JPH02125690A - Free electronic laser oscillator - Google Patents

Free electronic laser oscillator

Info

Publication number
JPH02125690A
JPH02125690A JP63280165A JP28016588A JPH02125690A JP H02125690 A JPH02125690 A JP H02125690A JP 63280165 A JP63280165 A JP 63280165A JP 28016588 A JP28016588 A JP 28016588A JP H02125690 A JPH02125690 A JP H02125690A
Authority
JP
Japan
Prior art keywords
magnets
diamagnetic substance
magnetic
laser oscillator
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63280165A
Other languages
Japanese (ja)
Inventor
Katsuji Emura
勝治 江村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP63280165A priority Critical patent/JPH02125690A/en
Publication of JPH02125690A publication Critical patent/JPH02125690A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/0903Free-electron laser

Abstract

PURPOSE:To improve the radiant light oscillating efficiency of the title laser oscillator by arranging diamagnetic substance bodies so as to seal magnetic fields between magnets and make the magnetic flux density uniform. CONSTITUTION:Diamagnetic substance bodies A and A for sealing the opened section of a magnetic field space formed by magnet groups 1 and 1, 2 and 2,... are provided so that the diamagnetic substance bodies A and A and magnets 1 and 1, 2 and 2,... can form a rectangular cross section in the direction perpendicular to the advancing direction of electrons and seal magnetic fields between the magnets 1 and 1, 2 and 2,.... Since no magnetic flux can pass through the diamagnetic substance bodies A and A, part of magnetic fluxes coming out from N is guided by surface of the diamagnetic substance bodies A and A and enters S pole without leakage. As a result, the density of the magnetic fluxes between the magnets 1 and 1, 2 and 2,... is uniformized. Therefore, a free electron laser oscillator which is uniform in radiant light oscillating conditions and high in oscillating efficiency can be obtained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は自由電子レーザー発振装置に関し、より詳しく
述べれば、高品位薄膜の製造、化学分析、医療等におい
て好適に使用される自由電子レーザー発振装置に関する
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a free electron laser oscillation device, and more specifically, a free electron laser oscillation device suitably used in the production of high-quality thin films, chemical analysis, medical treatment, etc. Regarding equipment.

〈従来の技術〉 空間的に周期的に変化する磁界中を光速に近い速度で電
子が加速度運動する際、電子は位相のそろった短波長の
強いレーザー(以下、「自由電子レーザー」という。)
を放出する。近時、この現象を利用した光発振装置(以
下、「自由電子レーザー発振装置」という。)が開発さ
れつつある。
<Prior art> When electrons accelerate at a speed close to the speed of light in a magnetic field that changes spatially and periodically, the electrons generate an intense laser with a short wavelength that is in phase (hereinafter referred to as a "free electron laser").
emit. Recently, optical oscillation devices (hereinafter referred to as "free electron laser oscillation devices") that utilize this phenomenon are being developed.

この自由電子レーザー発振装置は、レーザー装置が可視
光領域程度の波長の電磁波しか発振し得ないのに対して
、鋭い指向性及び高エネルギーを有する紫外領域或いは
X線領域の短波長の光を発振する。このようなことから
、同装置は、半導体基板上への薄膜形成、電子写真の露
光工程等における好適な光源として脚光を浴びつつある
While laser devices can only emit electromagnetic waves with wavelengths in the visible light range, this free electron laser oscillation device emits short wavelength light in the ultraviolet or X-ray region with sharp directivity and high energy. do. For these reasons, this device is attracting attention as a suitable light source for forming thin films on semiconductor substrates, electrophotographic exposure processes, and the like.

従来の自由電子レーザー発振装置(以下、「従来装置」
という。)は、一方の磁石のN極と他方の磁石のS極と
を所定距fl!離隔して対向させた一対の磁石を複数対
、隣り合う各一対の磁石が形成する磁界の向きが電子の
進行方向に沿って周期的に180度変化するように配し
たものであった(ThoLlas、C,Marshal
l、  ’Free ElectronLaser  
、 Macmlllan Publishing Co
l1pany。
Conventional free electron laser oscillation device (hereinafter referred to as “conventional device”)
That's what it means. ) is a predetermined distance fl! between the N pole of one magnet and the S pole of the other magnet. A plurality of pairs of magnets facing each other are arranged so that the direction of the magnetic field formed by each pair of adjacent magnets changes periodically by 180 degrees along the direction of electron travel (Thorlas , C. Marshall
l, 'Free Electron Laser
, Macmillan Publishing Co.
l1pany.

New York、 1985)。New York, 1985).

〈発明が解決しようとする課題〉 しかしながら、上記従来装置においては、対向する磁石
間の空間が開放されていたため、洩れ磁束が生じ、電子
の進行方向に対して垂直な方向における磁束密度が不均
一になり、結果として従来装置には、垂直方向における
放射光の発振条件が不均一になり、放射光発振効率が低
いという問題があった。
<Problems to be Solved by the Invention> However, in the conventional device described above, since the space between the opposing magnets is open, leakage magnetic flux occurs, and the magnetic flux density in the direction perpendicular to the direction of electron travel is non-uniform. As a result, the conventional device has a problem in that the oscillation conditions of the synchrotron radiation in the vertical direction are non-uniform and the synchrotron radiation oscillation efficiency is low.

このような問題を有していたため、従来装置は、高品位
薄膜の製造、精密さが要求される微量化学分析用等の光
源装置としては、実用上、充分満足のいくものではなか
った。
Because of these problems, the conventional devices have not been fully satisfactory in practice as light source devices for manufacturing high-quality thin films or for trace chemical analysis that requires precision.

本発明は以上の事情に鑑みなされたものであって、その
目的とするところは、放射光の発振条件か均一で、発振
効率が高い自由電子レーザー発振装置を提供することに
ある。
The present invention has been made in view of the above circumstances, and its purpose is to provide a free electron laser oscillation device with uniform synchrotron radiation oscillation conditions and high oscillation efficiency.

く課題を解決するための手段〉 本発明に係る自由電子レーザー発振装置(以下、「本発
明装置」という。)においては、対向する磁石の開放部
近傍において磁束密度が不均一化するのを防止するため
に、反磁性体を用いて該開放部を封止するようにした。
Means for Solving the Problems> In the free electron laser oscillation device according to the present invention (hereinafter referred to as the "device of the present invention"), it is possible to prevent the magnetic flux density from becoming non-uniform near the open portions of the opposing magnets. In order to do this, the opening was sealed using a diamagnetic material.

すなわち、本発明装置は、対向する磁石間に形成される
磁界を該磁石間に封じこめるための反磁性体が、電子の
進路に臨んで配されていることを特徴とする。
That is, the device of the present invention is characterized in that a diamagnetic material for confining the magnetic field formed between opposing magnets is disposed facing the path of electrons.

く作用〉 反磁性体の内部を、磁束は通過できないので、Nlから
出た磁束の一部は反磁性体の表面に案内されて外部に漏
洩することなくS極に入る。その結果、磁石間の磁束密
度が均一化する。
Effect> Since magnetic flux cannot pass through the inside of the diamagnetic material, a part of the magnetic flux emitted from Nl is guided by the surface of the diamagnetic material and enters the S pole without leaking to the outside. As a result, the magnetic flux density between the magnets becomes uniform.

〈実施例〉 以下、実施例を挙げて本発明をより詳細に説明する。<Example> Hereinafter, the present invention will be explained in more detail with reference to Examples.

第1図は本発明の一実施例を示す装置の斜視図であり、
第2図はその縦断面図である。
FIG. 1 is a perspective view of an apparatus showing an embodiment of the present invention,
FIG. 2 is a longitudinal sectional view thereof.

図において、(1)、(2)、(3)、(4)、・・・
は磁石であり、それらの磁石(1)と(1)、(2)と
(2)、(3)と(3)、(4)と(4)、・・・は各
々のS、N極面を互いに平行に、且つ、離隔対向して配
置されており、各磁石対(i)(1)、(2)(2)、
(3) (3)、(4) (4)、・・・は、各磁石対
が形成する磁界の向きが電子の運動方向に沿って隣り合
う各磁石対毎に周期的に180度変化するようにその磁
極の向きを考慮して互いに所定間隔離隔して配されてい
る。すなわち、図において、磁石(1) (1)、(3
) (3)、・・・によって形成される磁界は図中上方
に向いており、磁石+2] f2)、(4) (4)、
・・・によって形成される磁界は図中下方に向いている
In the figure, (1), (2), (3), (4),...
are magnets, and these magnets (1) and (1), (2) and (2), (3) and (3), (4) and (4), ... are the S and N poles of each The magnet pairs (i) (1), (2) (2),
(3) (3), (4) (4), ... means that the direction of the magnetic field formed by each magnet pair changes periodically by 180 degrees for each adjacent magnet pair along the direction of electron movement. They are arranged at a predetermined distance from each other in consideration of the direction of their magnetic poles. That is, in the figure, magnets (1) (1), (3
) (3), ... is directed upward in the figure, and magnet +2] f2), (4) (4),
The magnetic field formed by ... is directed downward in the figure.

上記磁石対(1) (1)、■(2)、(3) (3)
、(4) (4)、・・・間には、洩れ磁束の可及的防
止を図るべく、磁石対(iNil、(iil (iil
、(it (iil、GV)(iVl、−・・が、両側
に隣接して配される磁石対との間で磁界ループを形成す
べく磁界の向きを互いに図において左右反対方向に向け
て配されている。
The above magnet pairs (1) (1), ■ (2), (3) (3)
, (4) (4),... In order to prevent leakage magnetic flux as much as possible, a pair of magnets (iNil, (iil (iil
, (it (iil, GV) (iVl, -...) are arranged so that the directions of the magnetic fields are opposite to each other in the left and right directions in the figure to form a magnetic field loop between the pair of magnets arranged adjacently on both sides. has been done.

以上のような装置において、電子ビーム(EB)がNS
S両極間の空間に、両極面に平行に入射する(図中の左
向きの矢符は入射方向を示す。)と、ビームを形成する
各電子は磁界の作用を受けて加速度運動の一種である蛇
行運動する。その結果、電子の運動方向の接線方向にシ
ンクロトロン放射光が該電子から放たれる。このシンク
ロトロン放射光のうち磁界の周期性と整合ある条件(発
振条件)を満たす波長の光は増幅されレーザー発振する
In the above device, the electron beam (EB) is
When incident into the space between the S poles parallel to the plane of both poles (the left-pointing arrow in the figure indicates the direction of incidence), each electron forming the beam undergoes a type of accelerated motion under the action of the magnetic field. Move in a meandering motion. As a result, synchrotron radiation is emitted from the electrons in a tangential direction to the direction of movement of the electrons. Of this synchrotron radiation, light with a wavelength that satisfies a condition (oscillation condition) consistent with the periodicity of the magnetic field is amplified and oscillates as a laser.

以上述べた装置構成及び放射光の発振原理については従
来装置と相違するところはないが、上記装置においては
、さらに磁石群(1) (1) (2) (2) (3
) (3) (4) (4)・・・が形成する磁界空間
の開放部を封止するための反磁性体くへ)(^)が該反
磁性体(^)(A)と前記対向する磁石とが電子の進路
に直交する断面視において矩形をなすように配されて、
磁界を磁石間に封じ込めている。
Although there is no difference from the conventional device in terms of the device configuration and the principle of oscillation of synchrotron radiation described above, in the device described above, there is an additional magnet group (1) (1) (2) (2) (3
) (3) (4) (4) The diamagnetic body (^) (^) for sealing the open part of the magnetic field space formed by... is opposite to the diamagnetic body (^) (A). The magnets are arranged to form a rectangular shape in a cross-sectional view perpendicular to the path of the electrons,
The magnetic field is confined between the magnets.

上記反磁性体(A) (A)としては、例えばビスマス
、リン等が挙げられるが、超電導状態において完全反磁
性を示す超電導体を、必要な冷却手段と共に用いること
が最も好ましい。
Examples of the diamagnetic material (A) (A) include bismuth, phosphorus, etc., but it is most preferable to use a superconductor that exhibits complete diamagnetic properties in a superconducting state together with necessary cooling means.

なお、以上の実施例では、第2図に示すように、反磁性
体(^)(A)が磁石(1) (1)等に接触して配さ
れて、反磁性体くA)(^)の内面と磁石(1) (1
)等の内面とが電子の進路方向断面視において矩形をな
すように反磁性体(^)(A)が配された装置について
説明したが、本発明はその要旨を変更しない範囲で種々
設計変更することが可能である。
In the above embodiment, as shown in FIG. 2, the diamagnetic material (^) (A) is placed in contact with the magnet (1) (1), etc. ) and magnet (1) (1
) etc. has been described, in which the diamagnetic material (^) (A) is arranged so that the inner surface thereof forms a rectangular shape in a cross-sectional view in the direction of electron travel. However, the present invention can be modified in various ways without changing the gist thereof It is possible to do so.

例えば、低温超電導体を反磁性体として用いる場合、そ
の冷却効率を挙げるために、反磁性体(^)(A)と磁
石(1) (1)等との間に断熱材を介在させてもよい
For example, when using a low-temperature superconductor as a diamagnetic material, a heat insulating material may be interposed between the diamagnetic material (^) (A) and the magnet (1) (1), etc., in order to increase its cooling efficiency. good.

〈発明の効果〉 本発明装置においては、反磁性体を配し、磁界を磁石間
に封じ込めたので、磁束密度の均一化が達成され、その
結果、放射光の発振効率が高くなり、高品位薄膜等の製
造における歩留まりが向上する等、本発明は優れた実用
的効果を奏する。
<Effects of the Invention> In the device of the present invention, diamagnetic material is arranged to confine the magnetic field between the magnets, so the magnetic flux density is made uniform, and as a result, the oscillation efficiency of synchrotron radiation is increased, resulting in high quality The present invention has excellent practical effects, such as improved yield in manufacturing thin films and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す装置の斜視図、第2図
は同装置の縦断面図である。 (1) (1)、(2) (2)、(3) (3)、(
4) (4)、・・・  ・・・磁石、(i) fil
、fiil (iil、(iil) tij)、0旧■
、・・・  ・・・磁石、(A)(A)・・・反磁性体
、 (EB)・・・電子ビーム。
FIG. 1 is a perspective view of an apparatus showing an embodiment of the present invention, and FIG. 2 is a longitudinal cross-sectional view of the same apparatus. (1) (1), (2) (2), (3) (3), (
4) (4), ... magnet, (i) fil
, fiil (iil, (iil) tij), 0 old■
, ... ... magnet, (A) (A) ... diamagnetic material, (EB) ... electron beam.

Claims (1)

【特許請求の範囲】 1、複数対の磁石が電子の進路を隔てて対 向配置され、該電子の進路に沿って方向 が周期的に変化する磁界を作用させて該 電子を加速度運動させることにより自由 電子レーザーを発振する装置において、 前記磁界を前記対向配置された磁石間 に封じこめるための反磁性体が、前記電 子の進路に臨んで配されていることを特 徴とする自由電子レーザー発振装置。 2、上記反磁性体として、超電導体を用い ることを特徴とする請求項1記載の自由 電子レーザー発振装置。[Claims] 1. Multiple pairs of magnets are placed across the path of electrons. and the direction along the path of the electron. is applied by applying a periodically changing magnetic field. Freedom by accelerating electrons In a device that oscillates an electronic laser, The magnetic field is applied between the opposing magnets. A diamagnetic substance for confining the electric current is It is especially important to note that it is placed facing the child's career path. A free-electron laser oscillation device. 2. Using a superconductor as the diamagnetic material The freedom according to claim 1 characterized in that Electronic laser oscillation device.
JP63280165A 1988-11-04 1988-11-04 Free electronic laser oscillator Pending JPH02125690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63280165A JPH02125690A (en) 1988-11-04 1988-11-04 Free electronic laser oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63280165A JPH02125690A (en) 1988-11-04 1988-11-04 Free electronic laser oscillator

Publications (1)

Publication Number Publication Date
JPH02125690A true JPH02125690A (en) 1990-05-14

Family

ID=17621213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63280165A Pending JPH02125690A (en) 1988-11-04 1988-11-04 Free electronic laser oscillator

Country Status (1)

Country Link
JP (1) JPH02125690A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0485892A (en) * 1990-07-26 1992-03-18 Mitsubishi Heavy Ind Ltd Periodic magnetic field generation device
EP1460186B2 (en) 2003-03-18 2012-02-08 Easy Sanitairy Solutions B.V. Triangular drainage

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0485892A (en) * 1990-07-26 1992-03-18 Mitsubishi Heavy Ind Ltd Periodic magnetic field generation device
JP2786526B2 (en) * 1990-07-26 1998-08-13 三菱重工業株式会社 Periodic magnetic field generator
EP1460186B2 (en) 2003-03-18 2012-02-08 Easy Sanitairy Solutions B.V. Triangular drainage

Similar Documents

Publication Publication Date Title
JP2667832B2 (en) Deflection magnet
Alferov et al. The ondulator as a source of electromagnetic radiation
US8849364B2 (en) High-temperature superconductor magnet system
US2820165A (en) Means for cooling the windows of acceleration tubes for electrostatic generators
US5714850A (en) Insertion device for use with synchrotron radiation
JPH02125690A (en) Free electronic laser oscillator
US3879679A (en) Compton effect lasers
JPS6127035A (en) Electron beam scranbler
JPH0992498A (en) Magnetic circuit for inserted light source device
JP3508079B2 (en) Method of forming plasma micro-undulator
Tomimasu et al. An electron undulating ring for VLSI lithography
US5892810A (en) X-ray source for lithography
US3188518A (en) Undulating beam traveling wave tube focusing structure
JPH08241799A (en) Periodic magnetic field device, manufacture of periodic magnetic field device, and charged particle device with periodic magnetic field device
JP2600075B2 (en) X-ray generator
JP3204920B2 (en) Permanent magnet type bending magnet device and electron storage ring
JPH0992497A (en) Magnetic circuit for inserted light source device
JP2769914B2 (en) Polarization generator
JPH04269700A (en) Magnetic field intensity controlling method for magnetism circuit for insertion light source
JPH04242196A (en) Controlling of magnetic field intensity in magnetic circuit for insertion light source
JPH08124700A (en) Circularly polarized undulator
JPH034500A (en) Wiggler for electron beam
JPH02195700A (en) Charged particle beam apparatus
JPH04130300A (en) Radiation light source
JPS6068538A (en) X-ray generator