JPS6068538A - X-ray generator - Google Patents

X-ray generator

Info

Publication number
JPS6068538A
JPS6068538A JP58175517A JP17551783A JPS6068538A JP S6068538 A JPS6068538 A JP S6068538A JP 58175517 A JP58175517 A JP 58175517A JP 17551783 A JP17551783 A JP 17551783A JP S6068538 A JPS6068538 A JP S6068538A
Authority
JP
Japan
Prior art keywords
electromagnet
focusing
lateral
variable
vertical direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58175517A
Other languages
Japanese (ja)
Other versions
JPH0372172B2 (en
Inventor
Takio Tomimasu
冨増 多喜夫
Tsutomu Noguchi
勉 野口
Hiroshi Yano
谷野 浩史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58175517A priority Critical patent/JPS6068538A/en
Priority to US06/653,588 priority patent/US4631743A/en
Publication of JPS6068538A publication Critical patent/JPS6068538A/en
Publication of JPH0372172B2 publication Critical patent/JPH0372172B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00

Abstract

PURPOSE:To enable homogeneous stable irradiation of X-rays to be performed over a wide area by installing a variable-field-producing variable electromagnet which scans the electronic orbit in vertical direction with respect to time. CONSTITUTION:A variable electromagnet (diode) 11 used to change the optical path and having a lateral field component (Hh) is installed in the immediate back of a lateral-focusing tetraode electromagnet 9. At this point, an electron flux longitudinally focused with a longitudinal-focusing tetrode electromagnet 10 is slightly shifted in longitudinal direction by the lateral field component of the variable electromagnet 11. This shift is then amplified with the lateral focusing tetrode electromagnet 9 (for lateral focusing and longitudinal divergence) thereby greatly shifting the orbital surface of electrons traveling in a deflecting diode electromagnet 8 is vertical direction (Y direction). Consequently, synchrotron radiation (soft X-ray) 2 traveling over a wafer 4 moves in vertical direction.

Description

【発明の詳細な説明】 この発明は、シンクロトロン放射光を用いた軟X線リン
グラフィに用いられるX線発生装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an X-ray generator used for soft X-ray phosphorography using synchrotron radiation.

従来、微細構造を有するLSI素子の作成において、レ
ジスト膜へのパターン転写にはフォトリングラフィの技
術が用いられてきた。
2. Description of the Related Art Conventionally, in the production of LSI elements having fine structures, photolithography technology has been used to transfer patterns onto resist films.

しかし、光の回折現象のため転写し得るパターン幅は元
の波長と同程度の約1μmが限界である。
However, due to the phenomenon of light diffraction, the pattern width that can be transferred is limited to about 1 μm, which is about the same as the original wavelength.

さらに微細化を進めるためにサブミクロンでのパターン
の大量転写に用いられ得るリングラフィ技術が必要とさ
れており、そのひとつに回折効果の少ないX線リングラ
フィ技術がある。
In order to further advance miniaturization, phosphorography technology that can be used for mass transfer of submicron patterns is needed, and one of these is X-ray phosphorography technology that has little diffraction effect.

ここではX線源としては、従来固体ターゲツトに電子線
を照射して得られる特性X線が用いられてきたが、その
波長はIOA以下であるので、次のような問題がある。
Conventionally, characteristic X-rays obtained by irradiating a solid target with an electron beam have been used as an X-ray source, but since the wavelength thereof is less than IOA, there are the following problems.

すなわちこの波長域のX線では全ての物質で透過率が高
いので、レジストへの吸収効率が低く露光時間か長くな
るとともに、十分なマスク・コントラストを得るために
は吸収体膜が厚くなり過ぎる。また、波長が短いため、
レジスト膜や基板中で発生する光電子のエネルギーが高
く、二次光電子が拡散して解像度が低くなる。さらに、
半影ぼけや幾何学的な歪みの効果を避けるためには、X
線源とウェハ間の距離を十分離丁必要があるが、この穏
のX線源は発散源であるため、ウェハ間の距離を離すと
ビームの利用効率が悪くなり、笑用土十分なビーム強度
を得るためには非常に強力なX線源が必要となって、現
状では技術的に困難である。
That is, since all materials have high transmittance for X-rays in this wavelength range, the absorption efficiency into the resist is low, the exposure time becomes long, and the absorber film becomes too thick to obtain sufficient mask contrast. Also, because the wavelength is short,
The energy of photoelectrons generated in the resist film or substrate is high, and secondary photoelectrons are diffused, resulting in low resolution. moreover,
To avoid penumbra blur and geometric distortion effects,
It is necessary to maintain a sufficient distance between the radiation source and the wafer, but since this moderate X-ray source is a diverging source, increasing the distance between the wafers will reduce the efficiency of beam use, resulting in insufficient beam intensity. Obtaining this requires a very powerful X-ray source, which is currently technically difficult.

上記の問題点を屏決する技術としてシンクロト−ン放射
光の軟X線が注目されている。第1図(alに示すよう
に、シンクロトーン放射光2は、磁場Hによって軌道を
曲げられた時に電子eが放出する電磁波である。その拡
がりは電子eの進行方向に集中した円錐状になっている
。電子eは電子軌道1上を進行してゆくので、第1図(
b)のような通常用いられる鉛直方向の、静磁場Hgの
場合には、電子軌道1上の発光点の重ね合わせにより、
横方向(軌道面内方(泉)に一様で縦方向(軌道面垂直
方向)に狭し・広がり角の分布になっている。そのため
、無駄に散逸するビームが無く、すべてのビームをウニ
ノー面上に集中させて露光に利用することができる。
Synchroton synchrotron radiation (soft X-rays) is attracting attention as a technique for resolving the above-mentioned problems. As shown in Figure 1 (al), synchrotone synchrotron radiation 2 is an electromagnetic wave emitted by electrons e when their orbits are bent by a magnetic field H. Its spread is conical and concentrated in the direction of movement of electrons e. Since the electron e moves on the electron orbit 1, as shown in Fig. 1 (
In the case of the normally used static magnetic field Hg in the vertical direction as shown in b), due to the superposition of the light emitting points on the electron orbit 1,
The angle distribution is uniform in the horizontal direction (inward the raceway plane) and narrows and diverges in the vertical direction (perpendicular to the raceway plane).Therefore, there is no wasted beam dissipation, and all beams are distributed on the Uninor surface. It can be concentrated on the top and used for exposure.

また、シンクロトロン放射光2は、第2図に示すような
X線からマイクル波におよぶ連続スペクトルであるが、
電子eの運動エネルギーを選ぶことにより、短波長のX
線成分の少ない、リングラフィにふされしいlOズか1
)100Aの軟X線を主成分としたビームを得ること力
(できる。
Furthermore, the synchrotron radiation light 2 has a continuous spectrum ranging from X-rays to microwaves as shown in Fig. 2.
By choosing the kinetic energy of the electron e, the short wavelength
IOs or 1 suitable for phosphorography with few line components
) It is possible to obtain a 100A beam with soft X-rays as the main component.

なお、軌道半径比= 2 m 、電流I : 100 
mA。
In addition, orbit radius ratio = 2 m, current I: 100
mA.

発光点とウニへ間の距離1=lQ7yL、軌道面からの
仰角θ=−Oradの場合を第2図に示した。
FIG. 2 shows a case where the distance between the light emitting point and the sea urchin is 1=lQ7yL, and the elevation angle from the orbital plane is θ=-Orad.

以上のごとく、ウニ八面上で露光に利用できるシンクロ
トロン放射光20強度は非常に強く、短い露光時間でパ
ターン転写が可能である。
As described above, the synchrotron radiation 20 intensity that can be used for exposure on the eight faces of the sea urchin is very strong, and pattern transfer is possible in a short exposure time.

その強度を生かすためには、半影ぼけや幾何学的歪みの
影響が出ない範囲で、発光点とウニ/%間の距離を短く
することカー望ましく、5〜10m程度の距離にとどめ
る必要がある。しかしながら、その場合縦方向の広がり
角は、先に述べたように大変狭く、LSIの1チツプを
露光するためには逆に狭すぎる程である。たとえは発光
点とウニへ間の距離を1OrrLとした時、リングラフ
ィに有効な軟X線成分の強度がほぼ一様になるのは4■
程度の幅である。この拡がりは、電子eのエネルギーや
軌道半径を変えてもほとんど増大させることができない
。従つ−C,tチンブあるいはlウェハを露光するのに
必要な1cIrLから1OcrrL程度の幅の一様な露
光面積を縦方向において実現するためKは、何らかの方
法で軟X線の光路を変えてやる必要がある。
In order to take advantage of its strength, it is desirable to shorten the distance between the light emitting point and the sea urchin/% within a range that does not cause penumbra blur or geometric distortion, and it is necessary to keep the distance between 5 and 10 meters. be. However, in this case, the spread angle in the vertical direction is very narrow as mentioned above, and on the contrary, it is too narrow to expose one chip of LSI. For example, when the distance between the light emitting point and the sea urchin is 1OrrL, the intensity of the soft X-ray component effective for phosphorography becomes almost uniform at 4■
There is a range of degrees. This expansion can hardly be increased even if the energy or orbital radius of the electron e is changed. Therefore, in order to achieve a uniform exposure area with a width of about 1cIrL to 1OcrrL in the vertical direction, which is necessary to expose a C, T chip or l wafer, K changes the optical path of the soft X-rays in some way. I need to do it.

この光路変更のために以下の第3図(a)〜(d)に示
すいくつかの装置が提案されている。
Several devices shown in FIGS. 3(a) to 3(d) below have been proposed for this optical path change.

なお、第3図で、1は電子軌道、2はシンクロトロン放
射光、3はマスク、4は露光されるウェハ、5は平面鏡
、6は凸面鏡または凹面鏡、Tは平面鏡または凹面鏡を
示す。以下、第3図(a)〜(d)を順次説明する@ (1) ウェハ4それ自体を縦方向に移動する装置(第
3図(al参照)。
In FIG. 3, 1 is an electron orbit, 2 is a synchrotron radiation beam, 3 is a mask, 4 is a wafer to be exposed, 5 is a plane mirror, 6 is a convex mirror or a concave mirror, and T is a plane mirror or a concave mirror. Hereinafter, FIGS. 3(a) to 3(d) will be explained in order. (1) Apparatus for vertically moving the wafer 4 itself (see FIG. 3 (al)).

(2)平面鏡5を用いてシンクロトロン放射光2を反射
させ、その平面鏡5を適当な速さで振動させることで上
下方向に放射光を振る装置(第3図(bl参照)。
(2) A device that uses a plane mirror 5 to reflect synchrotron radiation 2 and vibrates the plane mirror 5 at an appropriate speed to oscillate the radiation in the vertical direction (see Fig. 3 (bl)).

(3) 凸面鏡または凹面鏡6を用いてシンクロトロン
放射光2を反射させ、広い面積に一様な強度を得る装置
(第3図<G)参照)。
(3) A device that reflects synchrotron radiation 2 using a convex or concave mirror 6 to obtain uniform intensity over a wide area (see Figure 3<G)).

(4)何枚かの平面鏡または凹面鏡7を組み合わせて、
ウェハ4の左右の不要な放射光を反射させ、縦方向への
一様な拡がりを増大させる装置(第3図(d)参照)。
(4) Combining several plane mirrors or concave mirrors 7,
A device that reflects unnecessary emitted light on the left and right sides of the wafer 4 and increases uniform spread in the vertical direction (see FIG. 3(d)).

これらのうち(1)は何枚ものマスク3を次々にウェハ
4とに正確に位置決めしたり、大量のウェハ4を処理し
たりするための複雑な機構をもつウェハ・アライナ−に
さらに移動機構の自由度をもうひとつ要求することにな
り、実用上技術的困難が予想される。
Among these, (1) is a wafer aligner that has a complicated mechanism for accurately positioning a number of masks 3 one after another on a wafer 4 and processing a large number of wafers 4, and a moving mechanism. This requires one more degree of freedom, which is expected to pose technical difficulties in practical use.

(21,(3)、 (4)はいずれも鏡5〜6を用いて
いるが、この場合には、第1にその鏡面の月質の反射率
によって、有効な軟X線のスペクトル強度が異なり、露
光時間の予測が面倒になる。第2に光照射によって引き
起こされた不純物の吸着などにより、反射率が徐々に低
下するため、鏡の交換という保守作業を要し、また、露
光時にたえず軟X線強度を確認しなければならない。さ
らに、その劣化は必ずしも鏡面上一様に進むとは限らず
、露光むらが発生するおそれがある。
(21, (3), and (4) all use mirrors 5 and 6, but in this case, the effective soft X-ray spectral intensity depends first on the reflectance of the lunar surface of the mirror. This makes it difficult to predict the exposure time.Secondly, the reflectance gradually decreases due to the adsorption of impurities caused by light irradiation, which requires maintenance work such as replacing the mirror. The intensity of soft X-rays must be checked.Furthermore, the deterioration does not necessarily proceed uniformly on the mirror surface, and there is a risk that uneven exposure will occur.

この発明は、上記のような従来の光路変更装置の欠点を
有さない、党略変更装置を持つX線発生装置を提案した
ものである。以下この発明の−実流側を図面を用いて説
明する。
The present invention proposes an X-ray generator having an optical path changing device that does not have the drawbacks of the conventional optical path changing device as described above. The practical side of this invention will be explained below with reference to the drawings.

シンクロ)+=ン放射光2を発生する装置の1つとして
重子蓄積リングがあるが、これを例にとって説明する。
One of the devices for generating synchrotron radiation 2 is a deuteron storage ring, which will be explained by taking this as an example.

電子蓄積リングは、電子束の偏向。The electron storage ring deflects the electron flux.

集束系についてのみ考えると、たとえば第4図に示すよ
うに、シンクロトロン放射光2を取り出す所に設り゛ら
れた偏向用2極電磁石8.電子束を安定に周回させるた
めの横方向集束用4正極電磁石9と縦方向集束用4M極
電磁石10かうなる。
If we consider only the focusing system, for example, as shown in FIG. Four positive pole electromagnets 9 for horizontal focusing and 4M pole electromagnets 10 for vertical focusing are used to stably circulate the electron flux.

ここで、光路変更用として横方向に4Ei場成分Hhを
もつ可変電磁石(2極)11を横方向集束用4正極電磁
石9の直後に挿入した。
Here, a variable electromagnet (two poles) 11 having 4Ei field components Hh in the lateral direction for changing the optical path was inserted immediately after the 4 positive electrode electromagnet 9 for lateral focusing.

この時、横方向集束用4正極電磁石9で縦集束した電子
束の方向は、可変電磁石11の横磁場成分のため縦方向
にわずかにずれる。このずれは横方向集束用4正極電磁
石9(横方向は集束だが縦方向は発散)によって増幅さ
れ、偏向用2極電磁石8中の電子の軌道面は上下方向(
Y方向)に大きくずれることになる。従ってウェハ4上
のシンクロトロン放射光(軟X線)2は上下方向に移動
する。
At this time, the direction of the electron flux vertically focused by the four positive electrode electromagnets 9 for horizontal focusing is slightly shifted in the vertical direction due to the horizontal magnetic field component of the variable electromagnet 11. This deviation is amplified by the four positive electrode electromagnets 9 for horizontal focusing (converging in the horizontal direction but diverging in the vertical direction), and the orbital plane of the electrons in the two polar electromagnets 8 for deflection is in the vertical direction (
This results in a large shift in the Y direction). Therefore, the synchrotron radiation light (soft X-rays) 2 on the wafer 4 moves in the vertical direction.

たとえば、可変電磁石11中に電流IAを流した時、約
50ガウスの横磁場が発生し、このため電子eの軌道面
が変化し、発光点からion離れた試料の位置で13鰭
移動した。この電流値を第5図に示すような三角波で一
定の速さくたとえば0.3 sec )で振動させるこ
とにより、ウエノ・4上に縦方向の幅3cInの範囲で
一様な露光を行うことができた〇 上記の方法によれば、X線の発光点とウニ・・4の間に
光学素子が全くないことから、第1に一様性の非常に高
い放射光を得ることができ、第2にシンクロトロン放射
光2木来のなだらかな連続スペクトルを有するため、必
要露光時間の予仰]設屋が容易であり、第3に一定の電
子電流で常に同一光量の軟X線を得ることができるので
、露光時間の制御が容易である。
For example, when a current IA is passed through the variable electromagnet 11, a transverse magnetic field of about 50 Gauss is generated, which causes the orbital plane of the electron e to change and move 13 fins to a position on the sample ion away from the light emitting point. By oscillating this current value with a triangular wave as shown in Fig. 5 at a constant speed (for example, 0.3 sec), it is possible to uniformly expose the Ueno 4 in a vertical width range of 3 cIn. 〇According to the above method, since there is no optical element between the X-ray emission point and the sea urchin...4, it is possible to obtain highly uniform synchrotron radiation. Second, synchrotron radiation has a gentle continuous spectrum, making it easy to predict the required exposure time, and third, it is possible to always obtain the same amount of soft X-rays with a constant electron current. Therefore, the exposure time can be easily controlled.

上記の実施例では、縦方向集束用4正極電磁石10の直
後に可変電磁石11を設置したが、これは可変な横磁場
成分をもつならばどこに設置してもかまわない。
In the above embodiment, the variable electromagnet 11 was installed immediately after the four positive electrode electromagnets 10 for longitudinal focusing, but it may be installed anywhere as long as it has a variable transverse magnetic field component.

以上詳細に述べたように、この発明は、電子軌道を上下
方向に時間的に走査する可変磁場発生用の可変電磁石を
設けたので、シンクロトロン放射光のもつ優れた特徴を
損なうことなく、これを最大限に生かして一様、かつ、
安定で高スルーブツトの軟X樺リングラフィが可能とな
る。
As described in detail above, the present invention provides a variable electromagnet for generating a variable magnetic field that temporally scans the electron trajectory in the vertical direction. Uniformly, making the most of
Stable, high-throughput soft-X birch phosphorography becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は磁場中の電子がある瞬間に出すシンクロ
トロン放射光の分布を示す模式図、第1図(b)は鉛直
方向の静磁場中を運動してゆく電子が出すシンクロトロ
ン放射光の分布を示す模式図、第2図は電子s積すング
から出る放射”光強度の波長に対する分布を示す特性図
、第3図(a)〜(d)は縦方向(軌道面垂直方向)に
一様な露光を行うために従来提案されている装置の模式
図、第4図はこの発明の一実施例を示すX線発生装置の
模式図、第5図はこの実施例において可変電磁石中に流
す電流の一例を示す波形図である。 図中、1は電子軌道、2はシンクロトロン放射光、3は
マスク、4はウニ/’%、5は平面鏡、6は凸面鏡また
は凹面鏡、1は平面鏡または凹面鏡、8は偏向用2極電
磁石、9は横方向集束用4重便電磁石、10は縦方向集
束用4正極電磁石、11第1図 (a) (b) 第2図
Figure 1 (a) is a schematic diagram showing the distribution of synchrotron radiation emitted by electrons in a magnetic field at a certain moment, and Figure 1 (b) is a synchrotron radiation emitted by electrons moving in a vertical static magnetic field. Figure 2 is a schematic diagram showing the distribution of synchrotron radiation. Figure 2 is a characteristic diagram showing the distribution of the intensity of radiation emitted from the electron multiplication device with respect to wavelength. FIG. 4 is a schematic diagram of an X-ray generator that shows an embodiment of the present invention, and FIG. It is a waveform diagram showing an example of a current flowing through an electromagnet. In the figure, 1 is an electron orbit, 2 is a synchrotron radiation beam, 3 is a mask, 4 is a sea urchin/'%, 5 is a plane mirror, 6 is a convex mirror or a concave mirror, 1 is a plane mirror or a concave mirror, 8 is a dipole electromagnet for deflection, 9 is a quadruple-pole electromagnet for horizontal focusing, 10 is a four-positive electromagnet for vertical focusing, 11 Fig. 1 (a) (b) Fig. 2

Claims (1)

【特許請求の範囲】[Claims] シンクロトロン放射光の軟X線をレジスト膜のパターン
転写に用いるX線発生装置において、前記シンクロトロ
ン放射光を発生する電子軌道を上下方向に時間的に走育
する可変磁場発生用の可変電磁石を設けたことを特徴と
するX線発生装置。
In an X-ray generation device that uses soft X-rays of synchrotron radiation to transfer patterns on a resist film, a variable electromagnet for generating a variable magnetic field is provided that temporally moves the electron trajectory that generates the synchrotron radiation in the vertical direction. An X-ray generator characterized in that:
JP58175517A 1983-09-22 1983-09-22 X-ray generator Granted JPS6068538A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58175517A JPS6068538A (en) 1983-09-22 1983-09-22 X-ray generator
US06/653,588 US4631743A (en) 1983-09-22 1984-09-24 X-ray generating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58175517A JPS6068538A (en) 1983-09-22 1983-09-22 X-ray generator

Publications (2)

Publication Number Publication Date
JPS6068538A true JPS6068538A (en) 1985-04-19
JPH0372172B2 JPH0372172B2 (en) 1991-11-15

Family

ID=15997433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58175517A Granted JPS6068538A (en) 1983-09-22 1983-09-22 X-ray generator

Country Status (1)

Country Link
JP (1) JPS6068538A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220316A (en) * 1985-07-18 1987-01-28 Susumu Nanba Exposing device for semiconductor wafer
US5923719A (en) * 1996-07-19 1999-07-13 Canon Kabushiki Kaisha Exposure apparatus and device manufacturing method using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220316A (en) * 1985-07-18 1987-01-28 Susumu Nanba Exposing device for semiconductor wafer
US5923719A (en) * 1996-07-19 1999-07-13 Canon Kabushiki Kaisha Exposure apparatus and device manufacturing method using the same

Also Published As

Publication number Publication date
JPH0372172B2 (en) 1991-11-15

Similar Documents

Publication Publication Date Title
KR100597037B1 (en) Illumination system for charged-particle lithography apparatus
JP3113820B2 (en) Electron beam lithography system with low brightness
JPH11317353A (en) Electron beam projection device and its operation method
US4631743A (en) X-ray generating apparatus
US6852985B2 (en) Method and apparatus for nanometer-scale focusing and patterning of ultra-low emittance, multi-MeV proton and ion beams from a laser ion diode
EP0035556B1 (en) Electron beam system
JPS6068538A (en) X-ray generator
JPH021999A (en) X-ray laser beam generating method and device thereof
JPS6068539A (en) X-ray generator
US8178280B2 (en) Self-contained proximity effect correction inspiration for advanced lithography (special)
Dyuzhev et al. Microfocus X-Ray Tubes with a Silicon Autoemission Nanocathode as an X-Ray Source
JP2002139758A (en) Device for shortening light wavelength
JP3673431B2 (en) Lithographic projection apparatus
JPH0527080B2 (en)
CN113433804B (en) Extreme ultraviolet lithography method and system
US11556058B2 (en) Proximity effect correction in electron beam lithography
Guo et al. Comparison of plasma source with synchrotron source in the Center for X-ray Lithography
JPS60146500A (en) Synchrotron radiating light generator
JPS6199330A (en) Pattern formation method
JPH04245615A (en) X-ray demagnification exposure method and its equipment
JP3390181B2 (en) Method for generating compound thin film pattern using high-intensity focused ion beam
Piestrup et al. Single-stepper soft x-ray source for step-and-scan tools
JPS6265420A (en) X-ray exposure method
Piestrup et al. A transition radiation source with a grazing angle optic for step and scan lithography
JPH04344500A (en) Device for taking out radiated beam