JP2004271256A - Apparatus for measuring neutron for nuclear power generation facility - Google Patents

Apparatus for measuring neutron for nuclear power generation facility Download PDF

Info

Publication number
JP2004271256A
JP2004271256A JP2003059488A JP2003059488A JP2004271256A JP 2004271256 A JP2004271256 A JP 2004271256A JP 2003059488 A JP2003059488 A JP 2003059488A JP 2003059488 A JP2003059488 A JP 2003059488A JP 2004271256 A JP2004271256 A JP 2004271256A
Authority
JP
Japan
Prior art keywords
signal
neutron
processing circuit
signal processing
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003059488A
Other languages
Japanese (ja)
Inventor
Shoichi Matsumiya
章一 松宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003059488A priority Critical patent/JP2004271256A/en
Publication of JP2004271256A publication Critical patent/JP2004271256A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

<P>PROBLEM TO BE SOLVED: To properly process neutron detection signals by more surely improving the noise immunity of signal cables in a device for measuring neutrons for a nuclear power generation facility. <P>SOLUTION: In an activation region monitor neutron measuring apparatus for the nuclear power generation facility equipped with a neutron detector 1 located in a reactor, a first signal cable 3 for extracting detection signals, a pre-amplifying circuit 5a, a signal processing circuit 2a for processing the detection signals and a second signal cable 4 for connecting both circuits, the first and second signal cables are covered with shield clad 10 and are used as equilibrium cables which have a twisted wire, consisting of two core wires 3a, 3c and 4a, 4c inside the shield cladding 10; and the pre-amplifying circuit and the signal processing circuit are a differential type and the shield clad 10 is connected to a common potential line 8 of both circuits. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、原子力発電所で使用される原子力発電設備用中性子測定装置に係り、特に、外来ノイズの混入を抑制する技術に関する。
【0002】
【従来の技術】
従来、原子力発電所で使用される原子力発電設備用中性子測定装置には、起動領域モニタ用中性子測定装置及び出力領域モニタ用中性子測定装置がある。
図5に、起動領域モニタ用中性子測定装置のシステムを示す。図5の起動領域モニタシステムは、原子炉圧力容器内に設置された中性子検出器1と、この中性子検出器1の中性子検出信号を中央制御室装置2に設置した信号処理回路2aまで伝送する信号ケーブル3、4と、この信号ケーブル3及び4間に挿入された前置増幅器5とを備えている。つまり、中性子検出器1は、格納容器を通過して配線された検出器側の信号ケーブル3を介して原子炉建屋内の前置増幅器5に接続され、この前置増幅器5が信号ケーブル4を介して中央制御室装置2の信号処理回路2aに接続される。両方の信号ケーブル3、4は、各々芯線3a、4aとアース用の外被3b,4bとを有する。アース回路は、信号処理回路2aにて接地される1点接地構造になっている。
この起動領域モニタシステムでは、原子炉の起動領域で発生する熱中性子に応じて中性子検出器1により電気パルス信号が検出される。この検出信号の強度は微弱であるので、前置増幅器5で増幅された後、信号処理回路2aで所定の信号処理に付される。
また、本システムでは、中性子検出器1に直流電圧を印加して電気パルス信号を取り出すための高圧電源11が中央制御室装置22に設けられ、さらには高圧電源11の直流電圧が前置増幅器5に加わらないようにし、なおかつ電気パルス信号が高圧電源11に流れることなく、前置増幅器5に流れるようにするための抵抗12、直流電圧遮断用コンデンサ13、電気パルス遮断用インダクタンス14が図5に示すような構成で設けられている。
【0003】
また、図6に、出力領域モニタ用中性子測定装置のシステムを示す。図6の出力領域モニタシステムは、原子炉圧力容器内に設置された中性子検出器1と、この中性子検出器1の中性子検出信号を中央制御室装置2の信号処理回路2aまで伝送する信号ケーブル3を備えている。つまり、中性子検出器1は、格納容器を通過して配線された検出器側の信号ケーブル3を介して信号処理回路2aに接続される。信号ケーブル3は、各々芯線3aとアース用の外被3bを有する。アース回路は、中性子検出器1及び信号処理回路2aにて接地される2点接地構造になっている。
この出力領域モニタシステムでは、原子炉の出力運転領域で発生する熱中性子に応じて中性子検出器1により直流電流信号が検出される。この検出信号は信号処理回路2aで所定の信号処理に付される。
また、本システムでは、中性子検出器1に直流電圧を印加して電気パルス信号を取り出すための高圧電源11が図6に示すような構成で設けられている。
【0004】
【発明が解決しようとする課題】
ところで、従来構成の起動領域モニタシステムでは、中性子検出器1と前置増幅器5との間を接続する信号ケーブル3には同軸ケーブルを使用している。このため、この同軸ケーブルに中性子検出器1からの信号レベルよりも大きな外来ノイズが伝搬してきた場合、その大きな外来ノイズに因って微弱な検出信号のS/N比が著しく低下してしまうという問題があり、大きな外来ノイズに対して脆弱な構造であった。
また、従来構成の出力領域モニタシステムでも、中性子検出器1と信号処理回路2aの間を接続する信号ケーブル3には同軸ケーブルを使用しているため、この同軸ケーブルに中性子検出器1からの信号レベルよりも大きな外来ノイズが伝搬してきた場合、その外来ノイズに対して同様に脆弱な構造であった。
このような中性子検出器1からの信号レベルよりも大きな外来ノイズによる問題を図7を用いて説明する。今、前置増幅器5の入力側同軸ケーブル3に外来ノイズが加わる時、そのノイズ電流は主に同軸ケーブル3の外側にある外皮3bに流れ、それが前置増幅器5の共通電位ライン8に加わる。このようなノイズをコモンモードノイズという。共通電位ライン8に加わったノイズ電流は、前置増幅器5を通過して出力側同軸ケーブル4の外皮4bに流れ、最終的には信号処理回路2aの接地線を通して大地に流れる。
ところで、前置増幅器5は複数の内部増幅器6から構成されており、各々の内部増幅器6は共通電位ライン8に接続されるが、実際にはこの共通電位ライン8には高調波インピーダンス9が存在する。このような高調波インピーダンス9があると、共通電位ライン8に加えられたコモンモードノイズにより共通電位ライン8自身に電位変動が生じる。この電位変動が中性子検出器1からの信号入力の際の電位変動よりも小さければ、前置増幅器5の出力はノイズの影響は受けない。
しかしながら、コモンモードノイズによる共通電位ライン8自身の電位変動が中性子検出器1からの信号入力の際の電位変動と同程度かそれよりも大きな場合には、内部増幅器6はノイズの影響を受けた出力を次段の内部増幅器に与え、最終的には前置増幅器5はノイズ波形を出力することになる。
【0005】
このような問題を解決するため、例えば特許文献1(原子力発電設備用起動領域モニタシステム)では、その図1にあるように、同軸ケーブルのシールド被覆体を多重化してシールド被覆体同士の接続を前置増幅器側でのみで行い、検出器側ではシールド被覆体同士の接続を行わないという方式や、その図4にあるように、等価的にインダクタンスを芯線やシールド被覆体に挿入する方式によるノイズ低減策が示されている。
しかしながら、その図1の方式では、外側のシールド被覆体はノイズアースラインを通して外皮に接続されており、結局は、外来ノイズは前置増幅器のラインに流入してその共通電位ラインを変動させ、前置増幅器5の動作に影響を与える、という問題がある。また、その図4にあるような方式では、インダクタンスL1とL2の間の相互インダクタンスには周波数依存性があり、このために、このようなインダクタンスの使用によるノイズ低減能力には周波数特性があるということになるので、広帯域のノイズに対しては必ずしも有効ではない、という問題がある。
【0006】
【特許文献1】
特開平5−281363号公報
【0007】
本発明の課題は、上記問題に鑑み、信号ケーブルのノイズ耐性をより確実に向上させ、中性子検出信号を正しく処理するに好適な原子力発電設備用中性子測定装置を提供することにある。
【0008】
【課題を解決するための手段】
上記課題を解決するため、原子炉内に配置された中性子検出器と、検出信号を炉外部に引き出す第1の信号ケーブルと、前置増幅回路と、信号処理回路と、両回路を接続する第2の信号ケーブルを備える原子力発電設備用起動領域モニタ中性子測定装置において、第1,第2の信号ケーブルは、シールド被覆体によって覆い、シールド被覆体の内部に2本の芯線から成る縒り線を有する平衡ケーブルとし、前置増幅回路は、その信号の入力段及び出力段を差動型とし、第1,第2の信号ケーブルの2本の芯線を前置増幅回路の差動入力及び差動出力に接続し、シールド被覆体を前置増幅回路の共通電位ラインに接続する。
ここで、信号処理回路の入力段を差動型とし、当該入力段に第2の信号ケーブルの2本の芯線を介して前置増幅回路の出力段を接続し、シールド被覆体を信号処理回路の共通電位ラインに接続する。
また、原子炉内に配置された中性子検出器と、検出信号を炉外部に引き出す信号ケーブルと、検出信号を処理する信号処理回路を備える原子力発電設備用出力領域モニタ中性子測定装置において、信号ケーブルは、シールド被覆体によって覆い、シールド被覆体の内部に2本の芯線から成る縒り線を有する平衡ケーブルとし、信号処理回路は、その信号入力段を差動型とし、信号ケーブルの2本の芯線を信号処理回路の差動入力に接続し、信号ケーブルのシールド被覆体を信号処理回路の共通電位ラインに接続する。
【0009】
【発明の実施の形態】
以下、本発明の実施形態を図面を用いて説明する。
図1は、本発明の原子力発電設備用中性子測定装置第1の実施形態を示す。ここで、前述した従来のシステムと同一又は同等の構成要素には同一符号を付す。
図1に記載の原子力発電設備用起動領域モニタシステムは、原子炉圧力容器内に設置されている炉内で非接地の中性子検出器1と、この中性子検出器1の中性子検出信号を中央制御室装置2に設置した信号処理回路2aまで原子炉建屋を抜けて伝送する第1,第2の信号ケーブル3,4と、この第1および第2の信号ケーブル3及び4間に挿入された前置増幅器5とを備えると共に、第1,第2の信号ケーブル3,4に被せられたシールド被覆体としてのシールド10を備えている。つまり、中性子検出器1は、格納容器を通過して配線された検出器側の第1の信号ケーブル3を介して原子炉建屋内の前置増幅器5に接続され、この前置増幅器5は第2の信号ケーブル4を介して信号処理回路2aに接続される。
【0010】
前置増幅器5は、増幅用の差動アンプ(前置増幅回路)5a、抵抗12、直流電圧遮断用コンデンサ13、電気パルス遮断用インダクタンス14を有している。検出器1には直流電圧を印加する必要があるため、信号処理装置2側に置かれた高圧電源11が前置増幅回路5aの入力側に接続される。前置増幅回路5aの2つの入力側に高圧電源11の直流電圧が直接加わることのないように、さらに中性子検出器1からの電気信号が高圧電源11には流れずに前置増幅回路5aに流入するように、前置増幅回路5aの入力端にはコンデンサ13を挿入し、また、高圧電源11側に分岐したところで抵抗12及びインダクタンス14を図1に示す位置に入れている。また、前置増幅回路5aは差動入力型であり、さらに入力側信号ケーブル3も平衡型ケーブルであるため、このケーブルの芯線3a,3cに接続の各々のインピーダンスは同一とする必要があり、これらの抵抗、コンデンサ、インダクタンスの値は同一とする。
【0011】
この前置増幅回路5aの前後段側に位置する第1,第2の信号ケーブル3,4は、各々第1の芯線3a,4aと第2の芯線3c,4cとを有している。この第1の芯線3a,4aは、前置増幅回路5a、信号処理回路2aの各々のプラス側入出力端子に接続され、第2の芯線3c,4cはこれらの回路のマイナス側入出力端子に接続されている。
ここで、中性子検出器1と前置増幅回路5aとを繋ぐ第1の信号ケーブル3、及び、前置増幅回路5aと信号処理回路2aとを繋ぐ第2の信号ケーブル4は、ともにシールド被覆体10により覆われ、このシールド被覆体10の内部に2本の芯線から成る縒り線を有した平衡ケーブルを形成する。図4に、第1の信号ケーブル3について、平衡型信号ケーブルの内部構造を示す。
なお、シールド被覆体10は、導電性の部材で形成され、前置増幅回路5aの共通電位ライン8に接続され、さらに、このシステム全体としては、信号ケーブル3,4を介した共通のアースラインが信号処理回路2aにてのみ接地されることにより、1点接地構造になっている。
【0012】
第1の実施形態では、従来と同様に、原子炉の起動領域で生じる熱中性子に応じた電気パルス信号が中性子検出器1により検出される。この検出信号の強度は微弱であるが、前置増幅器回路5aで増幅された後、信号処理回路2aで所定の信号処理に付される。
ところで、前置増幅回路5aの前段に位置する第1の信号ケーブル3に外来ノイズが混入した場合、この信号ケーブル3の外被内のノイズ電流は、シールド被覆体10を通って前置増幅回路5aの共通電位ライン8に流入する。しかしながら、前置増幅回路5aの入力段及び出力段は差動型であるため、そこでの共通電位ライン8が変動したとしても差動信号としての信号レベルは、この変動の影響を受けない。したがって、ノイズ電流が前置増幅回路5aの共通電位ライン8に流入しても前置増幅回路5aの差動出力信号は影響を受けない。
また、前置増幅回路5aの出力の相手先である信号処理回路2aについても同様であり、前置増幅回路5aの出力段を差動型として、信号処理回路2aの入力段も差動型、また、その間の信号ケーブル4をシールド被覆体10と2本の芯線4a,4cから成る縒り線からなる平衡型ケーブルで形成し、そのシールド被覆体10を信号処理回路2aの共通電位ライン8に接続することにより、この信号ケーブル4のシールド被覆体10から流れ込むノイズ電流のために信号処理回路2aでの差動入力段の共通電位ライン8の変動があっても、差動信号としての中性子束信号は影響を受けない。
【0013】
以上の回路構成とすることにより、第1の実施形態は、原子力発電設備用起動領域モニタシステムにおいては、レベルの大きな外来ノイズが前置増幅器回路5aもしくは信号処理回路2aにおける中性子検出信号処理に悪影響を及ぼすことは殆どなく、外来ノイズに因ってS/N比が低下するということもほぼ完全に防止することができる。このため、信号処理回路2aに第1の信号ケーブル3の部分から侵入した外来ノイズ除去のための特別の処理回路の付加や、ノイズ除去のための信号処理の演算負荷の付加が不要であり、容易にノイズ防止を可能とすることができる。
【0014】
図2は、本発明の第2の実施形態を示す。ここで、図1の第1の実施形態と同一又は同等の構成要素については同一符号を用いてその説明を省略又は簡略化する。
図2に記載の原子力発電設備用出力領域モニタシステムは、図1に示す前置増幅器5はなく、中性子検出器1からの直流電流信号は、信号ケーブル3を介して直接信号処理回路2aに伝送される。また、中性子検出器1に直流電圧を供給するための高圧電源11は、信号処理回路2aのプラス極側に直列に挿入され、中性子信号は、この高圧電源11及び信号処理回路2aを流れることになる。このため、図1に示すような抵抗、コンデンサ、インダクタンスは不要である。したがって、信号ケーブル3の芯線3a,3cは、各々信号処理回路2aの差動入力の+側及び−側に接続される構成となる。
このような回路構成において、信号処理回路2aの前段に位置する信号ケーブル3に外来ノイズが混入した場合、この信号ケーブル3の外被内のノイズ電流は、シールド被覆体10を通ってコモンモードノイズとして共通電位ライン8に流れても、信号処理回路2aの入力は差動型であるため、ここでの差動信号処理は外来ノイズの影響を受けない。このため、信号処理回路2aでの中性子束信号処理動作に影響を与えない。
したがって、この第2の実施形態によれば、図1の第1の実施形態と同等のノイズ防止効果が得られ、ノイズ耐性を向上させることができる。
【0015】
図3は、本発明の第3の実施形態を示す。ここで、図3に示す原子力発電設備用出力領域モニタシステムにあっては、図2に示す回路構成を基本としつつ、中性子検出器1に直流電圧を供給するための高圧電源11は、信号処理回路2aのマイナス極側に直列に挿入される。また、この場合の信号処理回路2aでの共通電位ライン8は、信号処理回路2a自身のマイナス極側の入力端子(高圧電源11のプラス極)を用い、さらに信号処理回路2aの出力は、入力側と電気的に絶縁されている。この信号処理回路2aの出力側の回路の共通電位ライン8は、信号ケーブル3(3a,3c)のシールド被覆体10に接続される。
このような回路構成において、信号処理回路2aの前段に位置する信号ケーブル3に外来ノイズが混入した場合、この信号ケーブル3の外被内のノイズ電流は、シールド被覆体10を通ってコモンモードノイズとして共通電位ライン8に流れても、信号処理回路2aの入力は差動型であるため、ここでの差動信号処理は外来ノイズの影響を受けない。このため、信号処理回路2aでの中性子束信号処理動作に影響を与えない。
したがって、この第3の実施形態によっても、図2の第2の実施形態と同等のノイズ防止効果が得られ、ノイズ耐性を向上させることができる。
【0016】
【発明の効果】
以上説明したように、本発明によれば、中性子検出信号を伝送する信号ケーブルをシールド被覆体により覆い、このシールド被覆体の内部に2本の芯線から成る縒り線を有した平衡ケーブルとし、また、前置増幅回路及び信号処理回路を差動型とし、また、信号ケーブルの2本の芯線を各々の差動入力端子に接続し、さらに、シールド被覆体を前置増幅回路及び信号処理回路の共通電位ラインに接続することにより、信号ケーブルのシールド部分に到来する外来ノイズの影響を適確に排除することができ、検出信号のS/N比の低下を排除することができる。したがって、信号ケーブルの敷設長が長くなって外来ノイズの影響を受けやすいシステムでも、そのノイズ耐性を従来よりも格段に向上させ、検出信号の処理を容易に且つ精度良く行うことができる。
また、外来ノイズ除去のための特別の処理回路の付加や、ノイズ除去のための信号処理の演算負荷の付加が不要であり、容易にノイズ防止を可能とすることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態を示す原子力発電設備用起動領域モニタシステムのブロック図
【図2】本発明の第2実施形態を示す原子力発電設備用出力領域モニタシステムのブロック図
【図3】本発明の第3の実施形態を示す原子力発電設備用出力領域モニタシステムのブロック図
【図4】本発明の平衡型信号ケーブルの内部構造を示す模式図
【図5】従来例に係る原子力発電設備用起動領域モニタシステムを示すブロック図
【図6】図8の従来例に係るシステムにおいて外来ノイズ到来時の前置増幅器での動作の影響を説明するブロック図
【図7】従来例に係る原子力発電設備用出力領域モニタシステムを示すブロック図
【符号の説明】
1…中性子検出器、2…中央制御室装置、2a…信号処理回路、3…第1の同軸ケーブル、3a…第1の芯線、3b…第2の芯線、4…第2の同軸ケーブル、4a…第1の芯線、4b…第2の芯線、、5…前置増幅器、5a…前置増幅回路(差動型)、6…前置増幅器内部増幅器、8…共通電位ライン、9…前置増幅器内部共通電位ライン高調波インピーダンス、10…シールドケーブル(シールド被覆体)、11…高圧電源、12…抵抗、13…直流電圧遮断用コンデンサ、14…電気パルス遮断用インダクタンス
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a neutron measurement device for a nuclear power plant used in a nuclear power plant, and more particularly to a technique for suppressing the mixing of external noise.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a neutron measuring device for a nuclear power plant used in a nuclear power plant includes a neutron measuring device for monitoring an activation region and a neutron measuring device for monitoring an output region.
FIG. 5 shows a system of the neutron measuring device for monitoring the activation area. 5 is a signal for transmitting a neutron detector 1 installed in a reactor pressure vessel and a neutron detection signal of the neutron detector 1 to a signal processing circuit 2a installed in the central control room device 2. Cables 3 and 4 and a preamplifier 5 inserted between the signal cables 3 and 4 are provided. That is, the neutron detector 1 is connected to the preamplifier 5 in the reactor building via the detector-side signal cable 3 wired through the containment vessel, and the preamplifier 5 connects the signal cable 4. The signal is connected to the signal processing circuit 2a of the central control room device 2 via the control unit. Both signal cables 3, 4 have core wires 3a, 4a and jackets 3b, 4b for grounding, respectively. The ground circuit has a single-point ground structure that is grounded by the signal processing circuit 2a.
In this starting area monitoring system, an electric pulse signal is detected by the neutron detector 1 according to thermal neutrons generated in the starting area of the nuclear reactor. Since the intensity of this detection signal is weak, it is amplified by the preamplifier 5 and then subjected to predetermined signal processing by the signal processing circuit 2a.
In the present system, a high-voltage power supply 11 for applying a DC voltage to the neutron detector 1 to extract an electric pulse signal is provided in the central control room device 22. 5, and a resistor 12, a capacitor 13 for blocking DC voltage, and an inductance 14 for interrupting the electric pulse, which allow the electric pulse signal to flow to the preamplifier 5 without flowing to the high-voltage power supply 11, are shown in FIG. The configuration is provided as shown.
[0003]
FIG. 6 shows a system of a neutron measuring apparatus for monitoring an output area. 6 is a neutron detector 1 installed in a reactor pressure vessel, and a signal cable 3 for transmitting a neutron detection signal of the neutron detector 1 to a signal processing circuit 2a of the central control room device 2. It has. That is, the neutron detector 1 is connected to the signal processing circuit 2a via the signal cable 3 on the detector side wired through the storage container. The signal cables 3 each have a core wire 3a and a jacket 3b for grounding. The grounding circuit has a two-point grounding structure that is grounded by the neutron detector 1 and the signal processing circuit 2a.
In this output area monitoring system, a dc signal is detected by the neutron detector 1 according to thermal neutrons generated in an output operation area of the reactor. This detection signal is subjected to predetermined signal processing in the signal processing circuit 2a.
Further, in this system, a high-voltage power supply 11 for applying a DC voltage to the neutron detector 1 and extracting an electric pulse signal is provided in a configuration as shown in FIG.
[0004]
[Problems to be solved by the invention]
By the way, in the start-up area monitoring system of the conventional configuration, a coaxial cable is used as the signal cable 3 connecting between the neutron detector 1 and the preamplifier 5. For this reason, when external noise greater than the signal level from the neutron detector 1 propagates through this coaxial cable, the S / N ratio of a weak detection signal is significantly reduced due to the large external noise. There was a problem, and the structure was vulnerable to large external noise.
Also, in the conventional output area monitor system, since the signal cable 3 connecting the neutron detector 1 and the signal processing circuit 2a uses a coaxial cable, the signal from the neutron detector 1 is connected to the coaxial cable. When an external noise larger than the level propagates, the structure is similarly vulnerable to the external noise.
A problem due to such external noise that is larger than the signal level from the neutron detector 1 will be described with reference to FIG. Now, when external noise is applied to the input side coaxial cable 3 of the preamplifier 5, the noise current mainly flows to the outer jacket 3 b outside the coaxial cable 3, which is applied to the common potential line 8 of the preamplifier 5. . Such noise is called common mode noise. The noise current applied to the common potential line 8 passes through the preamplifier 5, flows to the outer cover 4b of the output side coaxial cable 4, and finally flows to the ground through the ground line of the signal processing circuit 2a.
The preamplifier 5 is composed of a plurality of internal amplifiers 6 and each of the internal amplifiers 6 is connected to a common potential line 8. I do. When such a harmonic impedance 9 is present, a potential change occurs in the common potential line 8 itself due to the common mode noise applied to the common potential line 8. If this potential variation is smaller than the potential variation at the time of signal input from the neutron detector 1, the output of the preamplifier 5 is not affected by noise.
However, when the potential fluctuation of the common potential line 8 itself due to the common mode noise is equal to or larger than the potential fluctuation at the time of the signal input from the neutron detector 1, the internal amplifier 6 is affected by the noise. The output is given to the next internal amplifier, and the preamplifier 5 finally outputs a noise waveform.
[0005]
In order to solve such a problem, for example, in Patent Document 1 (starting area monitoring system for nuclear power generation equipment), as shown in FIG. 1, a shield coating of a coaxial cable is multiplexed to connect the shield coatings. Noise is generated only by the preamplifier side and not connected between the shield coatings on the detector side, or by equivalently inserting an inductance into the core wire or the shield coating as shown in FIG. Reduction measures are indicated.
However, in the scheme of FIG. 1, the outer shield coating is connected to the outer skin through a noise ground line, and eventually, the external noise flows into the preamplifier line and fluctuates its common potential line. There is a problem that the operation of the preamplifier 5 is affected. Further, in the method as shown in FIG. 4, the mutual inductance between the inductances L1 and L2 has frequency dependency, and therefore, the noise reduction ability by using such an inductance has a frequency characteristic. Therefore, there is a problem that it is not always effective for broadband noise.
[0006]
[Patent Document 1]
JP-A-5-281363
In view of the above problems, an object of the present invention is to provide a neutron measuring apparatus for a nuclear power generation facility, which is capable of more reliably improving the noise resistance of a signal cable and correctly processing a neutron detection signal.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, a neutron detector disposed in a reactor, a first signal cable for extracting a detection signal to the outside of the reactor, a preamplifier circuit, a signal processing circuit, and a second circuit for connecting the two circuits are provided. In the start-up area monitor neutron measuring device for a nuclear power plant equipped with two signal cables, the first and second signal cables are covered with a shield covering, and have a stranded wire composed of two core wires inside the shield covering. The preamplifier circuit is a balanced cable, the input stage and the output stage of the signal are of a differential type, and the two core wires of the first and second signal cables are connected to the differential input and the differential output of the preamplifier circuit. , And the shield cover is connected to the common potential line of the preamplifier circuit.
Here, the input stage of the signal processing circuit is of a differential type, the output stage of the preamplifier circuit is connected to the input stage via two core wires of the second signal cable, and the shield cover is connected to the signal processing circuit. Connected to the common potential line.
Further, in a neutron detector arranged in the reactor, a signal cable for extracting a detection signal to the outside of the reactor, and an output area monitor neutron measurement device for a nuclear power plant equipped with a signal processing circuit for processing the detection signal, the signal cable is A balanced cable having a twisted wire consisting of two core wires covered with a shield coating, and a signal processing circuit having a signal input stage of a differential type. It is connected to the differential input of the signal processing circuit, and the shield covering of the signal cable is connected to the common potential line of the signal processing circuit.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a first embodiment of a neutron measuring apparatus for a nuclear power plant according to the present invention. Here, the same or equivalent components as those of the above-described conventional system are denoted by the same reference numerals.
The starting area monitoring system for a nuclear power plant shown in FIG. 1 includes a neutron detector 1 that is not grounded in a reactor installed in a reactor pressure vessel and a neutron detection signal of the neutron detector 1 in a central control room. First and second signal cables 3 and 4 for transmitting through a reactor building to a signal processing circuit 2a installed in the apparatus 2, and a front part inserted between the first and second signal cables 3 and 4 An amplifier 5 and a shield 10 as a shield covering over the first and second signal cables 3 and 4 are provided. That is, the neutron detector 1 is connected to the preamplifier 5 in the reactor building via the first signal cable 3 on the detector side wired through the containment vessel. 2 is connected to the signal processing circuit 2a via the signal cable 4.
[0010]
The preamplifier 5 includes an amplification differential amplifier (preamplifier circuit) 5a, a resistor 12, a DC voltage cutoff capacitor 13, and an electric pulse cutoff inductance 14. Since it is necessary to apply a DC voltage to the detector 1, the high-voltage power supply 11 provided on the signal processing device 2 side is connected to the input side of the preamplifier circuit 5a. In order that the DC voltage of the high voltage power supply 11 is not directly applied to the two input sides of the preamplifier circuit 5a, the electric signal from the neutron detector 1 is further supplied to the preamplifier circuit 5a without flowing to the high voltage power supply 11. A capacitor 13 is inserted into the input terminal of the preamplifier circuit 5a so as to flow in, and a resistor 12 and an inductance 14 are placed at the positions shown in FIG. Further, since the preamplifier circuit 5a is of a differential input type and the input signal cable 3 is also a balanced type cable, it is necessary that the impedance of each of the core wires 3a and 3c of this cable be the same. These resistors, capacitors, and inductances have the same value.
[0011]
The first and second signal cables 3 and 4 located on the front and rear sides of the preamplifier circuit 5a have first core wires 3a and 4a and second core wires 3c and 4c, respectively. The first core wires 3a, 4a are connected to the positive input / output terminals of the preamplifier circuit 5a and the signal processing circuit 2a, respectively, and the second core wires 3c, 4c are connected to the negative input / output terminals of these circuits. It is connected.
Here, the first signal cable 3 connecting the neutron detector 1 and the preamplifier circuit 5a and the second signal cable 4 connecting the preamplifier circuit 5a and the signal processing circuit 2a are both shielded coverings. The shielded cable 10 is covered with a shielded cable 10 to form a balanced cable having a stranded wire composed of two core wires. FIG. 4 shows the internal structure of the balanced signal cable for the first signal cable 3.
The shield coating 10 is formed of a conductive material, is connected to the common potential line 8 of the preamplifier circuit 5a, and furthermore, as a whole system, a common ground line via the signal cables 3 and 4. Are grounded only by the signal processing circuit 2a, thereby forming a one-point grounding structure.
[0012]
In the first embodiment, the neutron detector 1 detects an electric pulse signal corresponding to thermal neutrons generated in the start-up region of the nuclear reactor, as in the related art. Although the intensity of this detection signal is weak, it is amplified by the preamplifier circuit 5a and then subjected to predetermined signal processing by the signal processing circuit 2a.
When external noise is mixed in the first signal cable 3 located in the preceding stage of the preamplifier circuit 5a, the noise current in the jacket of the signal cable 3 passes through the shield covering 10 and the preamplifier circuit 5 a flows into the common potential line 8. However, since the input stage and the output stage of the preamplifier circuit 5a are of a differential type, even if the common potential line 8 fluctuates, the signal level as a differential signal is not affected by this fluctuation. Therefore, even if the noise current flows into the common potential line 8 of the preamplifier circuit 5a, the differential output signal of the preamplifier circuit 5a is not affected.
The same applies to the signal processing circuit 2a which is the destination of the output of the preamplifier circuit 5a. The output stage of the preamplifier circuit 5a is of a differential type, and the input stage of the signal processing circuit 2a is of a differential type. Further, the signal cable 4 therebetween is formed of a balanced cable composed of a shield covering 10 and a twisted wire composed of two core wires 4a and 4c, and the shield covering 10 is connected to the common potential line 8 of the signal processing circuit 2a. Accordingly, even if the common potential line 8 of the differential input stage in the signal processing circuit 2a fluctuates due to the noise current flowing from the shield coating 10 of the signal cable 4, the neutron flux signal as the differential signal Is not affected.
[0013]
With the above circuit configuration, in the first embodiment, in the start-up area monitoring system for a nuclear power plant, external noise having a large level adversely affects neutron detection signal processing in the preamplifier circuit 5a or the signal processing circuit 2a. And almost no reduction in the S / N ratio due to extraneous noise can be prevented. Therefore, it is not necessary to add a special processing circuit for removing extraneous noise that has entered the signal processing circuit 2a from the portion of the first signal cable 3 or to add a calculation load of signal processing for removing noise. Noise can be easily prevented.
[0014]
FIG. 2 shows a second embodiment of the present invention. Here, components that are the same as or equivalent to those of the first embodiment in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted or simplified.
The output area monitoring system for a nuclear power plant shown in FIG. 2 does not have the preamplifier 5 shown in FIG. 1, and the DC current signal from the neutron detector 1 is directly transmitted to the signal processing circuit 2a via the signal cable 3. Is done. Further, a high-voltage power supply 11 for supplying a DC voltage to the neutron detector 1 is inserted in series on the positive pole side of the signal processing circuit 2a, and a neutron signal flows through the high-voltage power supply 11 and the signal processing circuit 2a. Become. Therefore, the resistors, capacitors, and inductances as shown in FIG. 1 are unnecessary. Therefore, the core wires 3a and 3c of the signal cable 3 are connected to the positive and negative sides of the differential input of the signal processing circuit 2a, respectively.
In such a circuit configuration, when external noise is mixed in the signal cable 3 located in the preceding stage of the signal processing circuit 2a, the noise current in the jacket of the signal cable 3 passes through the shield coating 10 and the common mode noise. Even if the signal flows through the common potential line 8, the input of the signal processing circuit 2 a is of a differential type, so that the differential signal processing here is not affected by external noise. Therefore, it does not affect the neutron flux signal processing operation in the signal processing circuit 2a.
Therefore, according to the second embodiment, the same noise prevention effect as that of the first embodiment of FIG. 1 can be obtained, and the noise resistance can be improved.
[0015]
FIG. 3 shows a third embodiment of the present invention. Here, in the output area monitoring system for a nuclear power plant shown in FIG. 3, the high-voltage power supply 11 for supplying the DC voltage to the neutron detector 1 is based on the circuit configuration shown in FIG. It is inserted in series on the negative pole side of the circuit 2a. In this case, the common potential line 8 in the signal processing circuit 2a uses an input terminal (positive pole of the high voltage power supply 11) of the signal processing circuit 2a itself on the negative pole side. It is electrically insulated from the side. The common potential line 8 of the circuit on the output side of the signal processing circuit 2a is connected to the shield covering 10 of the signal cable 3 (3a, 3c).
In such a circuit configuration, when external noise is mixed in the signal cable 3 located in the preceding stage of the signal processing circuit 2a, the noise current in the jacket of the signal cable 3 passes through the shield coating 10 and the common mode noise. Even if the signal flows through the common potential line 8, the input of the signal processing circuit 2 a is of a differential type, so that the differential signal processing here is not affected by external noise. Therefore, it does not affect the neutron flux signal processing operation in the signal processing circuit 2a.
Therefore, according to the third embodiment, the same noise prevention effect as that of the second embodiment in FIG. 2 can be obtained, and the noise resistance can be improved.
[0016]
【The invention's effect】
As described above, according to the present invention, a signal cable for transmitting a neutron detection signal is covered with a shield covering, and a balanced cable having a stranded wire composed of two cores inside the shield covering, , The preamplifier circuit and the signal processing circuit are of a differential type, the two core wires of the signal cable are connected to the respective differential input terminals, and the shield cover is further connected to the preamplifier circuit and the signal processing circuit. By connecting to the common potential line, the influence of external noise arriving at the shield part of the signal cable can be properly eliminated, and a decrease in the S / N ratio of the detection signal can be eliminated. Therefore, even in a system in which the laying length of the signal cable is long and is easily affected by external noise, the noise resistance can be remarkably improved as compared with the conventional system, and the detection signal can be processed easily and accurately.
Further, it is not necessary to add a special processing circuit for removing extraneous noise or to add a calculation load for signal processing for removing noise, and noise can be easily prevented.
[Brief description of the drawings]
FIG. 1 is a block diagram of a start-up area monitor system for a nuclear power plant showing a first embodiment of the present invention; FIG. 2 is a block diagram of an output area monitor system for a nuclear power plant showing a second embodiment of the present invention; FIG. 3 is a block diagram of an output area monitoring system for a nuclear power plant showing a third embodiment of the present invention. FIG. 4 is a schematic diagram showing an internal structure of a balanced signal cable of the present invention. FIG. 6 is a block diagram illustrating a start-up area monitoring system for a nuclear power plant. FIG. 6 is a block diagram illustrating the influence of the operation of a preamplifier when external noise comes in the system according to the conventional example in FIG. Block diagram showing such an output area monitoring system for a nuclear power plant [Description of reference numerals]
DESCRIPTION OF SYMBOLS 1 ... Neutron detector, 2 ... Central control room apparatus, 2a ... Signal processing circuit, 3 ... 1st coaxial cable, 3a ... 1st core wire, 3b ... 2nd core wire, 4 ... 2nd coaxial cable, 4a 1st core wire, 4b 2nd core wire, 5 ... preamplifier, 5a ... preamplifier circuit (differential type), 6 ... preamplifier internal amplifier, 8 ... common potential line, 9 ... preamplifier Amplifier internal common potential line harmonic impedance, 10: shielded cable (shield coating), 11: high voltage power supply, 12: resistor, 13: DC voltage blocking capacitor, 14: electric pulse blocking inductance

Claims (3)

原子炉内に配置された中性子検出器と、前記中性子検出器の検出信号を炉外部に引き出す第1の信号ケーブルと、前記第1の信号ケーブルに接続された前置増幅回路と、前記前置増幅回路に接続された第2の信号ケーブルと、前記検出信号を処理する信号処理回路とを備え、前記中性子検出器、前記第1,第2の信号ケーブル及び前記前置増幅回路のアースを前記信号処理回路側にて接地した1点接地構造の原子力発電設備用起動領域モニタ中性子測定装置において、
前記第1,第2の信号ケーブルは、シールド被覆体によって覆い、前記シールド被覆体の内部に2本の芯線から成る縒り線を有する平衡ケーブルとし、前記前置増幅回路は、その信号の入力段及び出力段を差動型とし、前記各信号ケーブルの2本の芯線を前記前置増幅回路の差動入力及び差動出力に接続し、前記シールド被覆体を前記前置増幅回路の共通電位ラインに接続することを特徴とする原子力発電設備用中性子測定装置。
A neutron detector disposed in the reactor, a first signal cable for extracting a detection signal of the neutron detector to the outside of the reactor, a preamplifier circuit connected to the first signal cable; A second signal cable connected to an amplifier circuit; and a signal processing circuit for processing the detection signal, wherein the neutron detector, the first and second signal cables, and the ground of the preamplifier circuit are grounded. In the starting area monitor neutron measurement device for a nuclear power plant having a single-point grounding structure grounded on the signal processing circuit side,
The first and second signal cables are covered with a shield covering, and are balanced cables having a twisted wire composed of two cores inside the shield covering, and the preamplifier circuit includes an input stage for the signal. And the output stage is of a differential type, two core wires of each of the signal cables are connected to a differential input and a differential output of the preamplifier circuit, and the shield cover is connected to a common potential line of the preamplifier circuit. A neutron measurement device for a nuclear power plant, which is connected to a neutron.
請求項1において、前記信号処理回路の入力段を差動型とし、当該入力段に前記第2の信号ケーブルの2本の芯線を介して前記前置増幅回路の出力段を接続し、前記シールド被覆体を前記信号処理回路の共通電位ラインに接続することを特徴とする原子力発電設備用中性子測定装置。2. The shield according to claim 1, wherein an input stage of the signal processing circuit is of a differential type, and an output stage of the preamplifier circuit is connected to the input stage via two core wires of the second signal cable. A neutron measuring device for a nuclear power plant, wherein the covering is connected to a common potential line of the signal processing circuit. 原子炉内に配置された中性子検出器と、前記中性子検出器の検出信号を炉外部に引き出す信号ケーブルと、前記信号ケーブルに接続され、前記検出信号を処理する信号処理回路とを備え、前記中性子検出器及び前記信号処理回路を接地した2点接地構造の原子力発電設備用出力領域モニタ中性子測定装置において、
前記信号ケーブルは、シールド被覆体によって覆い、前記シールド被覆体の内部に2本の芯線から成る縒り線を有する平衡ケーブルとし、前記信号処理回路は、その信号入力段を差動型とし、前記信号ケーブルの2本の芯線を前記信号処理回路の差動入力に接続し、前記信号ケーブルのシールド被覆体を前記信号処理回路の共通電位ラインに接続することを特徴とする原子力発電設備用中性子測定装置。
A neutron detector disposed in the reactor, a signal cable for extracting a detection signal of the neutron detector to the outside of the reactor, and a signal processing circuit connected to the signal cable and processing the detection signal, the neutron In the output area monitor neutron measurement device for a nuclear power plant having a two-point grounded structure in which a detector and the signal processing circuit are grounded,
The signal cable is covered with a shield covering, and is a balanced cable having a twisted wire composed of two core wires inside the shield covering, the signal processing circuit has a signal input stage of a differential type, and the signal A neutron measuring apparatus for a nuclear power plant, wherein two core wires of a cable are connected to differential inputs of the signal processing circuit, and a shield coating of the signal cable is connected to a common potential line of the signal processing circuit. .
JP2003059488A 2003-03-06 2003-03-06 Apparatus for measuring neutron for nuclear power generation facility Pending JP2004271256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003059488A JP2004271256A (en) 2003-03-06 2003-03-06 Apparatus for measuring neutron for nuclear power generation facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003059488A JP2004271256A (en) 2003-03-06 2003-03-06 Apparatus for measuring neutron for nuclear power generation facility

Publications (1)

Publication Number Publication Date
JP2004271256A true JP2004271256A (en) 2004-09-30

Family

ID=33122287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003059488A Pending JP2004271256A (en) 2003-03-06 2003-03-06 Apparatus for measuring neutron for nuclear power generation facility

Country Status (1)

Country Link
JP (1) JP2004271256A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258729A (en) * 2005-03-18 2006-09-28 Hitachi Ltd Noise monitoring system for startup range monitor system
JP2007163239A (en) * 2005-12-13 2007-06-28 Hitachi Ltd Reactor output measuring device and output measuring device
JP2009139310A (en) * 2007-12-10 2009-06-25 Hitachi-Ge Nuclear Energy Ltd Neutron monitoring system for atomic power plant
CN102246242A (en) * 2008-12-11 2011-11-16 西屋电气有限责任公司 Subcritical reactivity measurement method
JP2013015475A (en) * 2011-07-06 2013-01-24 Shimadzu Corp X-ray detector

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258729A (en) * 2005-03-18 2006-09-28 Hitachi Ltd Noise monitoring system for startup range monitor system
JP4659492B2 (en) * 2005-03-18 2011-03-30 日立Geニュークリア・エナジー株式会社 Noise monitoring system for start-up area monitoring system
JP2007163239A (en) * 2005-12-13 2007-06-28 Hitachi Ltd Reactor output measuring device and output measuring device
JP4512551B2 (en) * 2005-12-13 2010-07-28 日立Geニュークリア・エナジー株式会社 Reactor power measuring device and power measuring device
JP2009139310A (en) * 2007-12-10 2009-06-25 Hitachi-Ge Nuclear Energy Ltd Neutron monitoring system for atomic power plant
CN102246242A (en) * 2008-12-11 2011-11-16 西屋电气有限责任公司 Subcritical reactivity measurement method
JP2013015475A (en) * 2011-07-06 2013-01-24 Shimadzu Corp X-ray detector

Similar Documents

Publication Publication Date Title
US7902812B2 (en) Rogowski coil assembly and methods
US8089266B2 (en) Measuring induced currents on a CAN bus
JP5301081B2 (en) Double-insulated electrical measuring instrument
JP2877609B2 (en) Start-up area monitoring system for nuclear power plants
JP2004271256A (en) Apparatus for measuring neutron for nuclear power generation facility
CN106249054A (en) Capacitance type potential transformer and integration detection sensor thereof
JP4360895B2 (en) Neutron monitoring device
JP2011252778A (en) Method for detecting partial discharge of electrical device using magnetic field probe
JPH0670665B2 (en) Non-contact electric field magnetic field sensor
JP5675488B2 (en) Apparatus and method for evaluating signal transmission path
DE19748550A1 (en) Method for measuring electrical currents in n conductors and device for carrying out the method
JP5324079B2 (en) Neutron monitoring system for nuclear power plants
JP2747402B2 (en) Transmission line monitoring sensor
JP2001141770A (en) Detecting method of shield tape disconnection of high- tension cable, detector for shield tape disconnection, and judgment device for shield tape disconnection
JPH05107301A (en) Partial discharge detecting method for power cable and device for the same
JP2870551B2 (en) Method and apparatus for determining direction of occurrence of partial discharge
US5055828A (en) Parasitic-ground current indicator for electrical system
JP3107361B2 (en) Partial discharge detection method
CN209821271U (en) Multipurpose current transformer capable of being provided with Rogowski coil
JPH0252829B2 (en)
JP2011252779A (en) Detection method of partial discharge of electrical device using magnetic field probe
JPH08262097A (en) Partial discharge measuring method
JPH0339670A (en) Partial discharge measuring method
JP2960782B2 (en) Partial discharge measurement method
JP3295607B2 (en) Partial discharge measurement method