JPH02124480A - Apparatus for spotting faulty section of underground transmission line - Google Patents

Apparatus for spotting faulty section of underground transmission line

Info

Publication number
JPH02124480A
JPH02124480A JP27776988A JP27776988A JPH02124480A JP H02124480 A JPH02124480 A JP H02124480A JP 27776988 A JP27776988 A JP 27776988A JP 27776988 A JP27776988 A JP 27776988A JP H02124480 A JPH02124480 A JP H02124480A
Authority
JP
Japan
Prior art keywords
current
data processing
transmission line
signal
power transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27776988A
Other languages
Japanese (ja)
Other versions
JPH0810242B2 (en
Inventor
Makoto Hara
原 信
Hideo Sato
英男 佐藤
Masahiko Uchida
内田 昌彦
Hirosuke Saito
斉藤 宏資
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP63277769A priority Critical patent/JPH0810242B2/en
Publication of JPH02124480A publication Critical patent/JPH02124480A/en
Publication of JPH0810242B2 publication Critical patent/JPH0810242B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Abstract

PURPOSE:To secure synchronism between both intermediate stations and to improve judging accuracy by dividing a transmission line into a plurality of regions, and supplying a grounding current signal from a current detector which is provided at the boundary of each region to both intermediate stations in both neighboring regions. CONSTITUTION:Current transformers 200 and 300 are provided for a power cable line 100. The attaching position is, e.g. a cross bonding line 310 at the IJB of a single core cable. When the current transformer 300 located at the boundary between sections A and B detects a grounding current, a voltage signal is generated across both ends of a detecting resistor RD. Then LEDs PD1 and PD2 are driven, and the light beams at the same level and in the same phase are emitted. The light signals are received with intermediate stations A and B 500 through optical fiber cables 330, and optoelectronic transducing operation is performed. When the signal transmitted from the current transformer 200 is stored in a memory recorder with said signal as a trigger, the stored data have synchronism between the station A 500 and the station B 500. When the data having the synchronism are processed, highly reliable spotting can be performed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は地中送電線路の故障区間標定システムに関し、
特に、地絡?を流の絶対値(以下、「レベル」という)
と位相に基づいて地絡点を標定する地中送電線路の故障
区間標定システムに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a fault section locating system for underground power transmission lines.
Especially the ground fault? is the absolute value of the flow (hereinafter referred to as "level")
This paper relates to a fault section locating system for underground power transmission lines that locates ground fault points based on phase and phase.

〔背景技術〕[Background technology]

地中送電線路の地絡区間を標定するシステムとして、地
絡時のシース回路電流を線路長手方向に適当な間隔で設
けた電流検出装置で検出し、その電流の絶対値ならびに
位相の分布から地絡区間を特定するシステムが提案され
ている。即ち、ケーブルの絶縁破壊によって導体とシー
スが短絡した場合に、シースに流れる電流のレベルおよ
び位相が地絡点を境にして大きく変化することを利用し
て故障区間の標定を行うものであり、その原理を第4図
(a)、(ロ)により説明する。これらの図において、
導体42が絶縁体42aによって絶縁されてシース43
に挿入されることにより地中送電線路41を形成してい
る。第4図(a)においては、この導体42の両端が電
源44に接続されており、同図(ロ)において導体42
の右端側が電源44に接続され、左端側が負荷45に接
続されている。
As a system for locating ground fault sections of underground power transmission lines, the sheath circuit current at the time of a ground fault is detected by current detection devices installed at appropriate intervals in the longitudinal direction of the line, and the absolute value and phase distribution of the current are used to locate the ground fault section. A system has been proposed to identify the contact area. In other words, when the conductor and sheath are short-circuited due to dielectric breakdown of the cable, the fault area is located by utilizing the fact that the level and phase of the current flowing through the sheath changes significantly from the ground fault point. The principle will be explained with reference to FIGS. 4(a) and (b). In these figures,
The conductor 42 is insulated by the insulator 42a and the sheath 43
By being inserted into the underground power transmission line 41, an underground power transmission line 41 is formed. In FIG. 4(a), both ends of the conductor 42 are connected to a power source 44, and in FIG.
The right end side is connected to the power supply 44, and the left end side is connected to the load 45.

正常な状態では電源44からの送電により電流は導体4
2内を矢印47方向に流れている。このようなケーブル
41に地絡が生じると、地絡点46を境にしてその両側
では導体電流47が反転してシース43内を流れるシー
ス電流4日が生じる(同図(a))。すなわち、地絡点
4Gの左右ではシース43内を流れるシース電流の位相
に約180@のずれを生じる。一方、同図(b)では地
絡点46で導体42内の導体電流47の大部分がシース
電流48.48Aとなって流れる。この場合、地絡点4
6よりも負荷45側のシース43を流れるシース電流4
8Aが少なくなる。このため、地絡点46を中心として
電源44側のシース電流48のレベルに比べて負荷45
側のシース電流48Aのレベルが小さくなり、電流値が
急変する。
Under normal conditions, current flows through the conductor 4 due to power transmission from the power source 44.
2 in the direction of arrow 47. When such a ground fault occurs in the cable 41, the conductor current 47 is reversed on both sides of the ground fault point 46, and a sheath current flows through the sheath 43 (FIG. 4(a)). That is, a phase shift of about 180 @ occurs in the phase of the sheath current flowing in the sheath 43 on the left and right sides of the ground fault point 4G. On the other hand, in FIG. 4B, most of the conductor current 47 in the conductor 42 flows as a sheath current of 48.48 A at the ground fault point 46. In this case, ground fault point 4
6, the sheath current 4 flowing through the sheath 43 on the load 45 side
8A decreases. For this reason, the load 45
The level of the side sheath current 48A decreases, and the current value changes suddenly.

このようなシース電流の位相の反転およびその電流値の
急変は地中送電線路の給電条件などによっていずれか一
方、または双方が併合して起こる。従って、所定部位の
シー入電流のレベル、位相を測定し、その測定値を他の
部位のシース電流のレベル、位相と比較することにより
地絡点の標定か可能となる。このシステムでは、区間判
定は電流測定個所単位で行うことになり、そのため線路
全長に亘って適当な間隔で電流検出装置が設けられる。
Such a phase reversal of the sheath current and a sudden change in its current value may occur either or both may occur depending on the power supply conditions of the underground power transmission line. Therefore, by measuring the level and phase of the sheath current at a predetermined location and comparing the measured values with the level and phase of the sheath current at other locations, it is possible to locate the ground fault point. In this system, section determination is performed for each current measurement point, so current detection devices are provided at appropriate intervals over the entire length of the line.

それによって地絡時の電流を複数の個所で同一のタイミ
ングで測定し、それらを順次比較する。電流測定個所は
通常、クロスボンド線を有するIJB等の部分であり、
計器用変流器によって検出される。検出電流は光信号に
変換され、光ファイバによって処理局に伝送され、各部
位の電流の波形再生とともに故障区間の判定処理がなさ
れる。光信号による伝送は外部からの誘導障害の影響を
回避することができる。
This allows the current during a ground fault to be measured at multiple locations at the same timing, and then compared in sequence. The current measurement point is usually a part such as an IJB that has a cross bond wire,
Detected by an instrument current transformer. The detected current is converted into an optical signal and transmitted to a processing station via an optical fiber, where the waveform of the current at each location is regenerated and a fault section is determined. Transmission using optical signals can avoid the influence of external induced disturbances.

C発明が解決しようとする課題〕 前述したように、故障区間の判定は隣接する各部位にお
ける地絡電流のレベルならびに位相の相対比較を順次行
い、変化の大きいところを見いだすようにしているため
、データ取込みの同時性が要求される。これは、特に、
位相比較の場合に重要になる。複数部位のデータは多チ
ャンネルからなるメモリレコーダ等に取り込まれるが、
そのタイミングは該当チャンネルのうちいずれか1つの
信号をトリガーとし同時に取り込まれるのが製膜的であ
る。従って、線路全長の情報を1個所に集めて処理でき
れば問題はないが、実用上は次の問題がある。
[Problems to be solved by the invention C] As mentioned above, the failure section is determined by sequentially comparing the levels and phases of the ground fault current in adjacent parts to find areas where there is a large change. Concurrency of data acquisition is required. This is especially true for
This becomes important in the case of phase comparison. Data from multiple parts is captured into a multi-channel memory recorder, etc.
In terms of film production, the timing is such that the signal from any one of the corresponding channels is used as a trigger and the signals are captured at the same time. Therefore, there would be no problem if information on the total length of the line could be collected and processed in one place, but in practice there are the following problems.

(1)情報が膨大となることから、それに対応したコン
ピュータが必要となり、かつ、処理時間が長く必要であ
る。
(1) Since the amount of information is enormous, a computer that can handle it is required, and processing time is also required.

(2)地絡情報は光フアイバケーブルで伝送きれるため
、伝送距離の制約を受ける。換言すれば、許容伝送距離
を越える長さの線路には適用できない。
(2) Since ground fault information can be transmitted using optical fiber cables, it is subject to transmission distance limitations. In other words, it cannot be applied to lines whose length exceeds the permissible transmission distance.

これらの問題は線路を長さ方向に複数の領域に分割し、
各領域毎にデータを処理する処理局(以下、「中間局」
という)を設けることで解決できる。しかしながら、複
数の中間局の間で各メモリーレコーダに前述した同時性
を持たせることが非常に難しくなり、中間局毎にトリガ
ーのタイミングが異なってしまう恐れがある。地絡電流
のレベル、位相とも相対的な比較であるから中間局単位
では判定には支障はないが、必然的に中間局と中間局の
境界では位相が大きくかわってしまう恐れがあり、誤判
定の要因になるという問題がある。
These problems divide the track lengthwise into multiple regions,
A processing station that processes data for each area (hereinafter referred to as an “intermediate station”)
This can be solved by providing a However, it becomes very difficult to provide the above-mentioned simultaneity to each memory recorder among a plurality of intermediate stations, and there is a possibility that the trigger timing may differ for each intermediate station. Since both the level and phase of the ground fault current are relative comparisons, there is no problem with judgment at each intermediate station, but inevitably there is a risk that the phase will change significantly at the boundary between intermediate stations, resulting in incorrect judgment. There is a problem that this can be a factor.

従って、本発明の目的は複数の中間局間の同時性を確保
することができ、それによって判定の信転性および精度
を向上させる地中送電線路の故障区間標定システムを提
供することである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a fault section locating system for underground power transmission lines that can ensure simultaneity between a plurality of intermediate stations, thereby improving reliability and accuracy of determination.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記の目的を実現するため、地中送電線路を複
数の故障区間判定領域に分割し、各領域の境界に設置さ
れる電流検出装置の地絡電流信号をその境界の隣接する
両頭域に対応する両中間局に供給する地中送電線路の故
障区間標定システムを提供する。
In order to achieve the above object, the present invention divides an underground power transmission line into a plurality of fault section determination areas, and detects the ground fault current signal of a current detection device installed at the boundary of each area. We provide a fault section locating system for underground power transmission lines that supply both intermediate stations.

本発明の地中送電線路の故障区間標定システムにおいて
は、地中送電線路が長さ方向において複数の故障区間判
定領域に分割され、各領域に対応して中間局が設けられ
ている。
In the underground power transmission line faulty section locating system of the present invention, the underground power transmission line is divided into a plurality of faulty section determination regions in the length direction, and an intermediate station is provided corresponding to each region.

各領域には、適当な間隔で電流検出装置が設けられる。Current detection devices are provided in each region at appropriate intervals.

電流検出装置が検出する地絡電流は、必要に応じて整流
され、然る後光信号に変換される。この光信号は光フア
イバーケーブルを介してその領域に対応する中間局へ伝
送される。ここで、各領域の境界に設置される電流検出
装置の地絡電流信号はその境界に隣接する両頭域に対応
する両中間局に同時に、かつ、レベルおよび位相を変化
させることなく供給される。従って、その境界の地絡電
流信号をトリガーとすれば、伝送されてくるデータは複
数の中間局の間で同時性を有した状態でメモリーレコー
ダに格納される。この場合、各領域の境界で検出された
地絡電流信号に基づいて、例えば、特性が等しく、直列
に配置された2個の電気/光変換素子を駆動する。この
駆動によって各電気/光変換素子はレベルおよび位相が
等しい光信号を出射する。
The ground fault current detected by the current detection device is rectified as necessary and converted into a corresponding halo signal. This optical signal is transmitted via an optical fiber cable to an intermediate station corresponding to that area. Here, the ground fault current signal of the current detection device installed at the boundary of each area is supplied to both intermediate stations corresponding to the double-headed areas adjacent to the boundary simultaneously and without changing the level and phase. Therefore, if the ground fault current signal at the boundary is used as a trigger, the transmitted data will be stored in the memory recorder in a state with simultaneity among the plurality of intermediate stations. In this case, based on the ground fault current signal detected at the boundary of each region, for example, two electrical/optical conversion elements having the same characteristics and arranged in series are driven. By this driving, each electric/optical conversion element emits optical signals having the same level and phase.

この光信号が、望ましくは、伝送線の長さが等しくされ
た2本の光フアイバーケーブルを介して前述した両中間
局へ伝送される。この光信号が両中間局において、同時
性を与えるトリガー信号として利用される。当然、デー
タとしての処理も受けることになる。尚、本発明では、
親局は必ずしも必要ではなく、中間局の1つが親局とし
て機能しても良い。
This optical signal is desirably transmitted to both intermediate stations via two optical fiber cables with equal transmission line lengths. This optical signal is used at both intermediate stations as a trigger signal to provide simultaneity. Naturally, it will also be processed as data. In addition, in the present invention,
A master station is not necessarily required, and one of the intermediate stations may function as the master station.

〔実施例〕〔Example〕

以下、本発明の地中送電線路の故障区間標定システムを
詳細に説明する。
Hereinafter, the underground power transmission line fault section locating system of the present invention will be explained in detail.

第1図は本発明の第1の実施例を示し、電カケープル線
路100の長手方向にシース回+Y&電流を測定するた
めの変流器200.300が適当な間隔で設けられてい
る。変流器200.300の取付位置は、例えば、単心
ケーブルのIJBにおけるクロスボンド線であり、その
場合には、3相分−括合成されていることが望ましい。
FIG. 1 shows a first embodiment of the present invention, in which current transformers 200 and 300 are provided at appropriate intervals in the longitudinal direction of a power cable line 100 for measuring the sheath times +Y & current. The current transformers 200 and 300 are installed at, for example, a cross-bond wire in an IJB of a single-core cable, and in that case, it is desirable that three-phase components are combined together.

変流器200.300の出力は夫々電気/光変換器40
0で各々の中間局500に送られる。中間局500は変
流器200.300の電流情報を集め、それをもとに故
障区間を判定する。電カケープル線路100は区間A、
B、Cに分割されており、それに対応して中間局A、B
、C500が設けられている。ここで、区間A、B、C
の境界にある変流器300は隣接する中間局500のた
めに、地絡電流を検出する。
The outputs of the current transformers 200 and 300 are respectively electrical/optical converters 40
0 to each intermediate station 500. The intermediate station 500 collects current information of the current transformers 200 and 300, and determines a faulty section based on it. The electric cable line 100 is section A,
It is divided into intermediate stations A and B, and corresponding intermediate stations A and B.
, C500 are provided. Here, sections A, B, C
The current transformer 300 at the boundary detects the ground fault current for the adjacent intermediate station 500.

例えば、区間ASBの境界の変流器300は中間局A 
500と中間局B500のために区間B1Cの境界の変
!23300は中間局B500と中間局C500のため
に地絡電流を検出する。中間局A、B、C500は親局
600に接続されている。
For example, the current transformer 300 at the boundary of section ASB is
500 and the change in the boundary of section B1C for intermediate station B500! 23300 detects ground fault current for intermediate station B500 and intermediate station C500. Intermediate stations A, B, and C500 are connected to a master station 600.

第2図は境界の変流器300に接続される電気/光変換
器400の部分の回路図である。回路構成を説明すると
、ボンド線310等に流れる電流を検出する変流2′f
r300と、その電流を光信号に変換する回路400と
から構成される。
FIG. 2 is a circuit diagram of the portion of electrical/optical converter 400 connected to boundary current transformer 300. To explain the circuit configuration, a current transformer 2'f that detects the current flowing through the bond wire 310 etc.
r300 and a circuit 400 that converts the current into an optical signal.

電気/光変換部400は検出抵抗Rn、整流用抵抗R1
,R2、整流用ダイオードD、〜D1、発光ダイオード
PD、、PD、および発光ダイオードPD、 、po、
に直列に挿入された抵抗R1から構成される0発光ダイ
オードP DI −P Dzは電気信号を光信号に変換
するものであり、電気信号のレベルに見合った強度の光
を検出する。図に示すように、2つの発光ダイオードP
D+ 、 F)I)、を直列に接続することにより、同
一電流に対してレベルおよび位相の等しい2つの光出力
を得ることができる。この光出力を夫々光フアイバーケ
ーブル330で隣接する2個所の中間局A、B500に
送る。
The electrical/optical converter 400 includes a detection resistor Rn and a rectifying resistor R1.
, R2, rectifier diode D, ~D1, light emitting diode PD, , PD, and light emitting diode PD, , po,
The light emitting diode P DI -P Dz, which is composed of a resistor R1 inserted in series with the diodes P DI -P Dz, converts an electrical signal into an optical signal, and detects light with an intensity commensurate with the level of the electrical signal. As shown in the figure, two light emitting diodes P
By connecting D+, F) and I) in series, two optical outputs with the same level and phase can be obtained for the same current. This optical output is sent to two adjacent intermediate stations A and B 500 via optical fiber cables 330, respectively.

従って、区間A、Bの境界に位置する変流器300が地
絡電流を検出すると、検出抵抗Roの両端に電圧信号と
して表れる。この電圧信号が抵抗R,SR,およびダイ
オードD1〜D4より成る整流回路で整流される。
Therefore, when the current transformer 300 located at the boundary between sections A and B detects a ground fault current, it appears as a voltage signal across the detection resistor Ro. This voltage signal is rectified by a rectifier circuit consisting of resistors R, SR, and diodes D1 to D4.

このようにして整流された電圧が発光ダイオードPD、
 、PD、および抵抗R3の直列回路に加えられる。こ
れによって発光ダイオードPD、、potが駆動され、
同一の駆動電流に基づいて発光する。説明するまでもな
く、発光ダイオードPD、 、PD、は同一レベル(強
度)、同一位相の光を放出する。この光信号は光フアイ
バーケーブル330を介して伝送され、中間局A、B5
00で受光され、そこで光電変換さる。このため、この
信号をトリガーとして変流器200から伝送されてくる
信号をメモリーレコーダに格納すると、格納されたデー
タは中間局A、B500の間で同時性を有することにな
る。従って、同時性を有するデータを処理することによ
って信頼性の高い故障点の標定が得られる。
The voltage rectified in this way is applied to the light emitting diode PD,
, PD, and resistor R3. This drives the light emitting diodes PD,,pot,
They emit light based on the same drive current. Needless to say, the light emitting diodes PD, , PD, emit light of the same level (intensity) and the same phase. This optical signal is transmitted via an optical fiber cable 330 to intermediate stations A and B5.
The light is received at 00 and photoelectrically converted there. Therefore, when the signal transmitted from the current transformer 200 is stored in the memory recorder using this signal as a trigger, the stored data will have simultaneity between the intermediate stations A and B 500. Therefore, reliable fault location can be obtained by processing data with simultaneity.

第3図は本発明の第2の実施例を示す。第1の実施例と
共通する部分は共通の数字、符号で示しているので重複
する説明は省略するが、発光ダイオードPDを一個にし
、発光ダイオードPDの光をオプチカル・カプラー34
0で三等分し、三等分された光を光フアイバーケーブル
330で中間局A、B500へ伝送する構成を有する。
FIG. 3 shows a second embodiment of the invention. Portions common to the first embodiment are indicated by common numbers and symbols, so redundant explanations will be omitted.
It has a configuration in which the light is divided into three equal parts by 0, and the divided light is transmitted to intermediate stations A and B 500 via an optical fiber cable 330.

ここで重要なことは、オプチカル・カプラー340が確
実に強度の等しい二つの光に分割して出力するように調
整されなければならないことである。その結果、第1の
実施例と同じようにして同時性を有してデータを格納す
ることができる。
What is important here is that the optical coupler 340 must be adjusted to ensure that it splits and outputs two beams of equal intensity. As a result, data can be stored simultaneously in the same manner as in the first embodiment.

〔発明の効果〕〔Effect of the invention〕

以上説明した通り、本発明によると、以下の効果が期待
できる。
As explained above, according to the present invention, the following effects can be expected.

■中間局間のトリガー時間のズレによる位相差を解消す
ることができ、故障区間判定の信頼性、確度を大巾に向
上することができる。
■It is possible to eliminate the phase difference caused by the difference in trigger time between intermediate stations, and it is possible to greatly improve the reliability and accuracy of failure area determination.

■中間局で分割できるので1条の光フアイバケーブルで
は対応できないような長距離の送電線路にも適用できる
■Since it can be divided at intermediate stations, it can be applied to long-distance power transmission lines that cannot be handled with a single optical fiber cable.

■電気/光変換回路は、第1の実施例では、従来の回路
に発光ダイオードを1つ加えただけであり、変換器が多
くなったり、大型化することはない。
(2) In the first embodiment, the electrical/optical conversion circuit includes only one light emitting diode added to the conventional circuit, so there is no need to increase the number of converters or increase the size.

■線路に取付ける変流器は1個で良いので大巾なコスト
アップとはならない。
■Since only one current transformer is required to be installed on the line, there is no significant cost increase.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による地中送電線路の故障区間標定シス
テムの一実施例を示す系統図、第2図および第3図は本
発明に使われる電気/光変換部の第1および第2の実施
例の回路図、第4図(a)、(ロ)は地中送電線路の故
障区間標定システムの原理を説明する説明図。 符号の説明 100・・−・−−一−−ケーブル線路200 、30
0−・−・・−・−・、・変流器310・・・・−一一
一一・・ボンド線330・−・・−・・−光フアイバケ
ーブル400・−・−−−一−−電気/光変換部500
・−・・−・−−−−一中間局   600−−−一−
−・−・・−親局R,,R,−R,・−・−−−−一抵
抗D I−D a ’−”−’−・・−・〜ダイオード
PD、PD、 SPD、−・・−−−−−一発光ダイオ
ード特許出願人 日立電線株式会9社 代理人   弁理士  平 1)忠 雄41−  地中
送電線路 42    導体 42a−一 絶縁体 43    ノース 44     電源 4611!!絡点 47    導体′電流 ・18、・18△7ノース′會’a?1L00    
ケーブル線路 200 、300    変流器 310    ポンド綿 330    光フアイバケーブル 400   −電気/光変換部 500    中間局   600    現局Rfi
、R,〜R3抵抗 I〕、〜D、   ダイオード PD、PD、 、PD、    発光ダイオード第4 図
FIG. 1 is a system diagram showing an embodiment of the fault section locating system for underground power transmission lines according to the present invention, and FIGS. 2 and 3 are diagrams showing the first and second electrical/optical converters used in the present invention. The circuit diagram of the embodiment, and FIGS. 4(a) and 4(b) are explanatory diagrams illustrating the principle of a fault section locating system for underground power transmission lines. Explanation of symbols 100...--1--Cable lines 200, 30
0-・-・・−・−・、・Current transformer 310・・・・−1111・・Bond wire 330・−・・−・・−Optical fiber cable 400・−・−−−1− -Electrical/optical converter 500
・−・・−・−−−−1 intermediate station 600−−−1−
−・−・・−Master station R,,R, −R,・−・−−−One resistor DI−D a′−”−′−・−・−Diode PD, PD, SPD,−・・-------1 Light-emitting diode patent applicant Patent attorney Taira 1) Tadao 41- Underground power transmission line 42 Conductor 42a-1 Insulator 43 North 44 Power supply 4611!! Junction 47 Conductor' current・18,・18△7 north'kai'a?1L00
Cable line 200, 300 Current transformer 310 lb cotton 330 Fiber optic cable 400 - Electrical/optical converter 500 Intermediate station 600 Local station Rfi
, R, ~R3 resistance I], ~D, diode PD, PD, , PD, light emitting diode Fig. 4

Claims (2)

【特許請求の範囲】[Claims] (1)地中送電線路の長さ方向に区分された複数の領域
に対応して設けられた複数の中間データ処理局と、 前記複数の領域およびその境界にそれぞれ 設けられ、故障電流に応じた故障電流信号を出力する複
数の電流検出部と、 前記故障電流信号を光信号に変換し、光フ ァイバーケーブルを介して対応する前記中間データ処理
局へ伝送する電気/光変換部と、前記複数の中間データ
処理局のデータ処理 結果に基づいて前記地中送電線路の故障区間を標定する
中央データ処理局とを備え、 前記電気/光変換部は、前記境界に設けら れた前記電流検出部から入力した前記故障電流信号に基
づいて前記光信号を前記境界に隣接するそれぞれ2つの
前記中間データ処理局へ出力することを特徴とする地中
送電線路の故障区間標定システム。
(1) A plurality of intermediate data processing stations are provided corresponding to a plurality of areas divided in the length direction of the underground power transmission line, and a plurality of intermediate data processing stations are provided in each of the plurality of areas and their boundaries, and a data processing station is provided corresponding to the fault current. a plurality of current detection units that output a fault current signal; an electrical/optical conversion unit that converts the fault current signal into an optical signal and transmits it to the corresponding intermediate data processing station via an optical fiber cable; a central data processing station that locates a fault section of the underground power transmission line based on data processing results of the data processing station; A fault section locating system for an underground power transmission line, characterized in that the optical signal is output to each of the two intermediate data processing stations adjacent to the boundary based on the fault current signal.
(2)前記電気/光変換部は、前記故障電流のレベルお
よび位相に応じた強度および位相の光を放出する直列接
続された2つの発光ダイオードを含む請求項第1項記載
の地中送電線路の故障区間標定システム。
(2) The underground power transmission line according to claim 1, wherein the electrical/optical converter includes two light emitting diodes connected in series that emit light with an intensity and phase depending on the level and phase of the fault current. failure zone locating system.
JP63277769A 1988-11-02 1988-11-02 Failure section localization system for underground power transmission line Expired - Lifetime JPH0810242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63277769A JPH0810242B2 (en) 1988-11-02 1988-11-02 Failure section localization system for underground power transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63277769A JPH0810242B2 (en) 1988-11-02 1988-11-02 Failure section localization system for underground power transmission line

Publications (2)

Publication Number Publication Date
JPH02124480A true JPH02124480A (en) 1990-05-11
JPH0810242B2 JPH0810242B2 (en) 1996-01-31

Family

ID=17588071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63277769A Expired - Lifetime JPH0810242B2 (en) 1988-11-02 1988-11-02 Failure section localization system for underground power transmission line

Country Status (1)

Country Link
JP (1) JPH0810242B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62150177A (en) * 1985-12-24 1987-07-04 Sumitomo Electric Ind Ltd Transmission line fault section location system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62150177A (en) * 1985-12-24 1987-07-04 Sumitomo Electric Ind Ltd Transmission line fault section location system

Also Published As

Publication number Publication date
JPH0810242B2 (en) 1996-01-31

Similar Documents

Publication Publication Date Title
JPH02124480A (en) Apparatus for spotting faulty section of underground transmission line
US5164662A (en) Detection of radio frequency emissions
JPS60207078A (en) Detection of accident section of single-core power cable
JP2771625B2 (en) Fault Detection Method for Optical Fiber Composite Overhead Ground Wire and Overhead Transmission Line
JP3114431B2 (en) Partial discharge measurement method
JPH02103478A (en) Fault locator
JPH0363711B2 (en)
US3082300A (en) Transmission line fault location
JPH01313779A (en) Fault section detecting device for underground transmission line
JPH02309267A (en) Apparatus for detecting trouble section of underground transmission line
JPS6125076A (en) Fault section locator
JPH0642214Y2 (en) Current measuring device
JP2568097B2 (en) Power cable accident section detection method
JPH073346Y2 (en) Zero-phase current measuring device
JPS62121373A (en) Locating system for section of transmission/distribution line accident
SU849111A1 (en) Device for locating damages in underground power cables
JP3023366B2 (en) Branch line fault direction locating device
JPH01299475A (en) Method for determining failed section of underground transmission line
JPH0541420Y2 (en)
JP3528544B2 (en) Method of locating insulation breakdown of power cable line
JPS62150177A (en) Transmission line fault section location system
JPS62126360A (en) System for locating trouble section of transmission/ distribution line
JPH08201437A (en) Electric current measuring instrument
JPH01119771A (en) Locating apparatus of faulty section of aerial transmission line
JPH0843473A (en) Fault-section judgment method for power cable