JPH02126169A - Device for detecting current short-circuiting position - Google Patents

Device for detecting current short-circuiting position

Info

Publication number
JPH02126169A
JPH02126169A JP63279263A JP27926388A JPH02126169A JP H02126169 A JPH02126169 A JP H02126169A JP 63279263 A JP63279263 A JP 63279263A JP 27926388 A JP27926388 A JP 27926388A JP H02126169 A JPH02126169 A JP H02126169A
Authority
JP
Japan
Prior art keywords
detection
magnetic flux
coil
current
computer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63279263A
Other languages
Japanese (ja)
Inventor
Hajime Yamamoto
元 山本
Makoto Koizumi
真 小泉
Yoshihiro Nishihara
西原 義寛
Makoto Kizawa
鬼澤 真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63279263A priority Critical patent/JPH02126169A/en
Publication of JPH02126169A publication Critical patent/JPH02126169A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gas-Insulated Switchgears (AREA)
  • Protection Of Static Devices (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Locating Faults (AREA)

Abstract

PURPOSE:To accurately and quickly identify a short circuit and the occurring position of the short circuit with a small number of detection coils by using detection coils which simultaneously detect plural coordinate components and inputting the detected signal of each coil to a computer for prescribed arithmetic operations. CONSTITUTION:Bidirectional magnetic flux detection coils 8 are arranged in a line at regular intervals on the outer peripheral section of a container 3. Output cables 9 of the coils 8 are connected with a data input device 10. Magnetic flux signals from each detection coil 8 are sent to a post-stage computer 11 after the signals are sampled at regular time intervals. the computer 11 processes the inputted magnetic flux signals of each point in accordance with a prescribed procedure and calculates the spatial distribution of a current in an insulating gas 3. The result obtained from the calculation is sent to a post- stage output device 12 by which the result is displayed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガス絶縁開閉器等で用いられるガス中の電流短
絡および短絡位置の検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a device for detecting current short circuits and short circuit positions in gas used in gas insulated switches and the like.

〔従来の技術〕[Conventional technology]

従来の電流短絡検出装置は、特開昭59−37812号
や特開昭61−120067号公報に記載されている。
Conventional current short circuit detection devices are described in Japanese Patent Application Laid-open Nos. 59-37812 and 61-120067.

第2図にガス絶縁開閉装置を示す。ガス絶縁開閉装置は
、高電位に保たれた導体1間の電流を絶縁ガス2を充満
させた容器3の中で遮断、あるいは、継電させるもので
ある。電流の入切れには2遮断器4や断路器5が用いら
れる。容器3は通常、大地にアースされているため、中
心導体1と容器3の間はガス2により絶縁され、地絡を
防止している。
Figure 2 shows a gas insulated switchgear. A gas insulated switchgear is a device that interrupts or relays a current between conductors 1 kept at a high potential in a container 3 filled with an insulating gas 2. Two circuit breakers 4 and a disconnector 5 are used to turn on and off the current. Since the container 3 is normally grounded to the ground, the center conductor 1 and the container 3 are insulated by the gas 2 to prevent a ground fault.

第3図に、従来の地絡検出装置の構成を示す。FIG. 3 shows the configuration of a conventional ground fault detection device.

この例によれば、容器3の外周部に所定間隔毎に一方向
の磁束成分を検知できる検出コイル6を配置し、地絡時
のアーク電流7によって生じる磁束φの一方向成分を検
知し、アーク電流、従って。
According to this example, a detection coil 6 capable of detecting a magnetic flux component in one direction is arranged at predetermined intervals on the outer periphery of the container 3, and detects a one-directional component of magnetic flux φ generated by an arc current 7 at the time of a ground fault. Arc current, therefore.

地絡の発生を検出できる。Can detect occurrence of ground fault.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、従来の検出装置では、地絡の有無は検出できる
が、地絡位置を正確に求めることは困難である。それに
は、膨大な数の検出コイルを配置する必要があり、装置
の構成そのものが大型化する他、位置同定に必要とする
データ処理時間が長くかかるといった問題点が生じる。
However, although conventional detection devices can detect the presence or absence of a ground fault, it is difficult to accurately determine the location of the ground fault. This requires the arrangement of a huge number of detection coils, which increases the size of the device itself, and poses problems such as a long data processing time required for position identification.

本発明の目的は、少ない数の検出コイルで、地絡および
発生位置を正確、かつ、迅速に同定しうる検出装置を提
供することにある。
An object of the present invention is to provide a detection device that can accurately and quickly identify a ground fault and its occurrence location using a small number of detection coils.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するため1本発明では、磁束を検出す
るコイルとして、複数の座標成分を同時に検出しうるコ
イルを用いる。
In order to achieve the above object, the present invention uses a coil capable of simultaneously detecting a plurality of coordinate components as a coil for detecting magnetic flux.

また、各コイルの検出信号を計算機に入力して得られた
磁束の空間分布から絶縁ガス中の電流の空間分布を即座
に演算し、その異常(正常時は電流はゼロ。しかし、地
絡が生じると、地格位置で電流分布が発生)を検出する
方法をとる。
In addition, we can immediately calculate the spatial distribution of current in the insulating gas from the spatial distribution of magnetic flux obtained by inputting the detection signals of each coil into a computer. When a current is generated, a current distribution occurs at the ground position.

〔作用〕[Effect]

L記した検出コイルを用いると、複数方向の磁束成分を
同時に測定できるので、検出コイルの数は1/2乗以下
に減る。(三方向同時計測では1/3乗)さらに、検出
位置で磁束の向きも判かるので、地絡発生位置の同定が
正確、かつ、容易になる。
By using the detection coils marked L, magnetic flux components in multiple directions can be measured simultaneously, so the number of detection coils can be reduced to the 1/2 power or less. (1/3 power in three-direction simultaneous measurement) Furthermore, since the direction of the magnetic flux can be determined at the detection position, the location of the ground fault can be accurately and easily identified.

また、検出位置の同定にはすべての検出コイルからの信
号を用いて求めた空間的な電流分布の結果から判断する
ので同定の精度は向上する。さらに1本発明では計算機
によって信号処理するので検出に必要な時間は問題にな
らない6 〔実施例〕 以下、本発明を実施例を用いて詳細に説明する。
Furthermore, since the detection position is identified based on the results of the spatial current distribution obtained using the signals from all the detection coils, the accuracy of identification is improved. Furthermore, in the present invention, since signal processing is performed by a computer, the time required for detection is not a problem.6 [Examples] The present invention will be explained in detail below using examples.

第1図は1本発明の一実施例の全体構成を示す。FIG. 1 shows the overall configuration of an embodiment of the present invention.

容器3の外周部に二方向磁束検出コイル8を一定間隔毎
に一列に並べて配置しである。検出コイルの出カケープ
ル9はデータ入力装置10しこ結線されている。ここで
、各検出コイルからの磁束信号は一定時間間隔毎にサン
プリングされ、後段の計算機11に送られる。計算機】
1では、入力された各点の磁束信号を所定の手順によっ
て処理し、絶縁ガス3中の電流空間分布を演算する。演
算によって得られた結果は、後段の出力装置12に送っ
て表示する。図中15はメモリ。
Two-way magnetic flux detection coils 8 are arranged in a line at regular intervals around the outer circumference of the container 3. The output cable 9 of the detection coil is connected to the data input device 10. Here, the magnetic flux signals from each detection coil are sampled at regular time intervals and sent to the computer 11 at the subsequent stage. calculator】
1, the input magnetic flux signals at each point are processed according to a predetermined procedure, and the current spatial distribution in the insulating gas 3 is calculated. The results obtained by the calculations are sent to the subsequent output device 12 and displayed. 15 in the figure is memory.

第4図に上記実施例における検出の原理について説明す
る。(b)は容器の縦断面を示し、(c)は地絡アーク
電流の上部から容器を眺めた図を示す。一般に地絡が生
じると(a)および(b)に示すように、中心導体1か
ら外側容器3に向ってアーク電流7が走る。このアーク
電流は中心から径方向に放射状に伸びる、この結果、ア
ーク電流7に垂直な平面13上にアーク電流を中心とし
た同心円状の磁束φが生じる。この時の磁束密度はアー
ク電流からの距離Xに反比例している。
FIG. 4 explains the principle of detection in the above embodiment. (b) shows a longitudinal section of the container, and (c) shows a view of the container from above the ground fault arc current. Generally, when a ground fault occurs, an arc current 7 runs from the center conductor 1 toward the outer container 3, as shown in (a) and (b). This arc current extends radially in the radial direction from the center, and as a result, a concentric magnetic flux φ centered on the arc current is generated on a plane 13 perpendicular to the arc current 7. The magnetic flux density at this time is inversely proportional to the distance X from the arc current.

通常、外側の容器3は、ステンレスI(非磁性体)で作
られているため、磁束φは容器3の壁を貫通して容器外
側の空間にも同心円状に広がる。
Since the outer container 3 is usually made of stainless steel I (non-magnetic material), the magnetic flux φ penetrates the wall of the container 3 and spreads concentrically into the space outside the container.

従って、ある水平面13を考え、この水平面が容器3と
交叉する線上に、(c)に示す様なコイルAとコイルB
(巻数は同じ値で、コイルの軸が、容器3の軸に平行、
あるいは、垂直)を一定間隔毎に配置すると、それぞ才
tのコイルには、電流lp + lvが誘起される。す
べてのコイルの巻数は同じであるため、il流ip H
lvの大きさは、コイル取付点Cにおける磁束φの水平
成分φPと取直成分φ、の大きさに相当している。すな
わち、(d)に示す様に、検出した電流値1p 11v
から位置Cにおける磁束φの向きが求まる。
Therefore, considering a certain horizontal plane 13, coil A and coil B as shown in (c) are placed on the line where this horizontal plane intersects the container 3.
(The number of turns is the same value, the axis of the coil is parallel to the axis of container 3,
Alternatively, if the coils (vertically) are arranged at regular intervals, a current lp + lv is induced in each coil. Since the number of turns of all coils is the same, the il flow ip H
The magnitude of lv corresponds to the magnitude of the horizontal component φP and the vertical component φ of the magnetic flux φ at the coil attachment point C. That is, as shown in (d), the detected current value 1p 11v
The direction of the magnetic flux φ at position C can be found from .

地絡位置の同定には、他の位置りに取付けたコイルから
の検出電流1’p、1i+’  も使う。電流値ip 
、lvおよびl’P11v’  を用いると、(d)に
示すように、取付点C,Dにおける磁束φ、φ′の方向
が定まる。磁束φ、φ′に前頁11 。
To identify the ground fault position, detection currents 1'p and 1i+' from coils installed at other positions are also used. Current value ip
, lv and l'P11v', the directions of the magnetic fluxes φ and φ' at the attachment points C and D are determined, as shown in (d). Previous page 11 for magnetic flux φ and φ'.

U′を立て、これら垂直の交点Sを求めると、交点Sが
地絡発生点になる。
If U' is set and the intersection point S of these vertical lines is found, the intersection point S becomes the point where the ground fault occurs.

第5図は、より一般的に地絡発生点を同定する方法を示
す。この例では、地絡アーク7の方向は、垂直方向より
角度θだけ傾むいている場合を取扱う。第5図で(a)
は容器の縦断面を示し、(b)は地絡アークの真上から
容器を眺めた図である。
FIG. 5 shows a more general method for identifying the point of ground fault occurrence. This example deals with a case where the direction of the ground fault arc 7 is inclined by an angle θ from the vertical direction. In Figure 5 (a)
shows a vertical cross section of the container, and (b) is a view of the container viewed from directly above the ground fault arc.

的に述べた実施例と同じく、中心導体1から外側容器3
に向って地絡アーク7が走ると、アークな流7の周りに
同心円状の磁束φが生じる。従って、ア・−り電流7に
垂直で、かつ、検出コイルA、 Bの配置点C,Dを含
む平面14を考えると平面14の上では、(b)の破線
で示す様な磁束φが同心円状に拡がる。
As in the embodiment described above, from the center conductor 1 to the outer container 3
When the ground fault arc 7 runs toward the arc flow 7, a concentric magnetic flux φ is generated around the arc flow 7. Therefore, if we consider a plane 14 that is perpendicular to the A current 7 and includes the arrangement points C and D of the detection coils A and B, on the plane 14, the magnetic flux φ as shown by the broken line in (b) Spread concentrically.

特に、検出コイルの取付点C,Dにおける磁束φ、φ′
の大きさは次式で与えられる。
In particular, the magnetic fluxes φ and φ' at the detection coil attachment points C and D
The size of is given by the following formula.

φ1=1φ′ 1=φ。/ x      (1)ここ
でφ。は定数、Xはアーク電流7から検出コイル取付点
までの距離である。
φ1=1φ' 1=φ. / x (1) Here φ. is a constant, and X is the distance from the arc current 7 to the detection coil attachment point.

また、容器3の軸方向に平行な成分φP、φ′と、垂直
な成分φ9.φ′9は、次式の様に表わされる。
Also, components φP, φ' parallel to the axial direction of the container 3, and components φ9 perpendicular to the axial direction of the container 3. φ'9 is expressed as in the following equation.

φP =φ′P= φl ・cos a   (2)φ
、  =lφl ”sin a       (3)φ
′9=−φν           (4)さらに、平
面14は水平面]−3に対して角度θだけ傾いているた
め、検出コイル13の軸と平面1−4は角度0で交叉す
る。このため、コイルA。
φP = φ′P= φl ・cos a (2) φ
, =lφl ”sin a (3)φ
'9=-φν (4) Furthermore, since the plane 14 is inclined at an angle θ with respect to the horizontal plane ]-3, the axis of the detection coil 13 and the plane 1-4 intersect at an angle of 0. For this reason, coil A.

Bによって検出される電流]、pH1vは傾き角0と、
距離Xを用いて、式(1)、 (2)、 (3)、 (
4)から次の様に表わされる。
current detected by B], pH1v has a slope angle of 0,
Using distance X, formulas (1), (2), (3), (
4), it can be expressed as follows.

(1)取付点Cにおいて、 ip:k φp”k φ tv=にφ9−k 1 φ I  ・sin  a 1
cos θφo    Q = k  I−Q−6cos  θ x     x =にφoQ/x”cos  O(6) (2)取付点りにおいて。
(1) At attachment point C, ip:k φp”k φtv=φ9−k 1 φI ・sin a 1
cos θφo Q = k I-Q-6cos θ x x = to φoQ/x”cos O(6) (2) At the attachment point.

xp=1p              (7)1、=
−1v            (8)ここでkは磁束
密度と電流の変換に関係した定数。
xp=1p (7)1,=
-1v (8) where k is a constant related to the conversion of magnetic flux density and current.

pは、平面14上において、アーク電流7から容器3に
向って伸ばした垂線の長さで次式で表わされる。
p is the length of a perpendicular line extending from the arc current 7 toward the container 3 on the plane 14, and is expressed by the following equation.

p”rosin(θ+β)(9) また、Qは垂線の足Hから検出コイルまでの距離である
p”rosin(θ+β) (9) Also, Q is the distance from the foot H of the perpendicular line to the detection coil.

第(3図は式(5)〜(9)ヲ用いて計算で求めた検出
電流]、p+lv を容器3の軸方向圧sQに対して示
したものである。検出電流ipは距離Qの変化とともに
増加し、ある位置で極大値を示した後、再び減少する。
Figure 3 shows the detected current calculated using equations (5) to (9), p+lv, with respect to the axial pressure sQ of the container 3.The detected current ip is determined by the change in distance Q. It increases with time, reaches a maximum value at a certain position, and then decreases again.

この極大となる点が、アータ′市流に最も接近した点、
すなわち、第5図で垂線の足I−■に相当する。
This maximum point is the point closest to Ata' Ichiryu,
That is, it corresponds to the foot I-■ of the perpendicular line in FIG.

一方、検出電流1vは、−度増加して極大となった後減
少し、方向が変わった後、極小値を示す。
On the other hand, the detection current 1v increases by -degrees, reaches a maximum, then decreases, changes direction, and then shows a minimum value.

極大、極小値を示す位置までの距離Q事については弐6
の関係を距mQで微分することによって求まる。すなわ
ち、 Q傘=P= ra sin ((1+β)     (
10)L式でro 、βは既知であるので、距離Q11
が判れば、アーク電流の傾き角度θが求まる。すなわち
、 0 =sin−1(Q */ r o)  −β   
   (11)第5図に示した実施例では、まず、検出
コイルAからの電流信号を]、pにより、アーク電流7
の最接近点F(を検出する。続いて、検出コイルBから
の信号1v を用いて、アーク電流7の垂直方向からの
傾き角度θを知る。最後に、上記二つの情報(HとO)
を用いて地絡アーク電流の発生点を決定する。なお、禰
絡発生点の位置同定をより正確に行うには、隣接コイル
間でイ3壮の補間を行なえばよい。
Regarding the distance Q to the position showing the maximum and minimum values, see 26.
It is found by differentiating the relationship by the distance mQ. That is, Q umbrella = P = ra sin ((1+β) (
10) Since ro and β are known in the L equation, the distance Q11
If it is known, the inclination angle θ of the arc current can be found. That is, 0 = sin-1(Q*/ro)-β
(11) In the embodiment shown in FIG.
Detect the point of closest approach F (. Then, using the signal 1v from the detection coil B, find out the inclination angle θ of the arc current 7 from the vertical direction.Finally, the above two pieces of information (H and O)
Determine the point of occurrence of ground fault arc current using Note that, in order to more accurately identify the position of the point of occurrence of a wire, it is sufficient to perform three-dimensional interpolation between adjacent coils.

第7図は、第1図の実施例において計算機でデータ処理
する手順をフロー線図で示したものである。以下手順に
ついて説明する。
FIG. 7 is a flow diagram showing the procedure for data processing by a computer in the embodiment of FIG. 1. The procedure will be explained below.

7−1・まず、データ入力装置10より、検出コイルの
位置座標と検出電流IP 、iv を入力し、位置座標
に対応させて検出電流IP11vをメモリ15に入れる
7-1. First, input the position coordinates of the detection coil and the detection currents IP, iv from the data input device 10, and input the detection current IP11v into the memory 15 in correspondence with the position coordinates.

7−2・検出電流]、p が極大となる検出コイルの位
置を探す。必要に応じて内挿を行ない極大点の位置を精
度よく演算する。
7-2 Detection current] Find the position of the detection coil where p is maximum. Perform interpolation as necessary to accurately calculate the position of the maximum point.

7−3・上記の結果に基づき、地絡アーク電流に最接近
した点11の位置座標を同定する。
7-3. Based on the above results, identify the position coordinates of the point 11 closest to the ground fault arc current.

7−4・検出電流ivの中から極大、極小を示す検出コ
イルの位置を探す。必要に応じて、補間を行ない、極大
、極小点の位置Q*を高精度で演算する。
7-4. Find the position of the detection coil showing the maximum and minimum in the detection current iv. If necessary, interpolation is performed to calculate the positions Q* of the maximum and minimum points with high precision.

7−5・」2記の結果に基づき、地絡アーク電流の傾き
角Oを同定する。これには式(11)を用いる。
7-5. Based on the results in section 2, identify the inclination angle O of the ground fault arc current. Equation (11) is used for this.

7−3・既に求めた最接近点Hの位置座標と、地絡ア〜
り電流の傾き角θから地絡発生点を同定し、後段の出力
装置に送る。
7-3. The position coordinates of the closest point H that have already been found and the ground fault a~
The ground fault occurrence point is identified from the slope angle θ of the current and sent to the subsequent output device.

第8図に検出コイルに関する実施例を示す。コイルAと
コイルBは、非磁性体の箱16の中に対をなして組込ま
れている。コイルへの軸の方向ZaとコイルBの軸の方
向zbは互いに直交する様に組込まれている。コイル巻
線間のギャップを固定するため箱16の中は、非磁性体
物質17を充填し、モールド状に固めである。コイルA
、Bの材質は展延性に豊む銅を用いる。また、検出感度
をよくするため、線は細くし巻数を多くとるようにする
。さらに、検出コイル間の感度のばらつきをなくすため
、コイルの巻数は等しくしである。
FIG. 8 shows an embodiment regarding the detection coil. Coil A and coil B are incorporated as a pair in a non-magnetic box 16. The axial direction Za to the coil and the axial direction zb of the coil B are set so as to be orthogonal to each other. In order to fix the gap between the coil windings, the inside of the box 16 is filled with a non-magnetic material 17 and solidified in a molded manner. Coil A
, B is made of copper, which is highly malleable. Also, in order to improve detection sensitivity, the wire should be thin and the number of turns should be large. Furthermore, in order to eliminate variations in sensitivity between detection coils, the number of turns of the coils should be equal.

なお、本実施例の他に、コイルの代りにホール素子を用
いた磁束検出端を使用した実施例も考えられる。
In addition to this embodiment, an embodiment may also be considered in which a magnetic flux detection end using a Hall element instead of a coil is used.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、検出に必要な信号処理時間が短縮し、
コイルの故障頻度も少なくなる。
According to the present invention, the signal processing time required for detection is reduced;
The frequency of coil failure also decreases.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の電流短絡検出装置の一実施例の系統図
、第2図は従来のガス絶縁開閉装置の断面図、第3図は
ガス絶縁開閉装置に取付けられた、従来の電流短絡検出
装置の説明図、第4図、第5図、第6図は本発明で用い
る短絡電流検出装置原理の説明図、第7図は第1図の一
実施例の計算機の処理手順の説明図、第8図は二方向検
出コイルの構造説明図である。 1・・・導体、2・・・絶縁ガス、3・・・容器、7・
・地絡アーク電流、8.A、B・・・検出コイル、10
・・・データ入力装置、」−1・・・計算機、12・・
・出力装置。 16・・・箱(非磁性体)。           −
1代理人 弁理士 小Jl+!□・男1.”、パ夢1 関 苧 の 第3図 0す (メ) 第乙口 め5図 (鼻) 容Wシ単白オ亡弓1;シ急っFて匝猜眞l晒 q 口 宅 口
Fig. 1 is a system diagram of one embodiment of the current short circuit detection device of the present invention, Fig. 2 is a sectional view of a conventional gas insulated switchgear, and Fig. 3 is a conventional current short circuit installed in a gas insulated switchgear. An explanatory diagram of the detection device; FIGS. 4, 5, and 6 are explanatory diagrams of the principle of the short-circuit current detection device used in the present invention; FIG. 7 is an explanatory diagram of the processing procedure of the computer according to the embodiment of FIG. , FIG. 8 is a structural explanatory diagram of a two-way detection coil. 1... Conductor, 2... Insulating gas, 3... Container, 7.
・Ground fault arc current, 8. A, B...detection coil, 10
...Data input device, ``-1...Calculator, 12...
・Output device. 16...Box (non-magnetic material). −
1 Agent Patent Attorney Small Jl+! □・Male 1. ", Pa dream 1 Seki's 3rd figure 0su (me) 5th figure 5 (nose) Yong W shi single white o bow 1;

Claims (1)

【特許請求の範囲】 1、導体を挿通した容器の外周部に配置された空間の磁
束の検出手段と、前記検出手段の座標位置と検出信号を
計算機に入力する手段と、前記座標位置と前記検出信号
を所定の手順で処理し、電流短絡位置を算出する計算機
と、算出した結果を出力して表示する手段から構成され
る電流短絡位置検出装置。 2、前記検出手段が、複数方向の成分を同時計測できる
手段からなることを特徴とする特許請求項第1項の電流
短絡位置検出装置。
[Scope of Claims] 1. means for detecting magnetic flux in a space arranged around the outer periphery of a container through which a conductor is inserted; means for inputting the coordinate position and detection signal of the detection means into a computer; A current short circuit position detection device comprising a computer that processes a detection signal according to a predetermined procedure and calculates a current short circuit position, and means that outputs and displays the calculated result. 2. The current short circuit position detecting device according to claim 1, wherein the detecting means comprises means capable of simultaneously measuring components in a plurality of directions.
JP63279263A 1988-11-07 1988-11-07 Device for detecting current short-circuiting position Pending JPH02126169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63279263A JPH02126169A (en) 1988-11-07 1988-11-07 Device for detecting current short-circuiting position

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63279263A JPH02126169A (en) 1988-11-07 1988-11-07 Device for detecting current short-circuiting position

Publications (1)

Publication Number Publication Date
JPH02126169A true JPH02126169A (en) 1990-05-15

Family

ID=17608727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63279263A Pending JPH02126169A (en) 1988-11-07 1988-11-07 Device for detecting current short-circuiting position

Country Status (1)

Country Link
JP (1) JPH02126169A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5530364A (en) * 1994-12-27 1996-06-25 The University Of Connecticut Cable partial discharge location pointer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5530364A (en) * 1994-12-27 1996-06-25 The University Of Connecticut Cable partial discharge location pointer

Similar Documents

Publication Publication Date Title
RU2505824C2 (en) Directed detection of ground short-circuit
KR890004170A (en) Insulation Detection Method and Device
CN1460182A (en) High-voltage insulated modular connection system with voltage and current detector
JPH02126169A (en) Device for detecting current short-circuiting position
JP2008026170A (en) Ground fault point locating method and device
CN112213679A (en) Magnetic-sensing current transformer estimation method based on position information
US4477768A (en) Leakage current detecting structure
US7272520B2 (en) Method and apparatus for determining a current in a conductor
CN210626545U (en) Circuit board and power electronic equipment
JP2009047663A (en) Partial discharge detecting technique for electric equipment and device thereof
JP2006189319A (en) Electric current measurement method
JPH06273470A (en) Accident section plotting device of overhead transmission line
KR101391146B1 (en) On-Line Cable Status Monitoring Apparatus and Method thereof
JP2004271256A (en) Apparatus for measuring neutron for nuclear power generation facility
JPS62261078A (en) Detection of fault point for cable
JP2000199770A (en) Low-noise multicore parallel-cord current detector
JP2001095149A (en) Method and device for discriminating ground section for private substation
JPH06230065A (en) Detection of accident section in overhead transmission line
WO2014199432A1 (en) Fault location device for gas insulated switchgear
JP2611642B2 (en) Coordinate position detector
JP3065815B2 (en) Partial discharge detection method
SU1176356A1 (en) Coordinate reader
JPH06160441A (en) Method and device for confirming active/inactive state of cable
JPH11344526A (en) Method for plotting dielectric breakdown position of power cable line
JPH09190848A (en) Relay terminal block and signal processing apparatus