JPH0212400B2 - - Google Patents

Info

Publication number
JPH0212400B2
JPH0212400B2 JP16119286A JP16119286A JPH0212400B2 JP H0212400 B2 JPH0212400 B2 JP H0212400B2 JP 16119286 A JP16119286 A JP 16119286A JP 16119286 A JP16119286 A JP 16119286A JP H0212400 B2 JPH0212400 B2 JP H0212400B2
Authority
JP
Japan
Prior art keywords
conductor
iron core
coil
heated
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16119286A
Other languages
Japanese (ja)
Other versions
JPS6316595A (en
Inventor
Masayoshi Usuki
Tomohide Kono
Yoshio Iwanaga
Kunyoshi Myata
Masuo Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Steel Corp
Kitashiba Electric Co Ltd
Original Assignee
Toshiba Corp
Nippon Steel Corp
Kitashiba Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Steel Corp, Kitashiba Electric Co Ltd filed Critical Toshiba Corp
Priority to JP16119286A priority Critical patent/JPS6316595A/en
Publication of JPS6316595A publication Critical patent/JPS6316595A/en
Publication of JPH0212400B2 publication Critical patent/JPH0212400B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高周波誘導加熱により、高熱の鋼材を
更に加熱する誘導加熱コイル(以後単にコイルと
いう)の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement in an induction heating coil (hereinafter simply referred to as a coil) that further heats high-temperature steel materials by high-frequency induction heating.

(従来の技術) 従来の高温鋼材を加熱するコイル40の部分構
造の一例を第4図a,bに示す。第4図におい
て、導体41に鞍形状の鉄心45が配置され、積
層の鉄心45と鉄心45の間には銅製の冷却板4
7が導体41の長さ方向に定間隔で挾みこまれて
いる。鉄心45の冷却は冷却は冷却板47内の冷
却孔47′を流通する冷却水により冷却が行われ
る。図中48は冷却水の供給口、49は排水口で
ある。又、導体41の冷却は導体用冷却孔43を
流通する冷却水により冷却が行われる。導体4
1、鉄心45の被加熱物10に対峙する側にはコ
イルを保護するために耐火ライニング44として
耐火セメント(キヤスタブル耐火材)や、セラミ
ツクフアイバーが設けられているもの(例えば特
開昭51−117912号公報)が知られている。
(Prior Art) An example of a partial structure of a conventional coil 40 for heating high-temperature steel materials is shown in FIGS. 4a and 4b. In FIG. 4, a saddle-shaped iron core 45 is arranged on a conductor 41, and a copper cooling plate 4 is placed between the laminated iron cores 45.
7 are inserted at regular intervals in the length direction of the conductor 41. Cooling of the iron core 45 is performed by cooling water flowing through cooling holes 47' in the cooling plate 47. In the figure, 48 is a cooling water supply port, and 49 is a drain port. Further, the conductor 41 is cooled by cooling water flowing through the conductor cooling hole 43. conductor 4
1. A refractory lining 44 made of refractory cement (castable refractory material) or ceramic fiber is provided on the side of the iron core 45 facing the object to be heated 10 to protect the coil (for example, JP-A-51-117912 Publication No.) is known.

(発明が解決しようとする問題点) 第4図に示すコイルの構造は、以下に示す欠点
が存在する。すなわち、鉄心45の温度上昇は被
加熱物から輻射される熱量Q及び、耐火ライニン
グ44の断熱性能(熱伝達率の逆数)に比例す
る。又、鉄心45は、けいそ鋼板に於いてはヒス
テリシス損等による発熱があり、さらに鋼板表面
の絶縁被膜の耐熱性も低く、フエライトに於いて
はキユリー温度が低い為、温度が上昇すると、損
失の急激な増加や磁性の喪失が発生するので、使
用できるのは高々300度前後迄に過ぎない。その
ため、1000℃から1400℃の高温の鋼材を加熱する
場合には、30m/m程の厚みのある耐火セメン又
はセラミツクフアイバーの層を必要とするが、こ
の耐火ライニング層は熱的スポーリングを受けて
亀裂や剥離が生じ、長寿命を期待出来るものでな
かつた。さらにコイルの効率は、ほぼコイルまた
は鉄心下面から、被加熱物迄の距離に比例する
為、このような厚い耐火セメント又はセラミツク
フアイバーを設けるコイルの構造では距離を短か
く出来ないため高い効率を得ることは、困難であ
る。この効率特性の一例を第3図に示す、従来ギ
ヤツプは30m/m以上であり、低い効率にとどま
つていた。特に、非対称な被加熱物の場合や、被
加熱物を局部的の加熱する場合には、対象物の片
側にしか加熱コイルを配置できず、この効率の低
下の影響は顕著である。誘導加熱設備の価格は、
電源の容量に依存するため、効率の低下は設備の
価格に大きな影響をあたえる等の間題点があつ
た。
(Problems to be Solved by the Invention) The structure of the coil shown in FIG. 4 has the following drawbacks. That is, the temperature rise of the iron core 45 is proportional to the amount of heat Q radiated from the object to be heated and the heat insulation performance (reciprocal of the heat transfer coefficient) of the refractory lining 44. In addition, the iron core 45 is made of dielectric steel plate, which generates heat due to hysteresis loss, etc. Furthermore, the heat resistance of the insulating coating on the surface of the steel plate is low, and ferrite has a low Curie temperature, so when the temperature rises, loss increases. Because a sudden increase in temperature and loss of magnetism occur, it can only be used at temperatures up to around 300 degrees. Therefore, when heating high-temperature steel materials between 1000°C and 1400°C, a layer of refractory cement or ceramic fiber with a thickness of about 30 m/m is required, but this refractory lining layer is susceptible to thermal spalling. Cracks and peeling occurred, and a long life could not be expected. Furthermore, the efficiency of a coil is approximately proportional to the distance from the bottom surface of the coil or iron core to the object to be heated, so with a coil structure that includes such thick refractory cement or ceramic fibers, it is not possible to shorten the distance, so high efficiency can be achieved. That is difficult. An example of this efficiency characteristic is shown in Fig. 3. The conventional gap was 30 m/m or more, and the efficiency remained low. Particularly, in the case of an asymmetric heated object or when heating a heated object locally, the heating coil can only be placed on one side of the object, and the effect of this reduction in efficiency is significant. The price of induction heating equipment is
Since it depends on the capacity of the power source, there were problems such as a decrease in efficiency had a large impact on the price of the equipment.

(発明の目的) 本発明は、上記の問題点を解消するものであつ
て被加熱物が、おおむね1000℃から1400℃の高温
の鋼材をさらに加熱するにあたつて、導体及び鉄
心の下面と、被加熱物とのギヤツプを小さく保持
できる、効率の高い誘導加熱コイルの構造を提供
するものである。
(Purpose of the Invention) The present invention is intended to solve the above-mentioned problems, and when the object to be heated further heats steel material at a high temperature of approximately 1000°C to 1400°C, the lower surface of the conductor and iron core is heated. The present invention provides a highly efficient induction heating coil structure that can maintain a small gap with the object to be heated.

(問題点を解決するための手段) 上記目的を達成するための本発明コイルの特徴
は高温鋼材を加熱する誘導加熱コイルにおいて、
高温の被加熱鋼材の上方で該物体に平行に設けら
れ表面を絶縁被覆された導体の周囲に鉄心を鞍掛
に配置し、該鉄心と導体の下面側に薄いセラミツ
ク製の成形耐火板を、鉄心の他の外周面に外箱を
配置し、少なくとも前記鉄心と導体の下面と、耐
火板との間にわずかな空隙を設けて冷却流体通路
を構成し、この通路に冷却流体を流通し、導体、
鉄心及びセラミツク製の成形耐火板の冷却を同時
に行うように構成したことを特徴とする誘導加熱
コイルにある。
(Means for Solving the Problems) The features of the coil of the present invention for achieving the above object are as follows:
An iron core is placed above and parallel to the high-temperature steel to be heated around a conductor whose surface is coated with insulation, and a thin ceramic refractory plate is placed between the iron core and the lower surface of the conductor. An outer box is arranged on the other outer peripheral surface of the conductor, and a small gap is provided between at least the lower surface of the iron core, the conductor, and the fireproof plate to form a cooling fluid passage, and the cooling fluid is passed through this passage, and the conductor ,
An induction heating coil is characterized in that it is configured to simultaneously cool an iron core and a molded ceramic fireproof plate.

尚、本発明においては、後述の実施例に示す如
く、鉄心5はコの字形の一体物でなく、第1図a
に示す小片5-1〜5-3を接着して構成してもよ
い。
In addition, in the present invention, the iron core 5 is not a U-shaped integral part, as shown in the embodiments described later, but is shown in FIG.
It may also be configured by gluing together the small pieces 5 -1 to 5 -3 shown in the figure.

又、この例は流体通路を鉄心の全周に設けた例
を図示したが、コイル入力が低い場合は、全周の
冷却は必要なく、下面側だけ又は下面側と導体周
囲だけで良く、その場合は図示のように流体通路
に仕切壁13を設けておき、流体通路を複数に分
割して、分割した仕切壁間ごとに冷却流体の供
給、排出口を接続し、個々に冷却するようにする
とよい。
Also, this example shows an example in which fluid passages are provided around the entire circumference of the iron core, but if the coil input is low, cooling the entire circumference is not necessary, and it is sufficient to cool only the bottom side or the bottom side and around the conductor. In this case, as shown in the figure, a partition wall 13 is provided in the fluid passage, the fluid passage is divided into a plurality of parts, and cooling fluid supply and discharge ports are connected between each divided partition wall to cool the fluid individually. It's good to do that.

(実施例及び作用) 以下、本発明のコイルを一実施例に基づき図面
により詳細に説明する。
(Example and operation) Hereinafter, the coil of the present invention will be explained in detail with reference to the drawings based on one example.

本発明実施例コイル20は直方体で構成されて
いる。第1図aは垂直方向断面図(第1図bのD
−b断面図)、同b′は一部切欠き斜視図である。
図において、磁気回路は有機系の薄いプラスチツ
クの絶縁皮膜2により被覆された導体1と該導体
1に対して間隙を設けて鞍掛けに配置した鉄心5
から構成される。導体1の絶縁皮膜2により冷却
水との絶縁が保たれる。導体1は導体内の冷却孔
3に流通する冷却水により冷却され、鉄心5は積
層方向に貫通した適宜の冷却孔7を流通する冷却
水により冷却される。上記磁気回路は側壁と上面
壁からなる外箱6内に納められ、該磁気回路下面
側には耐火板4が配置され、コイルを構成してい
る該磁気回路の全周(4周)と外箱内面、耐火板
内面との間にはわずかな空隙が設けられ冷却通路
を構成している。冷却水は流水口8から供給され
側壁内を通つて冷却通路12に入り、一部は鉄心
と導体間の空隙を通り、他側の側壁内を通つて排
出口9から排出されるようになつている。このよ
うに構成されたコイルにより高温の被加熱(鋼
材)10をさらに加熱する。
The coil 20 according to the embodiment of the present invention is formed of a rectangular parallelepiped. Figure 1a is a vertical sectional view (D in Figure 1b).
-b sectional view), b' is a partially cutaway perspective view.
In the figure, a magnetic circuit consists of a conductor 1 covered with an organic thin plastic insulation film 2 and an iron core 5 placed on a saddle with a gap between the conductor 1 and the conductor 1.
It consists of The insulation film 2 of the conductor 1 maintains insulation from the cooling water. The conductor 1 is cooled by cooling water flowing through cooling holes 3 within the conductor, and the iron core 5 is cooled by cooling water flowing through appropriate cooling holes 7 penetrating in the stacking direction. The magnetic circuit is housed in an outer box 6 consisting of a side wall and a top wall, and a fireproof plate 4 is arranged on the bottom side of the magnetic circuit, and the entire circumference (4 circumferences) of the magnetic circuit constituting the coil and the outer A small gap is provided between the inner surface of the box and the inner surface of the fireproof plate to form a cooling passage. Cooling water is supplied from the water outlet 8 and enters the cooling passage 12 through the side wall, and part of it passes through the gap between the iron core and the conductor, passes through the other side wall, and is discharged from the outlet 9. ing. The coil configured in this manner further heats the heated object (steel material) 10 at a high temperature.

次に、この磁気回路内に形成される磁束の状況
を第2図により説明する。図から明らかなように
磁束11を鉄心5の下面に集中する。又、電流も
導体の下面に集中する。従つてコイルの発熱密度
は導体1及び鉄心5の下面で高くなり、この部分
の冷却が充分でないと鉄心の損傷を招く。一方、
1000〜1400℃の高温の被加熱鋼材10により耐火
板4は下面より加熱されるが、本コイル20では
耐火板と磁気回路下面との間に設けた冷却通路を
流れる冷却水により鉄心5、導体1と耐火板4を
同時に冷却するもので十分輻射熱にたえるもので
ある。本発明における冷却通路12の高さは加熱
効率を考え2〜3m/m程度が適当である。
Next, the state of the magnetic flux formed within this magnetic circuit will be explained with reference to FIG. As is clear from the figure, the magnetic flux 11 is concentrated on the lower surface of the iron core 5. Current also concentrates on the lower surface of the conductor. Therefore, the heat generation density of the coil is high at the lower surfaces of the conductor 1 and the iron core 5, and if these parts are not cooled sufficiently, the iron core will be damaged. on the other hand,
The fireproof plate 4 is heated from the lower surface by the heated steel material 10 at a high temperature of 1000 to 1400°C, but in this coil 20, the iron core 5 and the conductor are heated by the cooling water flowing through the cooling passage provided between the fireproof plate and the lower surface of the magnetic circuit. 1 and fireproof plate 4 at the same time, and can sufficiently withstand radiant heat. The height of the cooling passage 12 in the present invention is suitably about 2 to 3 m/m in consideration of heating efficiency.

耐火板として、例えば金属材料(ステンレス)
を用いた場合は電磁誘導の為に発熱対策が必要と
なり、又、被加熱鋼材に到達する磁束の量が減少
する為、加熱効率が低下し好ましくない。一方、
耐火板にかかる内部冷却水圧力により発生する曲
げ応力は、通常かかる内部圧力が、2−4キロ/
cm2と高く、例えば10×35cm角で厚さ4ミリの板で
は10キロ/mm2に達する。このため、低強度の耐火
板では、内部圧力により破損する可能性が高い。
又、プラスチツク系の耐火板では被加熱鋼材の温
度が高いため、輻射により耐火板が加熱され使用
には耐えられない。
As a fireproof plate, for example, metal material (stainless steel)
If this is used, countermeasures against heat generation are required due to electromagnetic induction, and the amount of magnetic flux reaching the heated steel material decreases, which is undesirable because heating efficiency decreases. on the other hand,
The bending stress generated by the internal cooling water pressure applied to the fireproof plate is normally 2-4 kg/cm.
cm 2 is high; for example, a 10 x 35 cm square board with a thickness of 4 mm reaches 10 kg/mm 2 . For this reason, low-strength fireproof plates are more likely to break due to internal pressure.
Furthermore, since the temperature of the heated steel material is high in plastic fireproof plates, the fireproof plates are heated by radiation and cannot withstand use.

このため、耐火板の材料としては耐熱性がある
セラミツク製の成形耐火板が最適である。特に強
度も高い窒化けいそ、炭化けいそが適している。
厚みは薄いと冷却水の圧力でわれる危険があり、
又、厚いと内外表面の温度差でわれる危険がある
ので5〜7m/mが強度、加熱効率の点からも適
当である。第3図で明らかな様に、加熱効率は導
体と被加熱鋼材の間のギヤツプに比例する。従つ
て、コイル効率を高めようとすれば、冷却水の流
れる冷却通路及び耐火板と、被加熱鋼材との間を
適正に設定する必要がある。本発明のコイル構造
にすることにより、耐火板と冷却通路を高々10
m/m以内にすることが可能となつた。
For this reason, the most suitable material for the fireproof board is a molded fireproof board made of heat-resistant ceramic. Especially suitable are silicon nitride and silicon carbide, which have high strength.
If the thickness is too thin, there is a risk of it being damaged by the pressure of the cooling water.
Also, if it is too thick, there is a risk of cracking due to the temperature difference between the inner and outer surfaces, so 5 to 7 m/m is appropriate from the viewpoint of strength and heating efficiency. As is clear from FIG. 3, the heating efficiency is proportional to the gap between the conductor and the steel to be heated. Therefore, in order to increase the coil efficiency, it is necessary to appropriately set the distance between the cooling passage through which the cooling water flows, the fireproof plate, and the steel material to be heated. By using the coil structure of the present invention, the fireproof plate and the cooling passage can be made up to 10
It has become possible to reduce the distance within m/m.

次に実施例として、耐火板として厚さ6ミリの
窒化けいそ成形板を用い、冷却通路の高さを2ミ
リとし、第1図に示す構成の誘導加熱コイルを製
作した。このコイルを用い、1350℃の被加熱鋼材
(鍛造鋼管)との間を7ミリとして、導体下面と
被加熱物とのギヤツプを15ミリとしてコイルの冷
却通路に冷却水を流し、冷却しつつ加熱した。こ
の結果、コイルの効率を約45%とすることができ
た。
Next, as an example, an induction heating coil having the configuration shown in FIG. 1 was manufactured using a silicon nitride molded plate with a thickness of 6 mm as a fireproof plate and a height of a cooling passage of 2 mm. Using this coil, the distance between the steel material to be heated (forged steel pipe) at 1350℃ is 7 mm, and the gap between the bottom surface of the conductor and the material to be heated is 15 mm, and cooling water is flowed through the cooling passage of the coil to cool and heat. did. As a result, we were able to increase the efficiency of the coil to approximately 45%.

(発明の効果) 以上説明したように、本発明は耐熱、耐強度に
優れたコイル構造にしたので、1000〜1400℃とい
う高温の被加熱鋼材を導体下面の直下に配置して
加熱することが可能となり、加熱効率が大巾に向
上した。
(Effects of the Invention) As explained above, since the present invention has a coil structure with excellent heat resistance and strength resistance, it is possible to heat the steel material at a high temperature of 1000 to 1400°C by placing it directly under the lower surface of the conductor. This greatly improved heating efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aは本発明実施例コイルの断面図、同b
は同コイルの一部切欠き斜視図、第2図は本発明
コイルの磁束状況説明、第3図は導体の被加熱鋼
材間のギヤツプとコイル効率の関係を示す図、第
4図a,bは従来の誘導加熱コイルの斜視図及び
断面図である。 1……導体、2……絶縁被覆、3……導体用冷
却水、4……セラミツク板、5……鉄心、6……
外箱、7……鉄心用冷却孔、8……冷却流体入
口、9……冷却流体出口、10……被加熱鋼材、
11……磁束、12……流体通路、20……誘導
加熱コイル、13……流体通路。
Fig. 1a is a sectional view of a coil according to an embodiment of the present invention, Fig. 1b
2 is a partially cutaway perspective view of the same coil, FIG. 2 is an explanation of the magnetic flux situation of the coil of the present invention, FIG. 3 is a diagram showing the relationship between the gap between the heated steel materials of the conductor and coil efficiency, and FIGS. 4 a and b 1 is a perspective view and a sectional view of a conventional induction heating coil. 1... Conductor, 2... Insulation coating, 3... Cooling water for conductor, 4... Ceramic board, 5... Iron core, 6...
Outer box, 7... Cooling hole for iron core, 8... Cooling fluid inlet, 9... Cooling fluid outlet, 10... Steel material to be heated,
11...Magnetic flux, 12...Fluid passage, 20...Induction heating coil, 13...Fluid passage.

Claims (1)

【特許請求の範囲】[Claims] 1 高温鋼材を加熱する誘導加熱コイルにおい
て、高温の被加熱鋼板の上方で該鋼材に平行に設
けた表面を絶縁被覆した導体の周囲に鉄心を鞍掛
に配置し、該鉄心と導体の下面側に薄いセラミツ
ク製の成形耐火板を、鉄心の他の外周面に外箱を
配置し、少なくとも前記鉄心と導体の下面と、耐
火板との間にわずかな空隙を設けて冷却流体通路
を構成し、この通路に冷却流体を流通し、導体、
鉄心及びセラミツク製の成形耐火板の冷却を同時
に行うように構成したことを特徴とする誘導加熱
コイル。
1. In an induction heating coil that heats high-temperature steel materials, an iron core is placed in a saddle around a conductor whose surface is insulated, which is parallel to the high-temperature heated steel sheet above the steel sheet, and the iron core and the lower surface of the conductor are A molded fireproof board made of thin ceramic is arranged with an outer box on the other outer peripheral surface of the core, and a small gap is provided between at least the bottom surface of the core, the conductor, and the fireproof board to constitute a cooling fluid passage, A cooling fluid flows through this passage, and a conductor,
An induction heating coil characterized in that it is configured to simultaneously cool an iron core and a molded ceramic fireproof plate.
JP16119286A 1986-07-09 1986-07-09 Induction heating coil Granted JPS6316595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16119286A JPS6316595A (en) 1986-07-09 1986-07-09 Induction heating coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16119286A JPS6316595A (en) 1986-07-09 1986-07-09 Induction heating coil

Publications (2)

Publication Number Publication Date
JPS6316595A JPS6316595A (en) 1988-01-23
JPH0212400B2 true JPH0212400B2 (en) 1990-03-20

Family

ID=15730334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16119286A Granted JPS6316595A (en) 1986-07-09 1986-07-09 Induction heating coil

Country Status (1)

Country Link
JP (1) JPS6316595A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03268800A (en) * 1990-03-20 1991-11-29 Matsushita Electric Ind Co Ltd Steam blower

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03266391A (en) * 1990-03-15 1991-11-27 Fuji Denshi Kogyo Kk High frequency heating coil body
JP2558091Y2 (en) * 1991-09-13 1997-12-17 北芝電機株式会社 Induction heating device inductor
JP4833740B2 (en) * 2006-06-02 2011-12-07 新日本製鐵株式会社 Metal strip heating device with excellent temperature uniformity in the plate width direction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03268800A (en) * 1990-03-20 1991-11-29 Matsushita Electric Ind Co Ltd Steam blower

Also Published As

Publication number Publication date
JPS6316595A (en) 1988-01-23

Similar Documents

Publication Publication Date Title
JPH0212400B2 (en)
WO2002090836A1 (en) Electric water heater, liquid heater, steam generator
KR20070088788A (en) Electric induction impeder
JP3479868B2 (en) Induction heating device
KR0142908B1 (en) Protecting device for induction poles and inductor provided with this device
JPS6144731A (en) Magnetic yoke inductor for use of glass fiber manufacture apparatus
JP4777191B2 (en) Induction heating equipment installed in continuous annealing furnace with zinc bath
JPH03230089A (en) Induction heating crucible
JP2022524841A (en) Electromagnetic devices and systems for pumping, circulating, or transferring non-ferrous molten metals
CN215879784U (en) Inductor
JPS5826500Y2 (en) liquid cooled wound core
JP2953964B2 (en) Liquid heating device using electromagnetic induction heating
JP3331154B2 (en) Insulation plate for induction heating coil
CN217061687U (en) Dry-type transformer with high-efficient heat radiation structure
JPS5960983A (en) Induction heater
JP2558091Y2 (en) Induction heating device inductor
JP3129917B2 (en) Inductor for induction heating equipment
CN209824065U (en) Electromagnetic heating assembly
JPS6144395Y2 (en)
JPS5825097A (en) Induction heater
JP2003151736A (en) Fluid heating device by electromagnetic induction
JPS5825096A (en) Induction heater
SU1072118A1 (en) Transformer
JP2751439B2 (en) Furnace wall cooling mechanism of induction melting furnace
JP3024408B2 (en) Heating unit for vacuum equipment