JPH02125484A - Sorting method for propriety of semiconductor laser - Google Patents

Sorting method for propriety of semiconductor laser

Info

Publication number
JPH02125484A
JPH02125484A JP27869788A JP27869788A JPH02125484A JP H02125484 A JPH02125484 A JP H02125484A JP 27869788 A JP27869788 A JP 27869788A JP 27869788 A JP27869788 A JP 27869788A JP H02125484 A JPH02125484 A JP H02125484A
Authority
JP
Japan
Prior art keywords
temperature
current value
time
approximately
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27869788A
Other languages
Japanese (ja)
Other versions
JPH07105570B2 (en
Inventor
Tomoko Abe
阿部 友子
Masaaki Oshima
大島 正晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63278697A priority Critical patent/JPH07105570B2/en
Publication of JPH02125484A publication Critical patent/JPH02125484A/en
Publication of JPH07105570B2 publication Critical patent/JPH07105570B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To shorten a time required to sort by sorting elements with final optical outputs in a constant-current operation at a second high temperature in the same degree as the first temperature higher than the temperature at the time of actual use. CONSTITUTION:If a first temperature is, for example, 50 deg.C, a second temperature is 70 deg.C, the constant current of a constant-current operation is 150mA, the operating time is 100 hours, and an optical output value P1 is 5mW, when yield is desirably raised even with low reliability, the current at the time of actual use may be reduced to approximately 60mA, or the value P1 may be reduced to approximately 3mW. Even if the time is reduced to approximately 50 hours, its accuracy is slightly reduced. On the contrary, if reliability is desirably raised even if the yield is reduced, the P1 may be raised to approximately 8mW. When the current is set to a value exceeding 200mA, deterioration except initialization deterioration occurs, and even if the time is increased, its efficiency is deteriorated, but no effect is provided. The second temperature is suitably approximately 50 deg.C to approximately 80 deg.C, and no large difference occurs in the reliability and the yield with this range of the temperature.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体レーザの選別方法に係り、特に1μm
μm牛用半導−ザの中から長寿命のものを、効率良く選
別する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for selecting semiconductor lasers, particularly for semiconductor lasers with a diameter of 1 μm.
The present invention relates to a method for efficiently selecting long-life semiconductors from μm cow semiconductors.

従来の技術 従来より1μm帯の半導体レーザの良否選別方法は、一
般にNTT仕様の2ステツプスクリーニング法と呼ばれ
る方法により行われていた。
BACKGROUND OF THE INVENTION Conventionally, a method for selecting the quality of semiconductor lasers in the 1 .mu.m band has generally been carried out by a method called the two-step screening method specified by NTT.

の方法のように、50℃で第1の閾値電流値を測定し友
後、70℃、150mAの定電流動作を1oO時間行い
、し力)る後50℃で第2の閾値電流値を測定し、第2
の閾値電流値の前記第1の閾値電流値に対する変化量が
10%以下のものを良品とする第1ステツプと、70℃
、5mWの定出力動作1100時間行い、通電終了時の
駆動電流値の通電開始時の駆動電流値に対する変化量が
10%以下のものを良品とする第2ステツプとからなる
2段階の選別による半導体レーザの良否選別法が行われ
てい几。
As in the method described above, measure the first threshold current value at 50°C, then perform constant current operation at 70°C and 150 mA for 100 hours, and then measure the second threshold current value at 50°C. And the second
A first step in which a non-defective product is determined if the amount of change in the threshold current value from the first threshold current value is 10% or less;
, 5mW constant output operation for 1100 hours, and the second step is to select non-defective products if the drive current value at the end of energization has a change of 10% or less from the drive current value at the start of energization. Laser pass/fail screening methods are being used.

第3図に、前記の従来の半導体レーザの良否選別法によ
り得られた半導体レーザの信頼性試験の結果を示す。第
3図を得るための測定に用いた素子ハ1.3μm帯のB
CtSIレーザの適当なウェハーから選んだ素子であり
、横軸に第1ステツプでの閾値電流値の変化量を、縦軸
に選別後に行ったso’csmwの定出力動作による信
頼性試験における劣化率、すなわち、駆動電流の変化量
を通電時間で割っ友値を示しである。第3図において、
・印は従来の半導体レーザの良否選別知おいて、第1ス
テツプ、第2ステツプともに合格した良品、Δ印は第1
ステツプに合格し九が、第2ステツプを行うに十分な光
出力が得られなかった不良品である。第3図より、第1
ステツプに合格した素子は10時間、第1ステツプ、第
2ステツプともに合格した素子は105時間の長寿命が
保証されることがわかる。
FIG. 3 shows the results of a reliability test of a semiconductor laser obtained by the conventional semiconductor laser screening method. Element used for measurement to obtain Figure 3
The elements were selected from a suitable wafer of a CtSI laser, and the horizontal axis shows the amount of change in threshold current value in the first step, and the vertical axis shows the deterioration rate in the reliability test by constant output operation of so'csmw conducted after selection. , that is, the amount of change in the drive current is divided by the energization time. In Figure 3,
・The mark indicates a good product that passed both the first and second steps in accordance with conventional semiconductor laser screening, and the Δ mark indicates a product that passed the first step.
The 9 products that passed the step were defective products that did not have enough light output to perform the second step. From Figure 3, the first
It can be seen that an element that passed the step is guaranteed a long life of 10 hours, and an element that passed both the first and second steps is guaranteed a long life of 105 hours.

発明が解決しようとする課題 しかし、従来の半導体レーザ良否選別法では、第1ステ
ップ100時間程度と、それと同じ程度の時間を要する
第2ステツプとからなるため、長時間を要し、効率の良
い選別が行われないという課題があった。
Problems to be Solved by the Invention However, the conventional semiconductor laser pass/fail screening method consists of a first step that takes about 100 hours and a second step that takes about the same amount of time. There was a problem with the lack of selection.

本発明は、以上のような効率の良い選別に鑑み、第1の
目的は、定電流動作の最終の光出力による選別で歩留り
、信頼性を損うことなく選別に要する時間を短縮するこ
とであり、第2の目的は、所定の光出力での駆動電流に
よる選別で、歩留り、信頼性を損うことなく選別に要す
る時間を短縮することである。
In view of efficient sorting as described above, the first purpose of the present invention is to shorten the time required for sorting without impairing the yield or reliability by sorting using the final optical output of constant current operation. The second objective is to shorten the time required for sorting without impairing yield or reliability by sorting by driving current at a predetermined optical output.

課題を解決するための手段 上記目的を達成するため、本発明の技術的解決手段は、
第1に、実用温度より高い第1の温度で第1の閾値電流
値を測定した後、第1の温度と同程度より高い第2の温
度の雰囲気温度において、たとえば100時間程度、実
使用時の駆動電流よシ大なる電流を通電し、しかる後前
記第1の温度で第2の閾値電流値を測定し、第2の閾値
電流値の前記第1の閾値電流値に対する変化量から選別
し、さらに、前記第2の温度での通電の最終の光出力に
より選別するものである。また第2には、実使用時の温
度よシ高い第1の温度において、第1の閾値電流値を測
定した後、第1の温度と同程度より高い第2の温度の雰
囲気温度において、100時間程度実使用時の駆動電流
よシ大なる電流を通電し、しかる後前記第1の温度で第
2の閾値電流値を測定し、第2の閾値電流値の前記第1
の閾値電流値に対する変化量から選別し、さらに、前記
第2の温度で所定の光出力で駆動させ、その駆動電流値
により選別するものである。
Means for Solving the Problems In order to achieve the above object, the technical solution of the present invention is as follows:
First, after measuring the first threshold current value at a first temperature higher than the practical temperature, the first threshold current value is measured at a second ambient temperature which is higher than the first temperature, for example, for about 100 hours during actual use. A current larger than the drive current is applied, and then a second threshold current value is measured at the first temperature, and the second threshold current value is selected based on the amount of change in the second threshold current value with respect to the first threshold current value. Further, the selection is made based on the final optical output when energized at the second temperature. Second, after measuring the first threshold current value at a first temperature higher than the temperature during actual use, the first threshold current value is measured at a second ambient temperature that is higher than the first temperature. A current larger than the driving current during actual use is applied for about a period of time, and then a second threshold current value is measured at the first temperature, and the second threshold current value of the first
The selection is made based on the amount of change with respect to the threshold current value of , and further, it is driven at the second temperature with a predetermined optical output, and the selection is made based on the drive current value.

作用 本発明は第1に、実使用時の温度より高い第1の温度と
同程度よシ高い第2の温間での定電流動作における最終
の光出力で素子を選別すること(Cより、光出力が不足
することにより、過剰な駆動電流ヲ要する究め第2の温
度での定出力動作において駆動電流が増加したり、定出
力動作を行うことが不可能な素子を取り除くものであり
、十分な光出力のある素子では、駆動電流の大幅な増大
はない。従って、定電流動作と同程度の時間を要する定
出力動作を必要としない。また、第2に、実使用時の温
度より高い第1の温度と同程度より高い第2の温度で定
電流動作を行った後、第2の温度で所定の光出力で動作
させその駆動電流で素子を選別することにより、過剰な
駆動電流が印加され、駆動電流が増加したシ、所定の光
出力を、駆動電流を増加しても得られない素子tyり除
くものであり、駆動電流が低い場合には、駆動電流の大
幅な増大はない。従って定電流動作と同程度の時間を要
する定出力動作を必要としない。
Function The present invention firstly selects elements based on their final optical output in constant current operation at a second warm temperature that is as high as the first temperature that is higher than the temperature in actual use (from C, This is to remove elements that require excessive drive current due to insufficient optical output, and which increase the drive current in constant output operation at the second temperature or which are unable to perform constant output operation. For devices with a light output of After performing constant current operation at a second temperature that is higher than the first temperature, the device is operated at a predetermined optical output at the second temperature and the elements are selected using the drive current, thereby eliminating excessive drive current. When the drive current is applied and the drive current is increased, the device eliminates elements that cannot achieve a predetermined optical output even if the drive current is increased, and when the drive current is low, there is no significant increase in the drive current. Therefore, constant output operation, which takes about the same amount of time as constant current operation, is not required.

実施例 以下、第1図を参照しながら、本発明の第1の実施例に
ついて説明する。横軸は、実使用時より高い第1の温度
と同程度より高い第2の温度での定電流動作の最終の光
出力であり、縦軸は、従来の半導体レーザの良否選別法
の光出力P(1)での定出力動作での駆動電流の増加率
である。第1図において、・印は従来の半導体レーザ良
否選別法の第1ステツプとP(1)の光出力の第2ステ
ツプに合格した素子、0印は、第1ステツプで不合格と
なったが、第2ステツプの条件は満足する素子、Δ印は
第2ステップ1100時間行う途中で、駆動電流が規定
値を超え、通電中止となり、不合格となった素子である
。第1図に、光出力が1.1XP(1)のラインを示し
た。1.I X P (1)の左の領域に、Δ印はあり
、・印はほとんど右の領域にあることから、第2の温度
におけるP(1)の定出力動作による選別を、定電流動
作の最終の光出力値が1.1×P(1)より大きいか小
さいかによる選別に代えて、定出力動作を省略しても、
歩留り、信頼性を損わないことがわかる。この実施例に
おいて、第1の温度は50℃、第2の温度は70℃、定
電流動作の定電流は150m人、動作時間は100時間
EXAMPLE A first example of the present invention will be described below with reference to FIG. The horizontal axis is the final optical output of constant current operation at the first temperature, which is higher than in actual use, and the second temperature, which is about the same or higher, and the vertical axis is the optical output of the conventional pass/fail screening method for semiconductor lasers. This is the rate of increase in drive current in constant output operation at P(1). In Fig. 1, the . mark indicates an element that passed the first step of the conventional semiconductor laser pass/fail selection method and the second step of the optical output of P(1), and the 0 mark indicates an element that failed the first step. , an element that satisfies the conditions of the second step, and a mark Δ represents an element that failed because the drive current exceeded the specified value during the second step for 1100 hours, and the current supply was stopped. FIG. 1 shows a line with an optical output of 1.1XP (1). 1. Since the Δ mark is in the left region of I Even if the constant output operation is omitted instead of sorting based on whether the final optical output value is larger or smaller than 1.1×P(1),
It can be seen that yield and reliability are not impaired. In this example, the first temperature is 50°C, the second temperature is 70°C, the constant current of constant current operation is 150m, and the operating time is 100 hours.

光出力6tLP<1’)はs mWの場合を示したが、
多少、信頼性が低くとも歩留りを上げたい場合には、定
電流を実使用時の動作電流60m人程変位まで下げたシ
、光出力値P (1)t−3mW程度まで下げても構わ
ない。また、動作時間を60時間程度にしても多少、精
度が低くなる程度である。逆に、歩留りを下げても信頼
性を上げたい場合はp(1)2amw程度まで上げれば
良い。定電流を200mAを超える値に設定すると、初
期劣化以外の劣化が生じたり、動作時間を増しても効率
が悪くなるだけで、効果はない。第2の温度は、50’
C,位から80℃位が適当で、信頼性9歩留りにはこの
範囲内であれば、大きな差異はない。選別基準のP(1
)の係数1.1の値については、P(1)での定出力動
作による従来例と同等であるためには、この値から数多
程度位のずれまでである方がよいことは、第1図より明
らかである。
The optical output (6tLP<1') is shown in the case of s mW, but
If you want to increase the yield even if the reliability is somewhat low, you can lower the constant current to the operating current of 60 m during actual use, or lower the optical output value P (1) to about t-3 mW. . Further, even if the operating time is set to about 60 hours, the accuracy will be reduced to some extent. On the other hand, if you want to increase reliability even if you lower the yield, you can increase it to about p(1)2amw. If the constant current is set to a value exceeding 200 mA, deterioration other than initial deterioration may occur, and even if the operating time is increased, the efficiency will only deteriorate and there will be no effect. The second temperature is 50'
C. to about 80.degree. C. is appropriate, and there is no big difference in reliability9 yield as long as it is within this range. Selection criteria P(1
), in order to be equivalent to the conventional example with constant output operation at P(1), it is better to deviate from this value by several orders of magnitude. This is clear from Figure 1.

以下、第2図を参照しながら、本発明の第2の実施例に
ついて説明する。横軸は、実使用時より高い第1の温度
と同程度より高い第2の温度での工(1)の定電流動作
の後の所定の光出力を得る時の駆動電流値である。縦軸
、・印、0印、Δ印については第1図と同様である。第
2図に、動作電流が0.93 X I (1)(7)ラ
イフに示した。0.93 X I (1)の右の領域に
△印はあり、・印はほとんど左の領域にあることから、
第2の温度における定出力勧′1′。
A second embodiment of the present invention will be described below with reference to FIG. The horizontal axis is the drive current value when obtaining a predetermined optical output after the constant current operation of step (1) at a first temperature higher than in actual use and a second temperature that is about the same or higher. The vertical axis, the * mark, the 0 mark, and the Δ mark are the same as in FIG. In FIG. 2, the operating current is shown at 0.93 X I (1) (7) life. 0.93
Constant power recommendation '1' at the second temperature.

作による選別を、所定の光出力を得る時の駆動電流値が
0.93 X I (1)より大きいか小さいかによる
選別に代えて、定出力動作を省略しても、歩留り、信頼
性を損わないことがわかる。この実施例において、第1
の温度は60℃、第2の温度は70”C定電流動作の定
電流I(1)は150m人、動作時間は100時間、所
定の光出力はsmWである。これらの値の範囲について
は第1の実施例についての場合と同様である。選別基準
のI(1)の係数0.93の値については、所定の光出
力の定出力動作による従来例と同程度であるためには、
この値から数−程度位のずれまでである方がよいことは
第2図より明らかである。
Even if the constant output operation is omitted, the yield and reliability can be improved by replacing the selection based on operation with the selection based on whether the drive current value when obtaining a predetermined optical output is larger or smaller than 0.93 x I (1). I know it won't hurt. In this example, the first
temperature is 60°C, second temperature is 70”C, constant current I(1) for constant current operation is 150 m, operating time is 100 hours, and the prescribed light output is smW. For the range of these values: This is the same as in the case of the first embodiment.The value of the coefficient 0.93 of I(1), which is the selection criterion, is about the same as that of the conventional example based on constant output operation with a predetermined optical output.
It is clear from FIG. 2 that it is better to have a deviation of several degrees from this value.

発明の効果 以上のように本発明の効果としては、定電流動作と同程
度の時間を要する定出力動作を行わず、歩留シ、信頼性
を損うことなく、効率の良い半導体レーザの選別を行う
ことができる。
Effects of the Invention As described above, the effects of the present invention are that it is possible to efficiently select semiconductor lasers without performing constant output operation, which requires the same amount of time as constant current operation, and without compromising yield or reliability. It can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例における光出力と動作底
流の増加率の相関図、第2図は本発明の第2の実施例に
おける動作電流と動作電流の増加率の相関図、第3図は
従来の半導体レーザ選別法における信頼性を示す相関図
である。 代理人の氏名 弁理士 粟 野 重 孝 ほか1名第 図 尤:J!Iオ(P) 第 図 動4丁電よ(工2
FIG. 1 is a correlation diagram between the optical output and the rate of increase in the operating undercurrent in the first embodiment of the present invention, and FIG. 2 is a correlation diagram between the operating current and the rate of increase in the operating current in the second embodiment of the present invention. FIG. 3 is a correlation diagram showing reliability in the conventional semiconductor laser sorting method. Name of agent: Patent attorney Shigetaka Awano and 1 other person: J! Io (P) No. 4 den (engineering 2)

Claims (2)

【特許請求の範囲】[Claims] (1)半導体レーザを、実使用時の温度より高い第1の
温度において第1の閾値電流値を測定した後、前記第1
の温度と同程度より高い第2の温度の雰囲気温度におい
て、所定時間実使用時の駆動電流より大なる電流を通電
し、しかる後前記第1の温度で第2の閾値電流値を測定
し、前記第2の閾値電流値の前記第1の閾値電流値に対
する変化量から前記レーザを選別し、さらに、前記第2
の温度での通電の最終の光出力により前記レーザを選別
することを特徴とする半導体レーザ良否選別法。
(1) After measuring the first threshold current value of the semiconductor laser at a first temperature higher than the temperature during actual use,
A current larger than the drive current during actual use is applied for a predetermined period of time at a second ambient temperature that is higher than the temperature of , and then a second threshold current value is measured at the first temperature; The laser is selected based on the amount of change of the second threshold current value with respect to the first threshold current value, and
A semiconductor laser quality selection method, characterized in that the laser is selected based on the final optical output when energized at a temperature of .
(2)半導体レーザを、実使用時の温度より高い第1の
温度において第1の閾値電流値を測定した後、前記第1
の温度と同程度より高い第2の温度の雰囲気温度におい
て、所定時間実使用時の駆動電流より大なる電流を通電
し、しかる後前記第1の温度で第2の閾値電流値を測定
し、第2の閾値電流値の前記第1の閾値電流値に対する
変化量から前記レーザを選別し、さらに、前記第2の温
度で所定の光出力で駆動させ、その駆動電流値により前
記レーザを選別することを特徴とする半導体レーザ良否
選別法。
(2) After measuring the first threshold current value of the semiconductor laser at a first temperature higher than the temperature during actual use,
A current larger than the drive current during actual use is applied for a predetermined period of time at a second ambient temperature that is higher than the temperature of , and then a second threshold current value is measured at the first temperature; The lasers are selected based on the amount of change in the second threshold current value with respect to the first threshold current value, and further, the lasers are driven at the second temperature with a predetermined optical output, and the lasers are selected based on the driving current value. A semiconductor laser quality selection method characterized by the following.
JP63278697A 1988-11-04 1988-11-04 Semiconductor laser pass / fail selection method Expired - Lifetime JPH07105570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63278697A JPH07105570B2 (en) 1988-11-04 1988-11-04 Semiconductor laser pass / fail selection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63278697A JPH07105570B2 (en) 1988-11-04 1988-11-04 Semiconductor laser pass / fail selection method

Publications (2)

Publication Number Publication Date
JPH02125484A true JPH02125484A (en) 1990-05-14
JPH07105570B2 JPH07105570B2 (en) 1995-11-13

Family

ID=17600923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63278697A Expired - Lifetime JPH07105570B2 (en) 1988-11-04 1988-11-04 Semiconductor laser pass / fail selection method

Country Status (1)

Country Link
JP (1) JPH07105570B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002043671A (en) * 2000-07-19 2002-02-08 Mitsubishi Electric Corp Method of selecting laser diode
JP2006245287A (en) * 2005-03-03 2006-09-14 Denso Corp Inspection method of possibility of degradation failure occurrence in on-vehicle laser diode
US8998296B2 (en) 2009-12-10 2015-04-07 Daimler Ag Method for producing a body shell of a motor vehicle and body shell for a motor vehicle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198793A (en) * 1984-03-22 1985-10-08 Fujitsu Ltd Screening out method for semiconductor laser device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198793A (en) * 1984-03-22 1985-10-08 Fujitsu Ltd Screening out method for semiconductor laser device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002043671A (en) * 2000-07-19 2002-02-08 Mitsubishi Electric Corp Method of selecting laser diode
JP2006245287A (en) * 2005-03-03 2006-09-14 Denso Corp Inspection method of possibility of degradation failure occurrence in on-vehicle laser diode
US8998296B2 (en) 2009-12-10 2015-04-07 Daimler Ag Method for producing a body shell of a motor vehicle and body shell for a motor vehicle

Also Published As

Publication number Publication date
JPH07105570B2 (en) 1995-11-13

Similar Documents

Publication Publication Date Title
CN103875311B (en) Illuminator
CN102204811A (en) Fluorescence image acquisition method, fluorescence image acquisition program, and fluorescence image acquisition apparatus
JPH02125484A (en) Sorting method for propriety of semiconductor laser
JP3210505B2 (en) Screening method for semiconductor laser diode
US20060121633A1 (en) Semiconductor laser device manufacturing method and semiconductor laser device
JP4677922B2 (en) Inspection method of semiconductor laser element
US6936483B2 (en) On-wafer burn-in of semiconductor devices using thermal rollover
JPH05315705A (en) Semiconductor laser apparatus
CN115189219A (en) Method for obtaining optimal aging condition of edge-emitting laser chip and method for screening chip by adopting condition
JP2000077793A (en) Screening method of semiconductor laser device
JP3730447B2 (en) Burn-in apparatus and burn-in control method
JPH01318274A (en) Method of screening highly reliable semiconductor laser
JPH07318608A (en) Method for inspection of transistor
JP4190872B2 (en) Test method and apparatus for semiconductor laser device
JP2001267678A (en) Multi-beam laser test apparatus
Osinski et al. Life testing and failure analysis of GaN/AlGaN/InGaN light-emitting diodes
JPH0125428B2 (en)
JPH0152912B2 (en)
JPH11233872A (en) Discrimination of semiconductor laser
Lindberg Characterization of gallium nitride (GaN) blue LEDs
JPS60144986A (en) Screening method of semiconductor laser module
Frolov et al. Measurement of the internal quantum efficiency of emission in the local region of the LED chip
RU2601537C1 (en) Method for assessing quality of heterostructure of semiconductor laser
JPH01276078A (en) Electric conduction testing device for semiconductor light emitting element
FROLOV et al. ST. PETERSBURG STATE POLYTECHNICAL UNIVERSITY JOURNAL. PHYSICS AND MATHEMATICS