JPH02125834A - Hard alloy - Google Patents

Hard alloy

Info

Publication number
JPH02125834A
JPH02125834A JP27830688A JP27830688A JPH02125834A JP H02125834 A JPH02125834 A JP H02125834A JP 27830688 A JP27830688 A JP 27830688A JP 27830688 A JP27830688 A JP 27830688A JP H02125834 A JPH02125834 A JP H02125834A
Authority
JP
Japan
Prior art keywords
alloy
resistance
hard
weight
carbides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27830688A
Other languages
Japanese (ja)
Inventor
Akira Matsuo
明 松尾
Tetsunori Kitada
北田 哲則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tungsten Co Ltd
Original Assignee
Nippon Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tungsten Co Ltd filed Critical Nippon Tungsten Co Ltd
Priority to JP27830688A priority Critical patent/JPH02125834A/en
Publication of JPH02125834A publication Critical patent/JPH02125834A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the oxidation resistance, welding resistance and corrosion resistance of the title alloy by specifying the contents of W, Ni, Co and Fe and the contents of Ta and Nb specially in the relationship with Ti and removing Mo. CONSTITUTION:The compsn. of a hard alloy is formed with, by weight, 25 to 60% total of Ta and Nb, 10 to 40% Ti, 10 to 40% W, 5 to 30% total of one or more kinds among Ni, Co and Fe and 0.5 to 2% N, and (X-N-2) to (X-N)% C is incorporated thereto where X=0.0664XTa+0.1293XNb+0.2508XTi+0.0653XW. The total amounts of Ta and Nb are furthermore made higher than the contents of Ti and W and those of the total amounts of Ni, Co and Fe. The alloy moreover has a structure contg. a hard phase of which core parts independently riched in Ta, Nb and Ti are mixed and in which the core parts riched in Ta and Nb are present greater than those riched in Ti.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、特に長寿命の切削工具用材料とじて好適な硬
質合金に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a hard alloy particularly suitable as a long-life cutting tool material.

〔従来の技術〕[Conventional technology]

金属の炭化物、窒化物を硬質相とし鉄族金属を結合相と
する切削工具用材料には、Wの炭化物を主体とする超硬
合金やTi の炭化物、窒化物を主体としたサーメット
等が広く用いられている。現在までの段階で知られてい
る切削工具用材料としては、耐摩耗性、耐酸化性、耐溶
着性等の点でサーメットの方が優れている。
Cutting tool materials with metal carbides and nitrides as the hard phase and iron group metals as the binder phase include cemented carbides mainly composed of W carbides and cermets mainly composed of Ti carbides and nitrides. It is used. Among cutting tool materials known up to now, cermet is superior in terms of wear resistance, oxidation resistance, welding resistance, etc.

しかし、近年切削工具に要求される特性はますます厳し
くなってきており、サーメットを凌ぐ材料が待ち望まれ
ている。たとえば、特公昭56−51201号公報では
、はとんど未変化のTiCよりなる中心核1 窒素含有
量が段階的に増加する二次核及び一番外側のほとんど窒
素を含有しない炭化合金の被封入物からできた硬質結晶
粒を分散させた焼結体が提案されている。また、特公昭
60−4260号公報では、炭化ニオブ、炭化チタン、
炭化タングステン、炭化モリブデン、窒化チタン及び鉄
族金属の含有量を特定した超硬質合金が開示されている
However, in recent years, the properties required of cutting tools have become increasingly strict, and a material that surpasses cermet is eagerly awaited. For example, in Japanese Patent Publication No. 56-51201, a central core 1 made of mostly unchanged TiC, a secondary core whose nitrogen content increases stepwise, and an outermost covering of a carbide alloy containing almost no nitrogen are disclosed. A sintered body in which hard crystal grains formed from inclusions are dispersed has been proposed. In addition, in Japanese Patent Publication No. 60-4260, niobium carbide, titanium carbide,
A superhard alloy with specified contents of tungsten carbide, molybdenum carbide, titanium nitride, and iron group metals is disclosed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

一般的にサーメット系切削工具は、靭性に劣っているこ
とから断続切削に不向きであり、刃先にブレが生じ易く
なる。このように、サーメットの特性を制限している原
因は、一つには主成分であるTI の炭化物、窒化物の
性質であり、もう一つは焼結性を高め硬質相を微細化す
るために多量に添加されるMOである。
Generally, cermet-based cutting tools are unsuitable for interrupted cutting because of their poor toughness, and the cutting edge is prone to wobbling. In this way, one reason for limiting the properties of cermet is the properties of the carbides and nitrides of TI, which is the main component, and the other is to improve sinterability and refine the hard phase. MO is added in large amounts to

本発明者などの研究によると、Ti の炭化物。According to research by the present inventors, carbides of Ti.

窒化物は、焼結性がよく、Wの炭化物に比較して硬度も
高く、耐酸化性、耐溶着性に優れている。
Nitride has good sinterability, higher hardness than W carbide, and excellent oxidation resistance and welding resistance.

しかし、耐酸化性、耐溶着性の点では、Ta、  Nb
の炭化物、窒化物に比較して劣っていると考えられる。
However, in terms of oxidation resistance and welding resistance, Ta, Nb
It is considered to be inferior to carbides and nitrides.

また、MOは、焼結性促進元素として金属MO又はMO
炭化物の形で添加されているが、いずれにしても他の炭
化物、窒化物等の中に固溶する。しかし、MOの炭化物
は、硬度、耐酸化性、耐溶着性1弾性率、熱伝導率等の
あらゆる点で他の炭化物、窒化物に劣っている。そのた
め、サーメットの特性が制限されると考えられる。
Moreover, MO is a metal MO or MO as a sinterability promoting element.
It is added in the form of a carbide, but in any case it forms a solid solution in other carbides, nitrides, etc. However, MO carbide is inferior to other carbides and nitrides in all respects such as hardness, oxidation resistance, welding resistance, modulus of elasticity, and thermal conductivity. Therefore, it is thought that the properties of the cermet are limited.

そこで、本発明は、特にTi  との関係においてTa
及びNbの含有量を特定し、且つ焼結性を損なわずにM
oを成分から除外することによって、耐酸化性、耐溶着
性、耐摩耗性等に優れた耐久性の良好な切削工具として
使用される硬質合金を提供することを目的とする。
Therefore, the present invention particularly focuses on Ta in relation to Ti.
and Nb content, and M without impairing sinterability.
The object of the present invention is to provide a hard alloy that is excellent in oxidation resistance, adhesion resistance, wear resistance, etc., and has good durability and can be used as a cutting tool by excluding o from the components.

〔課題を解決するための手段〕[Means to solve the problem]

本発明においては、硬質相の主成分をTaとNbの炭化
物、窒化物の固溶体とし、且つMOを添加していない。
In the present invention, the main component of the hard phase is a solid solution of carbides and nitrides of Ta and Nb, and no MO is added.

このとき、合金成分の含有量を特許請求の範囲で記載し
たように特定することによって、焼結性を損なわずに耐
酸化性、耐溶着性に優れる合金が得られる。
At this time, by specifying the content of the alloy components as described in the claims, an alloy with excellent oxidation resistance and welding resistance can be obtained without impairing sinterability.

Ta及びNbは、主として合金中の硬質相である金属炭
化物、窒化物の固溶体の主成分となり、特に得られた硬
質合金の耐酸化性及び耐溶着性を高める効果を有する。
Ta and Nb are the main components of the solid solution of metal carbides and nitrides, which are the hard phases in the alloy, and have the effect of particularly improving the oxidation resistance and welding resistance of the obtained hard alloy.

このとき、Ta及びNbの合計含有量(以下、[:Ta
l +[’Nb:]で表ず)を、25〜60重量%の範
囲とし、且つTiの含有量CTi)Wの含有量〔W〕、
更には帽とCOとFeとの合計含有量[Nil +[C
o:l + [Fe3の何れよりも大きくする。[Ta
:] + [:Nb)が、[Ti〕。
At this time, the total content of Ta and Nb (hereinafter, [:Ta
l + ['Nb:]) is in the range of 25 to 60% by weight, and the Ti content CTi) W content [W],
Furthermore, the total content of cap, CO and Fe [Nil + [C
o: l + [larger than any of Fe3. [Ta
:] + [:Nb) is [Ti].

〔W〕又は〔N1〕+〔CO〕+〔Fe3よりも小さい
か、又は25重量%未満では充分な耐酸化性。
If it is smaller than [W] or [N1] + [CO] + [Fe3, or less than 25% by weight, it has sufficient oxidation resistance.

耐溶着性が得られない。逆に、〔Ta〕+〔Nb〕が6
0重量%を超えると、焼結性が著しく劣化し、良好な焼
結体は得られない。
Welding resistance cannot be obtained. Conversely, [Ta] + [Nb] is 6
If it exceeds 0% by weight, the sinterability will deteriorate significantly and a good sintered body will not be obtained.

Ti は、主として合金中の硬質相中に固溶し、そのミ
クロ硬度を上昇し、合金の耐摩耗性を高める。しかし、
〔Tl〕が10重量%未満では充分な耐摩耗性が得られ
ず、40重量%を超えると耐酸化性、耐溶着性が劣化す
る。
Ti mainly forms a solid solution in the hard phase of the alloy, increases its microhardness, and improves the wear resistance of the alloy. but,
When [Tl] is less than 10% by weight, sufficient wear resistance cannot be obtained, and when it exceeds 40% by weight, oxidation resistance and welding resistance are deteriorated.

Wは、結合相或いは硬質相中に固溶し、合金の焼結性、
靭性、耐熱性等を高める効果を有する。
W is a solid solution in the binder phase or hard phase, and improves the sinterability of the alloy.
It has the effect of increasing toughness, heat resistance, etc.

しかし、〔W〕が10重量%未満では充分な特性が得ら
れず、40重量%を超えると耐酸化性、耐溶着性が劣化
する。
However, if [W] is less than 10% by weight, sufficient properties cannot be obtained, and if it exceeds 40% by weight, oxidation resistance and welding resistance deteriorate.

Mo は、合金の焼結性を高めるために、従来のサーメ
ットにおいては多量に添加されていた。しかし、〔Mo
aを添加すると、合金の耐酸化性。
Mo is added in large amounts to conventional cermets in order to improve the sinterability of the alloy. However, [Mo
The addition of a improves the oxidation resistance of the alloy.

耐溶着性等の緒特性が劣化する。そこで、本発明におい
ては、〔Moaを添加せず、それに伴う焼結性の低下を
他の構成成分の量のコントロールで補っている。
Properties such as welding resistance deteriorate. Therefore, in the present invention, Moa is not added, and the resulting decrease in sinterability is compensated for by controlling the amounts of other constituent components.

Ni  Co及びFeは、結合相として硬質相を結合し
、合金に靭性を与える。しかし、[:Ni:] 十〔C
o〕+〔Fe3が5重量%未満では充分な靭性が得られ
ず、30重量%を超えると合金の硬度が低下し耐摩耗性
が劣化する。
Ni Co and Fe bind the hard phase as binder phases and give toughness to the alloy. However, [:Ni:] ten [C
o]+[If Fe3 is less than 5% by weight, sufficient toughness cannot be obtained, and if it exceeds 30% by weight, the hardness of the alloy decreases and wear resistance deteriorates.

C及びNは、金属元素と結合して硬質相を形成する。N
は、硬質相を微細化し合金の耐摩耗性を向上させると共
に耐酸化性も改善する。しかし、[N)が0.5重量%
未満では充分な特性が得られず、2重量%を超えると焼
結性が劣化するため良好な焼結体が得られない。また、
[:C〕+ l:N]は、結合相に含まれていない金属
元素Ta、  NbTi  Wがすべて炭化物TaCN
bC,TiC,WCを形成したと仮定したときのCの重
量%、すなわち次式で定義された値Xを超える場合には
、合金中に多量の遊離炭素を生じるため、靭性が著しく
低下する。
C and N combine with metal elements to form a hard phase. N
improves the wear resistance of the alloy by refining the hard phase and also improves the oxidation resistance. However, [N) is 0.5% by weight
If it is less than 2% by weight, sufficient properties cannot be obtained, and if it exceeds 2% by weight, sinterability deteriorates and a good sintered body cannot be obtained. Also,
[:C]+l:N], metal elements Ta, NbTi, and W that are not included in the bonding phase are all carbide TaCN
If the weight percent of C exceeds the value X defined by the following formula, assuming that bC, TiC, and WC are formed, a large amount of free carbon is generated in the alloy, resulting in a significant decrease in toughness.

X=0.0664 〔Ta] +O,I293 (Nb
)十0.2508 [:Ti]+0.0653 [W:
]また、〔C〕+〔N〕が(X−2)重量%より少ない
場合には、Ni、  Co、  Feを多く含む脆い複
合炭化物相を多量に生じ、焼結性、@性を著しく劣化す
る。
X=0.0664 [Ta] +O, I293 (Nb
) 100.2508 [:Ti]+0.0653 [W:
] Also, if [C] + [N] is less than (X-2)% by weight, a large amount of brittle composite carbide phase containing a large amount of Ni, Co, and Fe is generated, which significantly deteriorates sinterability and @ property. do.

本発明の硬質合金は、Ta、  Nb及びTiのそれぞ
れに富む芯部が混在している硬質相を有している。そし
て、Ta及びNbに富む芯部がTiに富む芯部より多く
なっていることが、特徴の一つである。この硬質相によ
って、Ti系硬質相の欠点が抑えられ、耐酸化性、耐溶
着性に優れたTa及びNb系硬質相の長所が現れる。
The hard alloy of the present invention has a hard phase in which a core portion rich in each of Ta, Nb, and Ti coexists. One of the characteristics is that the core portion rich in Ta and Nb is larger than the core portion rich in Ti. This hard phase suppresses the drawbacks of the Ti-based hard phase, and brings out the advantages of the Ta- and Nb-based hard phases, which have excellent oxidation resistance and welding resistance.

〔作用〕[Effect]

以上のように成分1組成等が特定された本発明の硬質合
金は、Ta、  Nbを多量に含み、Moを含まないに
も拘らず、充分に密な焼結体が得られ、耐酸化性、耐溶
着性に優れる合金となる。
The hard alloy of the present invention, whose component 1 composition etc. have been specified as described above, contains a large amount of Ta and Nb and does not contain Mo, yet a sufficiently dense sintered body can be obtained, and it has excellent oxidation resistance. , resulting in an alloy with excellent welding resistance.

この合金の組織は、WC相を有せず、金属炭化物、窒化
物の固溶体からなる硬質相と結合相の二相合金である点
で従来のサーメットに共通する。
The structure of this alloy is common to conventional cermets in that it does not have a WC phase and is a two-phase alloy consisting of a hard phase consisting of a solid solution of metal carbides and nitrides and a binder phase.

しかし、硬質相がTa及びNbを主とし、TIを副とす
る粒子で構成されている点で、従来のサーメットと基本
的に異なる。
However, it is fundamentally different from conventional cermets in that the hard phase is composed of particles mainly containing Ta and Nb and containing TI as a minor.

すなわち、従来のサーメットにおける硬質相には、Ti
  に富む芯部が存在し、特にNを含む微粒合金ではそ
の容積率が大きくなっている。これに対して、本発明の
硬質合金では、主としてTa、 Nbに富む芯部が存在
し、TI に富む芯部の容積率は少ない。このような組
織となる理由を、以下に説明する。
That is, the hard phase in conventional cermets contains Ti.
There is a core portion rich in N, and the volume fraction thereof is particularly large in fine-grained alloys containing N. On the other hand, in the hard alloy of the present invention, there is mainly a core rich in Ta and Nb, and the volume ratio of the core rich in TI is small. The reason for such an organization will be explained below.

サーメットの硬質相の二重構造は、炭化物の一部が結合
金属との共晶反応により溶解した後、芯部となる炭化物
の周辺部に炭化物固溶体として析出することにより生じ
る。炭化物が共晶反応を起こす場合、当然共晶温度の低
い炭化物から溶解していくと考えられる。そのため、T
iの炭化物は、Ta、  Nbの炭化物より共晶温度が
低いことから溶解し易く、芯部となる量が少なくなった
ものと考えられる。たとえば、Ti C−Ni系は12
70℃、NbC−Ni系は1330℃で共晶反応を生じ
るとされている。ただし、Ti O量2粒径、焼結条件
等により、全てのTi の炭化物がTa、  Nbの炭
化物より先に溶解するのではなく、芯部として残留する
場合もある。
The double structure of the hard phase of cermet is caused by a part of the carbide being dissolved by a eutectic reaction with the binding metal, and then precipitated as a carbide solid solution around the core carbide. When carbides undergo a eutectic reaction, it is thought that the carbides with the lowest eutectic temperature will naturally dissolve first. Therefore, T
It is thought that the carbide i has a lower eutectic temperature than the carbides of Ta and Nb, so it is easier to dissolve, and the amount that forms the core is smaller. For example, TiC-Ni system has 12
It is said that a eutectic reaction occurs at 70°C and the NbC-Ni system at 1330°C. However, depending on the TiO amount, particle size, sintering conditions, etc., all the Ti carbides may not dissolve before the Ta and Nb carbides, but may remain as a core.

このように、Ta、  Nbに富む芯部が多量に存在し
、耐酸化性、耐溶着性に劣るTi に富む芯部が少ない
ことが、本発明の合金の特性を向上させている一因であ
る。しかし、Ti には、炭化物の硬度を向上させ、合
金に耐摩耗性を付与する効果があるので、炭化物固溶体
中のTi 濃度を増加させるため、Ti に富む芯部が
少量残留する程度に添加することが、総合的に必要であ
る。これによって、本発明の合金は、耐酸化性、耐溶着
性、耐摩耗性等の優れた性質を発揮するものとなる。
As described above, the presence of a large amount of Ta and Nb-rich cores and the small amount of Ti-rich cores, which have poor oxidation resistance and welding resistance, is one of the reasons why the properties of the alloy of the present invention are improved. be. However, Ti has the effect of improving the hardness of carbides and imparting wear resistance to the alloy, so in order to increase the Ti concentration in the carbide solid solution, it is added to the extent that a small amount of Ti-rich core remains. This is necessary overall. As a result, the alloy of the present invention exhibits excellent properties such as oxidation resistance, welding resistance, and wear resistance.

また、Moを含まないため、耐酸化性、硬度等に劣るM
o炭化物の影響を受けることがない。したがって、切削
工具として使用しているときに、劣化が少なく、耐酸化
性、耐摩耗性に優れたものとなる。そして、MOを含ま
ないことによる焼結性の低下は、他の合金構成成分の量
をコントロールすることによって補っている。すなわち
、硬質相と結合金属との濡れ性を低下し焼結性を劣化さ
せるTa、  Nb、  N等の成分の量の上限を規定
し、更に焼結を妨げる遊離炭素や低炭素複合炭化物相を
生じないようにC含有量の範囲を規定することによって
、良好な焼結性を確保している。
In addition, since it does not contain Mo, M has poor oxidation resistance, hardness, etc.
o Not affected by carbides. Therefore, when used as a cutting tool, there is little deterioration and it has excellent oxidation resistance and wear resistance. The decrease in sinterability caused by not containing MO is compensated for by controlling the amounts of other alloy constituents. In other words, the upper limit of the amount of components such as Ta, Nb, and N, which reduce the wettability of the hard phase and the bonding metal and deteriorate the sinterability, is defined, and the amount of free carbon and low-carbon composite carbide phases that impede sintering is further restricted. Good sinterability is ensured by specifying the range of C content so as not to occur.

以上に説明した組成1 組織の特徴から、本発明の硬質
合金は、従来のサーメットに比較して耐酸化性、耐溶着
性に優れたものとなる。
Due to the characteristics of the composition 1 structure described above, the hard alloy of the present invention has excellent oxidation resistance and welding resistance compared to conventional cermets.

〔実施例〕〔Example〕

合金成分となる各種の金属1金属炭化物、金属窒化物或
いはそれらの固溶体の粉末を所定量配合し、ボールミル
で70時時間式混合した。原料粉末は、いずれも市販の
平均粒径0.8〜2.0μmのものを使用した。また、
焼結までの工程で〔C〕及び[N)は変動するので、こ
の変動を考慮に入れて焼結後の硬質合金が所定の成分・
組成をもつように、原料粉末を配合した。
A predetermined amount of powders of various metal-metal carbides, metal nitrides, or solid solutions thereof as alloy components were blended and mixed in a ball mill for 70 hours. All raw material powders used were commercially available powders with an average particle size of 0.8 to 2.0 μm. Also,
[C] and [N] vary during the process up to sintering, so taking this variation into consideration, the hard alloy after sintering has the specified composition.
Raw material powders were blended to have the following composition.

得られた混合粉末は、乾燥後、圧力1トン/cIllで
試験片形状にプレスし、0.001〜0.01)−ルの
真空中で1400〜b 1表に示す合金組成を持つ各試料を得た。試験番号No
、 1〜7は本発明の範囲内にある組成をもつ試料であ
り、試験番号No、 8〜20は本発明の範囲外の組成
をもつ試料である。
After drying, the obtained mixed powder was pressed into the shape of a test piece at a pressure of 1 ton/cIll, and in a vacuum of 0.001 to 0.01), each sample having an alloy composition shown in Table 1 I got it. Exam number No.
, 1 to 7 are samples with compositions within the scope of the present invention, and test numbers 8 to 20 are samples with compositions outside the scope of the present invention.

得られた試料について、比重、硬度、抗折力を測定した
。更に靭性、耐摩耗性、耐酸化性、耐溶着性については
、フライス切削試験における。摩耗量と工具寿命により
総合的に評価した。
The specific gravity, hardness, and transverse rupture strength of the obtained sample were measured. Furthermore, toughness, wear resistance, oxidation resistance, and welding resistance were evaluated in milling tests. Comprehensive evaluation was performed based on wear amount and tool life.

切削試験の条件は以下の通りである。The conditions for the cutting test are as follows.

カッター: F RG4125 R チップ : S DC42H12J TN被削材 : 
N A K2S(HRC40)切削速度: 265 m
 /秒 送り量 :歯当り0.1mm 切込み量:2mm 試験結果を、第2表に表した。ただし、摩耗量は5m切
削後の主切刃の逃げ面摩耗量で、工具寿命はチッピング
又は欠損を生じるまでの切削距離により示した。
Cutter: F RG4125 R Tip: S DC42H12J TN Work material:
N A K2S (HRC40) Cutting speed: 265 m
Feed amount per second: 0.1 mm per tooth Depth of cut: 2 mm The test results are shown in Table 2. However, the wear amount is the flank wear amount of the main cutting edge after cutting 5 m, and the tool life is shown by the cutting distance until chipping or chipping occurs.

第2表から明らかなように、本発明の範囲内にある成分
・組成をもつ合金は、範囲外の成分・組成をもつ合金に
比較して硬度、抗折力は必ずしも優れていない。しかし
、摩耗量が少なく、かつ工具寿命も長いことが判る。こ
れは、本発明に従った硬質合金の耐酸化性、耐溶着性が
優れていることが主な原因と考えられる。
As is clear from Table 2, alloys having components and compositions within the range of the present invention are not necessarily superior in hardness and transverse rupture strength compared to alloys having components and compositions outside the range. However, it can be seen that the amount of wear is small and the tool life is long. The main reason for this is considered to be that the hard alloy according to the present invention has excellent oxidation resistance and welding resistance.

(以下、このページ余白) 第2表 硬 質 ム 金 の 特 性 ■ 〔発明の効果〕 以上に説明したように、本発明においては、硬質相をT
a、  Nb及びTi を主体とする硬質粒子で構成し
、Ta系硬質粒子及びNb系硬質粒子をTi系硬質粒子
よりも多くしている。これによって、耐酸化性、耐溶着
性に優れたTa系硬質粒子及びNb系硬質粒子の特徴が
活かされ、また1゛l系硬質粒子と共存することにより
硬度、耐摩耗性が確保される。このように、本発明の硬
質合金は、寿命の長い切削工具材料として有望な材料と
なる。
(Hereinafter, the margin of this page) Table 2 Characteristics of hard phase gold ■ [Effects of the invention] As explained above, in the present invention, the hard phase is
It is composed of hard particles mainly composed of a, Nb and Ti, with the Ta-based hard particles and Nb-based hard particles being larger than the Ti-based hard particles. This makes use of the characteristics of Ta-based hard particles and Nb-based hard particles, which have excellent oxidation resistance and welding resistance, and also ensures hardness and wear resistance by coexisting with 1゛l-based hard particles. Thus, the hard alloy of the present invention is a promising material as a cutting tool material with a long life.

Claims (1)

【特許請求の範囲】 1、Ta及びNbを合計量で25〜60重量%、Tiを
10〜40重量%、Wを10〜40重量%、Ni、Co
及びFeの一種又は二種以上を合計量で5〜30重量%
、Nを0.5〜2重量%、X=0.0664×Ta+0
.1293×Nb+0.2508×Ti+0.0653
×WとするときCを(X−N−2)〜(X−N)重量%
含有し、 Ta及びNbの合計含有量がTi含有量、W含有量及び
Ni、Co及びFeの合計含有量の何れよりも大きく、 Ta、Nb及びTiのそれぞれに富む心部が混在してい
る硬質相を有し、Ta及びNbに富む心部がTiに富む
心部より多いことを特徴とする硬質合金。
[Claims] 1. Total amount of Ta and Nb is 25 to 60% by weight, Ti is 10 to 40% by weight, W is 10 to 40% by weight, Ni, Co
and one or more kinds of Fe in a total amount of 5 to 30% by weight
, N 0.5 to 2% by weight, X=0.0664×Ta+0
.. 1293×Nb+0.2508×Ti+0.0653
When ×W, C is (X-N-2) to (X-N)% by weight
The total content of Ta and Nb is greater than the Ti content, the W content, and the total content of Ni, Co, and Fe, and the core is rich in each of Ta, Nb, and Ti. A hard alloy having a hard phase, characterized in that the Ta- and Nb-rich core is greater than the Ti-rich core.
JP27830688A 1988-11-02 1988-11-02 Hard alloy Pending JPH02125834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27830688A JPH02125834A (en) 1988-11-02 1988-11-02 Hard alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27830688A JPH02125834A (en) 1988-11-02 1988-11-02 Hard alloy

Publications (1)

Publication Number Publication Date
JPH02125834A true JPH02125834A (en) 1990-05-14

Family

ID=17595507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27830688A Pending JPH02125834A (en) 1988-11-02 1988-11-02 Hard alloy

Country Status (1)

Country Link
JP (1) JPH02125834A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102758113A (en) * 2012-06-18 2012-10-31 丹阳市永兴硬质合金有限公司 Hard alloy for making blade

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102758113A (en) * 2012-06-18 2012-10-31 丹阳市永兴硬质合金有限公司 Hard alloy for making blade

Similar Documents

Publication Publication Date Title
JP2890592B2 (en) Carbide alloy drill
US4514224A (en) Tough carbide base cermet
EP0386338B1 (en) Hard sintered body for tools
JPS61195950A (en) Cermet for cutting tool having high hardness and toughness
JPH02125834A (en) Hard alloy
JPS602646A (en) Tungsten carbide-base sintered hard alloy for cutting tool
JPS5917176B2 (en) Sintered hard alloy with hardened surface layer
JPS5941445A (en) Cubic boron nitride base high pressure sintered material for cutting tool
JPS6056783B2 (en) Cubic boron nitride-based ultra-high pressure sintered material for cutting tools
JP2578677B2 (en) TiCN-based cermet
JP2578678B2 (en) TiCN-based cermet
JPS5950076A (en) Cubic boron nitride base super high pressure sintered body
JPS589957A (en) Material for cutting tool with superior characteristic at high temperature
JPS58113348A (en) Cubic system boron nitride-base material to be sintered under superhigh pressure for cutting tool
JPS6335753A (en) Ticn cermet
JPS63216941A (en) High-toughness cermet for cutting tool
JPS5816050A (en) Material for cutting tool with superior characteristic at high temperature
JPS58181845A (en) Tough cermet
JPS6146542B2 (en)
JPS61143551A (en) Tough sintered hard alloy
JPS58181844A (en) Sintered material for cutting tool and anti-wear tool excellent in high temperature characteristics
JPH0680180B2 (en) Cemented carbide and its manufacturing method
Takagi et al. Heat resistant sintered hard alloy
JPS5816051A (en) Material for cutting tool with superior characteristic at high temperature
JPH08253835A (en) Cermet alloy