above, the condensate treatment method of the present invention can significantly extend the passing time of the filter element per unit volume compared to the conventional pre-coating method, and therefore the frequency of backwashing is reduced. As a result, there is no need for pre-coating after backwashing, and the amount of radioactive waste can be significantly reduced in nuclear power plant equipment that implements the method of the present invention.

以下に本発明の実施態様を図面に従つて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明に用いる過エレメントの一実
施例の一部切欠外観図であつて、図示の過エレ
メント5は外径0.5〜2mmの中空毛細管からなる
透過膜チユーブ1を多数本束ね、両端を集合キヤ
ツプ2およびコネクタ3によつて固定し、また透
過膜チユーブ1の集合体の外表面を、穴あきプレ
ートあるいは金網などの補強材4で被覆したもの
である。なおコネクタ3はその内側にネジが切つ
てあつて、後述する支持板ノズル7に螺合できる
ようにしてある。また当該過エレメント5は第
1図の点線で示したごとく、復水の全量を各透過
膜チユーブ1の外側から膜面を通して通水し、
過水をコネクタ3の内側で集合して過塔の流出
側へ流れる通水方向をとる。
FIG. 1 is a partially cutaway external view of an embodiment of the permeable element used in the present invention. are fixed by an assembly cap 2 and a connector 3, and the outer surface of the assembly of permeable membrane tubes 1 is covered with a reinforcing material 4 such as a perforated plate or a wire mesh. The connector 3 is threaded on the inside so that it can be screwed into a support plate nozzle 7, which will be described later. Further, as shown by the dotted line in FIG. 1, the permeation element 5 passes the entire amount of condensate from the outside of each permeable membrane tube 1 through the membrane surface,
The water is collected inside the connector 3 and flows toward the outflow side of the tower.

第2図は本発明に用いる過エレメントを装着
した過塔の縦断面図であつて、過塔6は容器
内に横設固定された該容器を流入側と流出側とに
区画する支持板8を備えており、該支持板8の下
側に支持板ノズル7を介して過エレメント5が
多数本懸垂状に取付けられる。そして過エレメ
ント5の各透過膜チユーブの中空部はすべて過
塔6の流出側に連通されている。なお、9は多数
の穴を有するデイストリビユータであつて、復水
を当該デイストリビユータ9から給送し、点線で
示したごとく復水の全量を各過エレメント5の
膜面で過し、過水を各支持板ノズル7で集水
し、支持板8の上部流出側から過塔6の外部に
取り出すものである。
FIG. 2 is a longitudinal cross-sectional view of a filter column equipped with a filter element used in the present invention, in which the filter column 6 is horizontally fixed in a container and has a support plate 8 that divides the container into an inflow side and an outflow side. A large number of over-elements 5 are attached to the lower side of the support plate 8 via support plate nozzles 7 in a suspended manner. The hollow portions of each permeable membrane tube of the filter element 5 are all communicated with the outflow side of the filter column 6. Note that 9 is a distributor having a large number of holes, and the condensate is fed from the distributor 9, and the entire amount of condensate is passed through the membrane surface of each filter element 5 as shown by the dotted line. The perfused water is collected by each support plate nozzle 7 and taken out from the upper outflow side of the support plate 8 to the outside of the filter tower 6.

第3図は本発明のフローを示す説明図であり、
復水を過する場合は弁10と弁11を開けて、
復水の全量を流入管12から過塔6の下部に流
入させ、各過エレメント5によつて過し、
過水を流出管13から取り出す。このような過
の続行により復水中の懸濁固形物は各過エレメ
ント5の外面、詳しくは各透過膜チユーブ1の外
周膜面で過され、その結果、圧力損失が増加し
ていく。当該圧力損失が規定の値に達したら、弁
10,11を閉じて復水の通水を中断し、弁1
4,15を開けて、空気貯槽16から、空気流入
管17を介して過塔6の上部から圧縮空気を流
入する。当該圧縮空気の流入により支持板8の上
部にある過水が各過エレメント5に逆流し、
各透過膜チユーブ1の内側から外側へと過水が
逆流することにより、各透過膜チユーブ1の外側
に付着していた懸濁固形分が剥離し、懸濁固形分
の濃縮液が逆洗水流出管18より得られる。また
過塔6内の水面が低下するにつれて、圧縮空気
そのものが各透過膜チユーブ1の内側から外側へ
勢いよく流れるので、各透過膜チユーブ1の外側
に付着した懸濁固形分をより確実に除去できる。
なおこのような逆洗を行なつた後、圧縮空気の流
入は続行して、さらに弁19を開口して逆洗水流
入管20から逆洗水を流入し、空気と水により確
実に除去することができる。
FIG. 3 is an explanatory diagram showing the flow of the present invention,
When draining condensate, open valves 10 and 11.
The entire amount of condensate is allowed to flow into the lower part of the filter column 6 from the inlet pipe 12 and passed through each filter element 5,
The excess water is removed from the outflow pipe 13. As such filtration continues, the suspended solids in the condensate are passed through the outer surface of each filtration element 5, specifically, the outer peripheral membrane surface of each permeable membrane tube 1, and as a result, the pressure loss increases. When the pressure loss reaches a specified value, valves 10 and 11 are closed to interrupt the flow of condensate, and valve 1 is closed.
4 and 15 are opened, and compressed air is introduced from the upper part of the filter tower 6 from the air storage tank 16 through the air inflow pipe 17. Due to the inflow of the compressed air, the excess water on the upper part of the support plate 8 flows back into each excess element 5,
As the permeate water flows backward from the inside to the outside of each permeable membrane tube 1, the suspended solids adhering to the outside of each permeable membrane tube 1 are peeled off, and the concentrated solution of suspended solids is transferred to the backwash water. It is obtained from the outflow pipe 18. In addition, as the water level in the filter tower 6 decreases, the compressed air itself flows forcefully from the inside to the outside of each permeable membrane tube 1, thereby more reliably removing suspended solids attached to the outside of each permeable membrane tube 1. can.
Note that after performing such backwashing, the compressed air continues to flow in, and the valve 19 is further opened to allow backwash water to flow in from the backwash water inlet pipe 20 to ensure that the water is removed by air and water. I can do it.

このような逆洗を終了した後、再び通水を行な
うが、この場合は弁10および弁21を開口し、
他の弁を閉じ、流入管12から過塔6内に復水
を流入し、過塔6内の空気を空気抜き管22か
ら放出した後、弁21を閉じて弁11を開口し、
前述の過を行なう。また、逆洗後における従来
のプレコート過で行なわれているようなプレコ
ート作業は不要であり運転休止時間を短縮でき
る。
After completing such backwashing, water is passed through again, but in this case, valve 10 and valve 21 are opened,
After closing the other valves, allowing condensate to flow into the filter tower 6 from the inlet pipe 12, and releasing the air in the filter tower 6 from the air vent pipe 22, closing the valve 21 and opening the valve 11,
Do the above mentioned mistake. Further, precoating work, which is performed in conventional precoating filtration after backwashing, is not necessary, and the downtime can be shortened.

以上説明したように本発明は細い透過膜チユー
ブを多数本束ねた過エレメントを用いるので、
その過面積を大とすることができ、かつ透過膜
の微細孔も極めて小さいので、単位容積当りの
過時間を大幅に増加せしめることができるととも
に、微細な懸濁固形分も確実に除去することがで
きる。また本発明に用いる過エレメントは過
助剤をプレコートしなくとも復水を過すること
ができるので逆洗廃液中の廃プレコート剤に起因
する廃棄固形分の量を低減することができる。
As explained above, the present invention uses a permeable element in which a large number of thin permeable membrane tubes are bundled.
Since the excess area can be increased and the micropores of the permeable membrane are extremely small, the elapsed time per unit volume can be greatly increased, and even fine suspended solids can be reliably removed. I can do it. Further, since the filter element used in the present invention can pass condensate water without precoating with a filter aid, the amount of waste solid content resulting from the waste precoating agent in the backwash waste liquid can be reduced.

以下に本発明の効果をより明確にするために実
施例を説明する。
Examples will be described below to make the effects of the present invention more clear.

実施例 分画分子量13000、厚さ0.3mmの透過膜を外径
1.4mm、内径0.8mm、長さ1.5mのチユーブにしたも
のを、直径2インチ、長さ1.5mの容積内に800本
束ね、第1図に示したような過エレメントを形
成した。当該過エレメント1本を小型過塔内
の支持板に装着し、粒子径8μ以上が34%、8μ〜
3μが24%、3μ〜0.4μが19%、0.4以下が23%の粒
度分布を示す30〜40ppbの懸濁鉄を含む復水を小
型過塔の下方部から2.3T/Hで通水し、各透
過膜チユーブの外側から内側に通過させ、過水
を支持板の上部を介して採取した。その結果、平
均懸濁鉄量0.5ppbの過水が得られ、また圧力損
失が1.5Kg/cm2になるまでに約30日間処理できた。
Example: A permeable membrane with a molecular weight cutoff of 13,000 and a thickness of 0.3 mm has an outer diameter of
800 tubes with a diameter of 1.4 mm, an inner diameter of 0.8 mm, and a length of 1.5 m were bundled in a volume of 2 inches in diameter and 1.5 m in length to form a superelement as shown in Figure 1. One filter element was installed on the support plate inside the small filter tower, and 34% of the particles had a particle size of 8μ or more, and 8μ or more.
Condensate containing 30 to 40 ppb of suspended iron with a particle size distribution of 24% of 3μ, 19% of 3μ to 0.4μ, and 23% of 0.4 or less is passed from the lower part of a small filter tower at 2.3T/H. , passed from the outside to the inside of each permeable membrane tube, and the permeate was collected through the top of the support plate. As a result, superhydration with an average suspended iron content of 0.5 ppb was obtained, and the process could be completed for about 30 days until the pressure drop became 1.5 Kg/cm 2 .

以上の通水結果における圧力損失の上昇は、第
4図中の曲線−1によつて示されるとおりであ
る。
The increase in pressure loss in the above water flow results is as shown by curve-1 in FIG.

一方比較のために従来の過方法として直径2
インチ、長さ1.5mの単一の公知のプレコート
過エレメントに微粒子状イオン交換樹脂(微粒子
状陽イオン交換樹脂:微粒子状陰イオン交換樹脂
=3:1)を1.0Kg/m2になるようにプレコート
し(なお、プレコートするにあたり高分子電解質
の添加量を調節してV/Vo=55%とした。)、当
該プレコートした過エレメントに本発明に用い
たと同じ復水を同じ流量で通水した。その結果、
過水の平均懸濁鉄量は5ppbであり、また約17
日間の通水で圧力損失が1.5Kg/cm2となつた。な
おリークした5ppbの懸濁鉄の粒度分布を調べた
ところ、8μ以上が0%、8〜3μが10%、3〜0.4μ
が15%、0.4μ以下が75%であつた。第4図におけ
る曲線−2は当該比較例における圧力損失の上昇
を示したものである。
On the other hand, for comparison, the conventional method is
Microparticulate ion exchange resin (fine particulate cation exchange resin: particulate anion exchange resin = 3:1) was applied to a single known pre-coated filter element with a length of 1.5 m at a rate of 1.0 kg/m 2. (The amount of polymer electrolyte added was adjusted to V/Vo = 55% during precoating.), and the same condensate as used in the present invention was passed through the precoated element at the same flow rate. . the result,
The average amount of suspended iron in superhydration is 5 ppb, and about 17
The pressure loss was 1.5Kg/cm 2 after water flow for one day. Furthermore, when we investigated the particle size distribution of the leaked 5ppb suspended iron, we found that 0% was 8μ or more, 10% was 8 to 3μ, and 3 to 0.4μ.
was 15%, and 75% was 0.4μ or less. Curve 2 in FIG. 4 shows the increase in pressure loss in the comparative example.

本発明による復水の処理方法を、たとえば原子
力発電所設備における復水浄化系に適用すると、
使用する過塔の過エレメントは、中空毛細管
からなる透過膜チユーブを多数本束ねて構成され
るとともに、各透過膜チユーブの中空部が上記流
出側に連通されており、上記懸濁固形分を含む復
水の全量を上記各透過膜チユーブの膜面を通して
上記流入側から上記流出側へ通水させ、該膜面で
の過により上記懸濁固形分を除去するものであ
るため、従来の逆洗型のプレコート過エレメン
トを備えた過塔に代り得るものとして、同程度
の大量の復水処理を可能としながら、従来のプレ
コート過に比べて、逆洗の頻度が少なくてす
み、さらに、放射能性廃棄物量が大幅に減容され
るという従来の復水処理法に比して顕著な効果を
奏するものである。
When the condensate treatment method according to the present invention is applied to a condensate purification system in nuclear power plant equipment, for example,
The filtration element of the filtration column used is constructed by bundling a large number of permeation membrane tubes made of hollow capillary tubes, and the hollow part of each permeation membrane tube is communicated with the above-mentioned outlet side, and contains the above-mentioned suspended solids. The entire amount of condensate is passed from the inflow side to the outflow side through the membrane surface of each permeable membrane tube, and the suspended solids are removed by filtration on the membrane surface, which is different from conventional backwashing. As an alternative to filter columns equipped with pre-coated filtration elements, it is possible to treat similar large volumes of condensate, but requires less backwashing than traditional pre-coated filtration, and has the advantage of reducing radioactivity. This method has a remarkable effect compared to conventional condensate treatment methods, in that the volume of industrial waste is significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図はいずれも本発明の実施態様を
示し、第1図は本発明に用いる過エレメントの
一部切欠外観図であり、第2図は本発明に用いる
過エレメントを装着した過塔の縦断面図であ
り、第3図は本発明のフローを示す説明図であ
る。また第4図は実施例における差圧の上昇を示
したグラフで、縦軸に圧力損失、横軸に運転日数
を示す。 1……透過膜チユーブ、2……集合キヤツプ、
3……コネクタ、4……補強剤、5……過エレ
メント、6……過塔、7……支持板ノズル、8
……支持板、9……デイストリビユータ、10,
11……弁、12……流入管、13……流出管、
14,15……弁、16……空気貯槽、17……
空気流入管、18……逆洗水流出管、19……
弁、20……逆洗水流入管、21……弁、22…
…空気抜き管。
Fig. 1 to Fig. 3 all show embodiments of the present invention, Fig. 1 is a partially cutaway external view of the over-element used in the present invention, and Fig. 2 is a partially cutaway external view of the over-element used in the present invention. FIG. 3 is a vertical cross-sectional view of the filter tower, and FIG. 3 is an explanatory diagram showing the flow of the present invention. FIG. 4 is a graph showing the increase in differential pressure in the example, with the vertical axis showing the pressure loss and the horizontal axis showing the number of operating days. 1... Permeable membrane tube, 2... Collection cap,
3... Connector, 4... Reinforcing agent, 5... Passing element, 6... Passing tower, 7... Support plate nozzle, 8
... Support plate, 9 ... Distributor, 10,
11...Valve, 12...Inflow pipe, 13...Outflow pipe,
14, 15... Valve, 16... Air storage tank, 17...
Air inflow pipe, 18... Backwash water outflow pipe, 19...
Valve, 20... Backwash water inflow pipe, 21... Valve, 22...
...Air vent tube.

Claims (1)

【特許請求の範囲】 1 容器内に横設固定されて該容器を流入側と流
出側とに区画する支持板および上記流入側で上記
支持板に立設された多数の過エレメントを備え
てなる過塔に、鉄を主成分とする腐食生成物な
どの懸濁固形分を含む復水を通水させ過処理す
る復水の処理方法において、 上記過エレメントは、中空毛細管からなる透
過膜チユーブを多数本束ねて構成されるととも
に、各透過膜チユーブの中空部が上記流出側に連
通されており、上記懸濁固形分を含む復水の全量
を上記各透過膜チユーブの膜面を通して上記流入
側から上記流出側へ通水させ、該膜面での過に
より上記懸濁固形分を除去することを特徴とする
復水の処理方法。
[Claims] 1. A support plate horizontally fixed in a container and dividing the container into an inflow side and an outflow side, and a large number of over-elements erected on the support plate on the inflow side. In a condensate treatment method in which condensate containing suspended solids such as iron-based corrosion products is passed through a filter column for filter treatment, the filter element has a permeable membrane tube consisting of a hollow capillary tube. The hollow part of each permeable membrane tube is connected to the above-mentioned outflow side, and the entire amount of condensate containing the suspended solids is passed through the membrane surface of each permeable membrane tube to the above-mentioned inflow side. A method for treating condensate, characterized in that the suspended solids are removed by passing water from the membrane to the outflow side and filtering through the membrane surface.
JP57195287A 1982-11-09 1982-11-09 Treatment of condensed water Granted JPS5987092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57195287A JPS5987092A (en) 1982-11-09 1982-11-09 Treatment of condensed water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57195287A JPS5987092A (en) 1982-11-09 1982-11-09 Treatment of condensed water

Publications (2)

Publication Number Publication Date
JPS5987092A JPS5987092A (en) 1984-05-19
JPH0353999B2 true JPH0353999B2 (en) 1991-08-16

Family

ID=16338642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57195287A Granted JPS5987092A (en) 1982-11-09 1982-11-09 Treatment of condensed water

Country Status (1)

Country Link
JP (1) JPS5987092A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6061089A (en) * 1983-09-14 1985-04-08 Jgc Corp Purifying method of condensate
JPS63190606A (en) * 1987-01-30 1988-08-08 Hitachi Ltd Hollow yarn membrane module
US5126052A (en) * 1991-02-07 1992-06-30 The Graver Company Condensate polishing system incorporating a membrane filter
NL1016771C2 (en) * 2000-12-01 2002-09-05 Kiwa Nv Process for purifying water by filtration with a micro or ultra filtration membrane.
JP5451436B2 (en) * 2010-02-05 2014-03-26 オルガノ株式会社 Filtration desalination equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4986800A (en) * 1972-12-22 1974-08-20
JPS53108882A (en) * 1977-03-04 1978-09-22 Kuraray Co Ltd Back washing method for hollow filament membrane
JPS55323U (en) * 1978-05-17 1980-01-05
JPS5573390A (en) * 1978-11-27 1980-06-03 Kuraray Co Ltd Treatment method for water
JPS56163709A (en) * 1980-05-21 1981-12-16 Sumitomo Bakelite Co Ltd Ultrafiltration device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4986800A (en) * 1972-12-22 1974-08-20
JPS53108882A (en) * 1977-03-04 1978-09-22 Kuraray Co Ltd Back washing method for hollow filament membrane
JPS55323U (en) * 1978-05-17 1980-01-05
JPS5573390A (en) * 1978-11-27 1980-06-03 Kuraray Co Ltd Treatment method for water
JPS56163709A (en) * 1980-05-21 1981-12-16 Sumitomo Bakelite Co Ltd Ultrafiltration device

Also Published As

Publication number Publication date
JPS5987092A (en) 1984-05-19

Similar Documents

Publication Publication Date Title
JP3529431B2 (en) Improved filter and method for separating charged particles from a liquid stream
US5468397A (en) Gas backwash of pleated filters
EP0876198B1 (en) Method and device for removing iron from aqueous liquids
JPH0462770B2 (en)
US4065388A (en) Process for removal of undissolved impurities from ion exchange resin
GB2214448A (en) Filter element
CA1120867A (en) Two layer wound-on-core medium filter element
JPH0353999B2 (en)
US4269707A (en) Apparatus and method
US4780213A (en) Filter media and method of filtration
JP2000218110A (en) Operation of condensed water filter apparatus in power plant
JPS5820236A (en) Method for treating aqueous solution by double filter membrane layer using fine granular ion exchange resin and ion exchange fiber
JPS63315109A (en) Ion exchangeable filter
JPH1199307A (en) Pleat type filter
JP3509846B2 (en) Power plant heater drain water treatment method
JP4523112B2 (en) Condensate filtration device
JPS59228902A (en) Filtration method by tubular permeable membrane
JPH01310710A (en) Partition wall of backwashable precoat filter element
JP2519319B2 (en) Filtration device
JPS60206405A (en) Hollow yarn membrane filter apparatus
JPS63274405A (en) Reverse washing treatment method of hollow fiber membrane filter apparatus
JPS63315112A (en) Washing method of ceramic filter
JPH0747242A (en) Non-aid type filter
JPH02265627A (en) Filter device
JPS63315190A (en) Operation method for hollow yarn membrane filter