JPH02309267A - Apparatus for detecting trouble section of underground transmission line - Google Patents

Apparatus for detecting trouble section of underground transmission line

Info

Publication number
JPH02309267A
JPH02309267A JP13099789A JP13099789A JPH02309267A JP H02309267 A JPH02309267 A JP H02309267A JP 13099789 A JP13099789 A JP 13099789A JP 13099789 A JP13099789 A JP 13099789A JP H02309267 A JPH02309267 A JP H02309267A
Authority
JP
Japan
Prior art keywords
optical fiber
transmission line
current
power transmission
coil spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13099789A
Other languages
Japanese (ja)
Inventor
Masahiko Uchida
内田 昌彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP13099789A priority Critical patent/JPH02309267A/en
Publication of JPH02309267A publication Critical patent/JPH02309267A/en
Pending legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Abstract

PURPOSE:To miniaturize the title apparatus by giving the stress corresponding to the detection value of a sheath current to an optical fiber and measuring the propagation constant of said optical fiber. CONSTITUTION:The secondary output of the current transformer 2 arranged to a cross-bond line 1 is connected to the coil 9 provided to one inner end of the outside pipe 14 of a stress generator 20 and a flange 13a is supported by the limiter pipe 17 provided to the flange 13b at the other end in the pipe 14. Further, an optical fiber 6 is spirally wound around the coil spring 12 provided between the flanges 13a, 13b and both ends of the fiber 6 are taken out of the stress generator 20 to connect not only one end thereof to a light source 7 but also the other end thereof to a photodetector 8. The flange 13a is moved by the magnetic field generated from the coil 19 by the trouble current of the cross-bond line 1 and the fiber 6 extends and contracts so as to follow the extention and contraction of the spring 12. The change of the transmission loss of light due to the pitch change of the fiber 6 is detected by the photodetector 8 and subjected to computer processing to detect the direction and magnitude of the trouble current flowing through the cross-bond line 1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は地中送電線路の故障区間検知装置に関し、特に
、装置の小型化、および構成の簡略化を図った地中送電
線路の故障区間検知装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a device for detecting a faulty section of an underground power transmission line, and in particular, the present invention relates to a device for detecting a faulty section of an underground power transmission line, which is designed to reduce the size of the device and simplify the configuration. Regarding a detection device.

〔背景技術〕[Background technology]

電気エネルギーの需要の増大により安定した電力の供給
が必要となり、ケーブルをはじめとする地中送電線路の
信頼性に関する技術の開発が行われている。同様に、突
発的な事故に際しては、速やかに故障箇所を標定して適
切な復旧作業を行う必要がある。地中送電線路における
事故としては、絶縁破壊によって導体とシースとが短絡
する地絡事故が代表的であり、この地絡事故が生じた場
合には地絡区間の特定を早急に行う必要がある。
BACKGROUND OF THE INVENTION As the demand for electrical energy increases, a stable supply of power becomes necessary, and technologies related to the reliability of underground power transmission lines such as cables are being developed. Similarly, in the event of a sudden accident, it is necessary to quickly locate the failure location and carry out appropriate restoration work. A typical accident on underground power transmission lines is a ground fault where the conductor and sheath are short-circuited due to insulation breakdown, and when this ground fault occurs, it is necessary to identify the ground fault section immediately. .

第5図はクロスポンド接続を有する長距離地中送電線路
装置の故障電流を検出する故障区間検知装置の回路図を
示したもので、クロスボンド線1に設けられた変流器2
の二次側に光変換回路4を配置したものである。光変換
回路4は負荷抵抗4aと、これと並列に配置したダイオ
ード4b、4c、4d、4’e(その中で、4Cは逆電
圧に対して定電圧特性を示すツェナーダイオード)、お
よびその対角線上に制限抵抗4fとLED (発光ダイ
オード)4gとを直列接続した構成であり、クロスボン
ド線1に流れる電流の大きさに比例してLED4 gを
発光させ、電気/光変換を行う。
Figure 5 shows a circuit diagram of a fault section detection device for detecting a fault current in a long-distance underground power transmission line device having a cross-bond connection.
The optical conversion circuit 4 is arranged on the secondary side of the . The optical conversion circuit 4 includes a load resistor 4a, diodes 4b, 4c, 4d, and 4'e (among them, 4C is a Zener diode exhibiting constant voltage characteristics against reverse voltage) arranged in parallel with the load resistor 4a, and its diagonal. It has a configuration in which a limiting resistor 4f and an LED (light emitting diode) 4g are connected in series on the top, and the LED 4g emits light in proportion to the magnitude of the current flowing through the cross bond line 1, thereby performing electrical/optical conversion.

LED4 gにより出力された光信号は光フアイバケー
ブル5を介して中央のコンピュータ(図示せず)に伝送
され、そこで各区間からの信号と共に再生され、地絡時
にシース回路に流れる電流の絶対値、および位相を各2
間で比較することにより地絡区間を検知する。これは、
原理的にはopcW(架空地線)を利用して架空送電線
路で実用化されている事故区間検知装置と同じである。
The optical signal output by the LED 4g is transmitted via the fiber optic cable 5 to a central computer (not shown), where it is regenerated together with the signals from each section, and the absolute value of the current flowing through the sheath circuit in the event of a ground fault, and phase by 2
Ground fault sections are detected by comparing between the two. this is,
The principle is the same as the accident section detection device that is put into practical use on overhead power transmission lines using OPCW (overhead ground wire).

変流器2からの信号は位相、および絶対値をより正確に
求めるため、第6図に示すように、全波整流され、かつ
、そのうちの半波を計測用信号、残りの半波を較正用信
号として使用する。較正用信号はツェナーダイオード4
cの作用によって常に一定のレベルになるようになって
おり、較正用信号と計測用信号との比により計測用信号
のレベルを正確に求めることができる。また、位相の検
出も較正用信号の位置を検出することにより容易に知る
ことができる。
In order to more accurately determine the phase and absolute value of the signal from current transformer 2, it is full-wave rectified as shown in Figure 6, and half of it is used as a measurement signal, and the remaining half is used for calibration. used as a traffic signal. The calibration signal is Zener diode 4
The level of the signal for measurement is always constant due to the effect of c, and the level of the signal for measurement can be accurately determined by the ratio of the signal for calibration and the signal for measurement. Further, the phase can also be easily detected by detecting the position of the calibration signal.

〔発明が解決しようとする課題] しかし、従来の地中送電線路の故障区間検知装置による
と、変流器から出力された信号を整流するためのダイオ
ードを始めとする各種の半導体素子を使用しているため
、装置全体が大型化するという問題がある。また、各素
子の電気的特性の相違によって各検出装置毎から出力さ
れる計測用信号、較正用信号にレベル差が生じるため、
中央のコンピュータで波形比較する場合、このコンピュ
ータに予め各検出装置毎の光レベルの特性を記憶させる
必要があり、このため、判定ロジックが複雑化するとい
う不都合がある。
[Problems to be Solved by the Invention] However, conventional fault section detection devices for underground power transmission lines do not use various semiconductor elements such as diodes to rectify signals output from current transformers. Therefore, there is a problem that the entire device becomes larger. In addition, due to differences in the electrical characteristics of each element, level differences occur in the measurement signals and calibration signals output from each detection device.
When waveforms are compared using a central computer, it is necessary to store the light level characteristics of each detection device in advance in this computer, which causes the disadvantage that the determination logic becomes complicated.

従って、本発明の目的は検知装置の小型化が可能な地中
送電線路の故障区間検知装置を提供することである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a fault section detection device for an underground power transmission line, which allows the detection device to be miniaturized.

本発明の他の目的は各検知装置から出力される信号のレ
ベル差を無くしてコンピュータの判定ロジックを簡素化
することができる地中送電線路の故障区間検知装置を提
供することである。
Another object of the present invention is to provide a faulty section detection device for an underground power transmission line that can eliminate the difference in level of signals output from each detection device and simplify the determination logic of a computer.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は以上述べた目的を実現するため、地中送電線の
導体電流、あるいはシース電流を検出する検出手段と、
該検出手段の検出出力に応じた応力を光ファイバに与え
る応力発生手段と、光ファイバの伝播定数を測定する測
定手段とを備えた地中送電線路の故障区間検知装置を提
供するものである。
In order to achieve the above-mentioned object, the present invention includes a detection means for detecting conductor current or sheath current of an underground power transmission line;
The present invention provides a failure section detection device for an underground power transmission line, which includes stress generating means for applying stress to an optical fiber according to the detection output of the detection means, and measuring means for measuring the propagation constant of the optical fiber.

即ち、本発明の地中送電線路の故障区間検知装置は以下
の手段を備えている。
That is, the underground power transmission line failure section detection device of the present invention includes the following means.

(1)検出手段 地中送電線の導体電流、あるいはシース電流を検出する
ものであり、例えば、被測定用リード線(例えば、クロ
スボンド線、シース接地線等)の所定の位置に変流器を
配置することによって行うことができる。
(1) Detection means Detects the conductor current or sheath current of underground power transmission lines. This can be done by placing .

(2)応力発生手段 前述した検出手段から検出された導体電流、あるいはシ
ース電流に応じた応力を光ファイバに与えるものであり
、例えば、導体電流、あるいはシース電流に応じた磁界
を発生するコイルと、該コイルから発生する磁界に基づ
く反発力、引力を受けて移動する磁性体と、該磁性体の
移動によって伸縮するコイルばねによって構成すること
ができ、コイルばねに沿って光ファイバを螺旋状に巻回
する、あるいはコイルばねの内部に光ファイバを通して
一体化することにより、光ファイバをコイルばねの伸縮
に追従させることができ、これによって光ファイバの螺
旋ピッチ等を変えることができる。
(2) Stress generating means A device that applies stress to the optical fiber according to the conductor current or sheath current detected by the above-mentioned detection means, for example, a coil that generates a magnetic field according to the conductor current or sheath current. , a magnetic body that moves under repulsion and attraction based on the magnetic field generated by the coil, and a coil spring that expands and contracts due to the movement of the magnetic body, and the optical fiber is spirally connected along the coil spring. By winding the optical fiber or integrating the optical fiber by passing it inside the coil spring, the optical fiber can be made to follow the expansion and contraction of the coil spring, thereby making it possible to change the helical pitch, etc. of the optical fiber.

(3)測定手段 光ファイバの伝播定数を測定するものであり、例えば、
光ファイバの一端に接続された光源と、光ファイバの他
端に接続された受光器とによって構成することができる
。即ち、光源から受光器にかけて光ファイバを介して所
定の強度を有する光を伝送することにより、受光器が受
光した光レベルをもとに光ファイバの伝播定数(損失の
変化)を検知することができる。
(3) Measuring means Measuring the propagation constant of an optical fiber, for example,
It can be configured with a light source connected to one end of an optical fiber and a light receiver connected to the other end of the optical fiber. In other words, by transmitting light with a predetermined intensity from a light source to a light receiver via an optical fiber, it is possible to detect the propagation constant (change in loss) of the optical fiber based on the light level received by the light receiver. can.

〔作用] 上記構成では、地中送電線の導体電流、あるいはシース
電流に応じて光ファイバが受ける応力が変化するので、
光源から発せられた光の受光部におけるレベルが変化す
る。この光レベルの変化を複数の地点で検出してコンピ
ュータ処理することにより故障電流の向きと大きさを検
知し、これによってケーブルの故障区間を標定すること
ができる。コンピュータにおける演算は受光部の光レベ
ル、あるいは受発光の光レベルの比に基づいて行われる
が、後者の方がより高い演算精度が得られる。
[Function] In the above configuration, the stress applied to the optical fiber changes depending on the conductor current or sheath current of the underground power transmission line.
The level of light emitted from the light source at the light receiving section changes. By detecting this change in light level at multiple points and processing it with a computer, the direction and magnitude of the fault current can be detected, and thereby the fault section of the cable can be located. Calculations in the computer are performed based on the light level of the light receiving section or the ratio of the light levels of the received and emitted light, but the latter provides higher calculation accuracy.

〔実施例〕〔Example〕

以下、本発明の地中送電線路の故障区間検知装置を詳細
に説明する。
Hereinafter, the underground power transmission line failure section detection device of the present invention will be described in detail.

第1図は本発明の第1の実施例を示し、クロスボンド線
lには該クロスボンド線lに流れる電流を検出する変流
器2が配置されており、変流器2の二次出力は応力発生
装置20に配設されたコイル9に接続されている。コイ
ル9は、外側パイプ14の内部の一方に設けられ、透磁
率の高い材質から成るフランジ10a、10b、および
側板11によって包囲されると共にフランジ10a、1
0bに固着されており、外側パイプ14の内部の他方に
は外側パイプ14内を摺動し、磁性材料から成るフラン
ジ13aと、それを支持するリミッタパイプ17が設け
られ、外側パイプ14の他端に設けられたフランジ13
bとフランジ13aの間にコイルばね工2が設けられて
いる。コイルばね12には光ファイバ6が該コイルばね
12に沿って螺旋状に巻回され、光ファイバ6の両端は
光ファイバ変形製W20から取り出され、一端には光源
7が、他端には受光器8がそれぞれ接続されている。1
7a、17bはリミッタパイプ17の移動量を規制する
大径部であり、コイルばね12の延びすぎ、あるいは縮
みすぎによって光ファイバ6が破損するのを防ぐように
なっている。尚、応力発生装置20は温度、湿度等の条
件が安定した場所に設置される。
FIG. 1 shows a first embodiment of the present invention, in which a current transformer 2 for detecting the current flowing through the cross bond line l is arranged on the cross bond line l, and the secondary output of the current transformer 2 is is connected to the coil 9 disposed in the stress generator 20. The coil 9 is provided inside one side of the outer pipe 14 and is surrounded by flanges 10a, 10b made of a material with high magnetic permeability and a side plate 11.
A flange 13a made of a magnetic material and a limiter pipe 17 that slides inside the outer pipe 14 and supports the flange 13a are provided at the other end of the outer pipe 14. flange 13 provided on
A coil spring work 2 is provided between b and flange 13a. An optical fiber 6 is spirally wound around the coil spring 12 along the coil spring 12, and both ends of the optical fiber 6 are taken out from a W20 made by Kogyo Kogyo Co., Ltd., and a light source 7 is attached to one end and a light receiving device is attached to the other end. 8 are connected to each other. 1
Reference numerals 7a and 17b are large diameter portions that restrict the amount of movement of the limiter pipe 17, and are designed to prevent the optical fiber 6 from being damaged due to excessive extension or contraction of the coil spring 12. Note that the stress generating device 20 is installed in a place where conditions such as temperature and humidity are stable.

第2図(a)はコイルばね12と、光ファイバ6の関係
を示し、第1図に示したように光ファイバ6がコイルば
ね12に沿って螺旋状に巻回されている。
FIG. 2(a) shows the relationship between the coil spring 12 and the optical fiber 6. As shown in FIG. 1, the optical fiber 6 is spirally wound along the coil spring 12.

また、(+))に示すように、コイルばね12の内部に
光ファイバ6を通して一体化させても良く、このように
することにより、光ファイバ6を保護する必要がなくな
り、構造が更に簡略化される。
Furthermore, as shown in (+), the optical fiber 6 may be integrated into the coil spring 12 by passing it through the interior of the coil spring 12. By doing so, there is no need to protect the optical fiber 6, and the structure is further simplified. be done.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

クロスボンド線1に地絡事故等によって故障電流が流れ
ると、変流器2は巻数比に応じた二次電流をコイル9に
出力し、これによってコイル9に磁場が形成され、二次
電流の向きと大きさによりフランジ10aと、フランジ
13aの間に引力、あるいは反発力が生じる。この力に
よってフランジ13aが移動すると、コイルばね12が
伸縮すると共にこれに沿って螺旋状に巻回された光ファ
イバ6もコイルばね12の伸縮に追従し、光ファイバ6
の螺旋ピッチが変化する。即ち、フランジ10aと、フ
ランジ13aの間に引力が生じ、コイルばね12が伸長
すると、光ファイバ6のピッチが大きくなり、また、フ
ランジ10aとフランジ13aの間に反発力が生じ、コ
イルばね12が圧縮されると、光ファイバ6のピッチが
小さくなる。一方、光ファイバ6の一端に接続された光
源7は常に所定の強度を有する光を発しており、他端に
接続された受光器8がその光を受光している。このため
、コイルばね12が伸長して光ファイバ6のピッチが大
きいときは、光源7から発せられた光の伝送損失が減り
、また、コイルばね12が圧縮して光ファイバ6のピッ
チが小さいときは光源7から発せられた光の伝送損失が
増えることになる。即ち、第3図に示すように、受光器
8で受光した光レベルは、定常時では一定の光レベルで
あるが、故障時には光ファイバ6の伝播定数によって光
レベルが変化する。
When a fault current flows through the cross-bond wire 1 due to a ground fault, etc., the current transformer 2 outputs a secondary current to the coil 9 according to the turns ratio, thereby forming a magnetic field in the coil 9, and increasing the secondary current. Depending on the direction and size, an attractive force or a repulsive force is generated between the flange 10a and the flange 13a. When the flange 13a moves due to this force, the coil spring 12 expands and contracts, and the optical fiber 6 spirally wound along this also follows the expansion and contraction of the coil spring 12.
The helical pitch of changes. That is, when an attractive force is generated between the flange 10a and the flange 13a and the coil spring 12 is expanded, the pitch of the optical fiber 6 is increased, and a repulsive force is generated between the flange 10a and the flange 13a, and the coil spring 12 is expanded. When compressed, the pitch of the optical fiber 6 becomes smaller. On the other hand, a light source 7 connected to one end of the optical fiber 6 always emits light having a predetermined intensity, and a light receiver 8 connected to the other end receives the light. Therefore, when the coil spring 12 is expanded and the pitch of the optical fiber 6 is large, the transmission loss of the light emitted from the light source 7 is reduced, and when the coil spring 12 is compressed and the pitch of the optical fiber 6 is small, the transmission loss of the light emitted from the light source 7 is reduced. In this case, the transmission loss of the light emitted from the light source 7 increases. That is, as shown in FIG. 3, the light level received by the light receiver 8 is constant during normal operation, but when a failure occurs, the light level changes depending on the propagation constant of the optical fiber 6.

従って、コイル90巻回方向とフランジ13aの磁界極
性が予め決められているため、受光器8で受光した光レ
ベルに基づいてクロスボンド線lを流れる故障電流の向
きと大きさを検知することができ、これによって前述し
たコンピュータ処理によってケーブルの故障区間を標定
することができる。
Therefore, since the winding direction of the coil 90 and the magnetic field polarity of the flange 13a are determined in advance, it is possible to detect the direction and magnitude of the fault current flowing through the cross bond wire l based on the light level received by the light receiver 8. This allows the fault section of the cable to be located by the computer processing described above.

第4図は本発明の第2の実施例を示し、第1図のコイル
9を省き、変流器2の二次出力を直接コイルばね12に
接続したものである。コイルばね12の両端には透磁率
の高いフランジ15a、15bが固着しており、コイル
ばね12の内部には該コイルばね12に電流が流れたと
きに発生する磁束密度を高めるためにコイル軸18a、
18bが設けられている。
FIG. 4 shows a second embodiment of the present invention, in which the coil 9 of FIG. 1 is omitted and the secondary output of the current transformer 2 is directly connected to the coil spring 12. Flanges 15a and 15b with high magnetic permeability are fixed to both ends of the coil spring 12, and a coil shaft 18a is installed inside the coil spring 12 to increase the magnetic flux density generated when a current flows through the coil spring 12. ,
18b is provided.

このコイル軸18a、18bは摺接したオス、メス構造
を有しており、コイルばね12が伸縮する際のストッパ
ーの役割も果たすようになっている。また、コイルばね
12は中心に位置するように1個所において外側バイブ
エ4に固定されている。外側パイプ140両端にはコイ
ルばね12に対して極性が異なる磁性体部16a、16
bが設けられている。このような構成においてもクロス
ボンド線1に故障電流が流れると、受光器8から第3図
に示すような光レベルを有する波形が得られ、同様にケ
ーブルの故障区間を標定を行うことができる。
The coil shafts 18a and 18b have a male and female structure in sliding contact, and also serve as a stopper when the coil spring 12 expands and contracts. Further, the coil spring 12 is fixed to the outer vibrator 4 at one location so as to be located at the center. At both ends of the outer pipe 140, magnetic parts 16a, 16 having different polarities with respect to the coil spring 12 are provided.
b is provided. Even in such a configuration, when a fault current flows through the cross bond wire 1, a waveform having a light level as shown in FIG. 3 is obtained from the light receiver 8, and the fault section of the cable can be similarly located. .

〔発明の効果〕〔Effect of the invention〕

以上説明した通り、本発明の地中送電線路の故障区間検
知装置によると、以下の効果を奏することができる。
As explained above, according to the underground power transmission line failure section detection device of the present invention, the following effects can be achieved.

(1)整流用の半導体素子、センサを駆動するための電
源を必要としないため、装置の小型化を図ることができ
る。
(1) Since a rectifying semiconductor element and a power source for driving the sensor are not required, the device can be made smaller.

(2)光信号のレベル変動はコイルばねの特性によって
決まるため、各検知装置の特性について考慮する必要が
なくなり、コンピュータの判定ロジックを簡略化するこ
とができる。
(2) Since the level fluctuation of the optical signal is determined by the characteristics of the coil spring, there is no need to consider the characteristics of each detection device, and the computer's determination logic can be simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示す説明図、第2図(
a)、ら)はコイルばねと光ファイバの関係を示す説明
図、第3図は受光器が受光した光レベルを示すグラフ、
第4図は本発明の第2の実施例を示す説明図、第5図は
従来の地中送電線路の故障区間検知装置を示す説明図、
第6図は従来の故障区間検知における出力波形を示す説
明図。 符号の説明
FIG. 1 is an explanatory diagram showing the first embodiment of the present invention, and FIG. 2 (
a) and ra) are explanatory diagrams showing the relationship between the coil spring and the optical fiber, and Fig. 3 is a graph showing the light level received by the light receiver.
FIG. 4 is an explanatory diagram showing a second embodiment of the present invention, FIG. 5 is an explanatory diagram showing a conventional fault section detection device for underground power transmission lines,
FIG. 6 is an explanatory diagram showing an output waveform in conventional failure section detection. Explanation of symbols

Claims (4)

【特許請求の範囲】[Claims] (1)地中送電線の導体電流、あるいはシース電流を検
出する検出手段と、 検出された前記導体電流、あるいはシース電流に応じた
応力を光ファイバに与える応力発生手段と、 前記光ファイバの伝播定数を測定する測定手段とを備え
たことを特徴とする地中送電線路の故障区間検知装置。
(1) detection means for detecting conductor current or sheath current of an underground power transmission line; stress generation means for applying stress to an optical fiber according to the detected conductor current or sheath current; and propagation of the optical fiber. 1. A failure section detection device for an underground power transmission line, comprising: a measuring means for measuring a constant.
(2)前記検出手段は、前記地中送電線のクロスボンド
線に配置された変流器である請求項第1項記載の地中送
電線路の故障区間検知装置。
(2) The failure section detection device for an underground power transmission line according to claim 1, wherein the detection means is a current transformer arranged in a cross bond line of the underground power transmission line.
(3)前記応力発生手段、前記導体電流、あるいはシー
ス電流に応じた磁界を発生するコイルと、該コイルから
発生する磁界に基づく反発力、あるいは引力によって移
動する磁性体と、該磁性体の移動によって伸縮するコイ
ルばねとによって構成され、 前記光ファイバは、前記コイルばねに沿って螺旋状に巻
回されている、あるいは前記コイルばねの内部に光ファ
イバが通されて一体化している請求項第1項記載の地中
送電線路の故障区間検知装置。
(3) A coil that generates a magnetic field according to the stress generating means, the conductor current or sheath current, a magnetic body that moves by repulsion or attraction based on the magnetic field generated from the coil, and movement of the magnetic body. and a coil spring that expands and contracts, and the optical fiber is spirally wound along the coil spring, or is integrated by being passed through the inside of the coil spring. A fault section detection device for an underground power transmission line according to item 1.
(4)前記測定手段は、前記光ファイバの一端に接続さ
れた光源と、前記光ファイバの他端に接続された受光器
とによって構成されている請求項第1項記載の地中送電
線路の故障区間検知装置。
(4) The underground power transmission line according to claim 1, wherein the measuring means is constituted by a light source connected to one end of the optical fiber and a light receiver connected to the other end of the optical fiber. Failure section detection device.
JP13099789A 1989-05-24 1989-05-24 Apparatus for detecting trouble section of underground transmission line Pending JPH02309267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13099789A JPH02309267A (en) 1989-05-24 1989-05-24 Apparatus for detecting trouble section of underground transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13099789A JPH02309267A (en) 1989-05-24 1989-05-24 Apparatus for detecting trouble section of underground transmission line

Publications (1)

Publication Number Publication Date
JPH02309267A true JPH02309267A (en) 1990-12-25

Family

ID=15047527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13099789A Pending JPH02309267A (en) 1989-05-24 1989-05-24 Apparatus for detecting trouble section of underground transmission line

Country Status (1)

Country Link
JP (1) JPH02309267A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013515947A (en) * 2010-04-06 2013-05-09 シーアン ジェンハー オプティカル テック. カンパニー Optical fiber sensor based on spiral configuration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013515947A (en) * 2010-04-06 2013-05-09 シーアン ジェンハー オプティカル テック. カンパニー Optical fiber sensor based on spiral configuration

Similar Documents

Publication Publication Date Title
US10107839B1 (en) Fiber optic sensor system for detection of electric currents and other phenomena associated with geomagnetic disturbances
EP2116854B1 (en) Active current sensor and current measuring device
GB2290686A (en) Transmitting data over a power cable utilizing a magnetically saturable core reactor
JPH02309267A (en) Apparatus for detecting trouble section of underground transmission line
US5164662A (en) Detection of radio frequency emissions
JP2010197172A (en) Current detector
KR20210092944A (en) Underground cable fault detection system
KR101126291B1 (en) Current and voltage sensor mounted to a pole transformer
JPH01313779A (en) Fault section detecting device for underground transmission line
JP2520915Y2 (en) Broadband current transformer for power line current measurement
KR102321142B1 (en) Self-powered acquisition device using electric field
SU1229561A1 (en) Device for testing displacements
JPH01224674A (en) Current transformer for instrument and current detecting device using it
CN107621587A (en) A kind of ground short circuit fault distinguishing method based on optical current mutual inductor
SU890319A1 (en) Device for monitoring geophysical tool in a well
JP3023366B2 (en) Branch line fault direction locating device
JPS59122247A (en) Transmitting device of optical information
JPS587947B2 (en) Denriyusokuteisouchi
WO2023118894A1 (en) Signal conditioning stage
JPS63263479A (en) Detector for accident position of power transmission line
JPS6125076A (en) Fault section locator
JPH08201437A (en) Electric current measuring instrument
CN116420088A (en) Monitoring operation of an electrical coil arrangement
JPH06289067A (en) Current detector for fault point locator
Carome Intensity type fiberoptic electric current sensor