JPH02122887A - Structure of floatation-separation vessel - Google Patents

Structure of floatation-separation vessel

Info

Publication number
JPH02122887A
JPH02122887A JP27612488A JP27612488A JPH02122887A JP H02122887 A JPH02122887 A JP H02122887A JP 27612488 A JP27612488 A JP 27612488A JP 27612488 A JP27612488 A JP 27612488A JP H02122887 A JPH02122887 A JP H02122887A
Authority
JP
Japan
Prior art keywords
water
tank
vessel
water level
floc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27612488A
Other languages
Japanese (ja)
Inventor
Kojin Katsuragi
桂木 行人
Sumio Kitano
北野 澄夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP27612488A priority Critical patent/JPH02122887A/en
Publication of JPH02122887A publication Critical patent/JPH02122887A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE:To extremely miniaturize both the volume of the whole equipment and installation area by performing both functions of floatation and separation in one vessel and also shortening the time necessary therefor within several minutes. CONSTITUTION:Both floc formed in a flocculation tank 3 and water to be treated are introduced into a foam generating part 13 from the lower part and the floc is stuck with foams in the same chamber and buoyancy is obtained. This floc is intactly raised straightly in the vessel and thereby a deposited sludge layer 8 is successively formed on the water surface. The water level in the vessel is controlled by a water level regulating pipe 11 and sludge which is laminated from the lower part and has been reached the water level is always scraped with a skimmer 9 and discharged to the outside of the vessel. The treated water separated from floc is made downward flow directed to a discharge part 14 of the vessel bottom part and slowly transferred and discharged to the outside of the vessel through a discharge port 15 via the water level regulating pipe 11.

Description

【発明の詳細な説明】 (発明−1) 現在広く行われている排水処理方法の1つとして凝集浮
上分離法がある。この方法は凝集フロック(スラッチ)
と放流水との分離に要する時間が凝集沈澱法に比べて短
く、広大な沈澱装置を必要としない点を長所としたもの
で現在「加圧浮上法Jと「電解浮上法jとの2法が行わ
れているが本発明は主として電解浮上装置の構造に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Invention-1) One of the currently widely used wastewater treatment methods is the coagulation flotation separation method. This method uses agglomerated flocs (slatch)
The advantages of this method are that the time required to separate the water from the effluent is shorter than that of the coagulation sedimentation method, and it does not require a large sedimentation equipment. However, the present invention mainly relates to the structure of an electrolytic levitation device.

第1図は現在実施されているこの浮上分ji!装置の代
表的な構造を示したものである。即ち処理水は(1)及
(2)の「反応槽jで薬注処理され「凝集槽」 (3)
に於てフロックの形成を行った後、その下方から「浮上
槽」 (4)内に流入する。
Figure 1 shows the floating fraction ji! currently being implemented. This figure shows a typical structure of the device. In other words, the treated water is treated with chemicals in the reaction tank j of (1) and (2) and is then processed into the flocculation tank (3).
After forming flocs, the flocs flow into the "flotation tank" (4) from below.

この「浮上槽Jでは、「加圧浮上法Jの場合は加圧水ノ
ズルから加圧飽和水が放出され「電解浮上法」の場合は
電極(5)による水の電気分解が行われて、それぞれに
多量の気泡の発生が行われる。
In this flotation tank J, pressurized saturated water is discharged from the pressurized water nozzle in the case of the pressurized flotation method J, and water is electrolyzed by the electrodes (5) in the case of the electrolytic flotation method. A large amount of bubble generation takes place.

フロックはその中で気泡を附着し、処理水の流れと共に
「隔壁A (6)の上を超えて一旦「分離槽J (7)
内に拡散した後、遂次浮上しながら槽表面全体にスラッ
チ堆積層(8)を形成しスキーマ−(9)で槽外に排出
される。
The flocs have air bubbles attached therein, and together with the flow of the treated water, they pass over the "partition wall A (6)" and are once transferred to the "separation tank J (7)".
After being diffused into the tank, it gradually floats up to form a slatch deposit layer (8) on the entire surface of the tank, and is discharged to the outside of the tank by a schema (9).

フロックを分離した後の処理水は分離槽(7)終末部の
放流口(10)から槽外に放出されるが、この際この放
流口の水位は常にスラッチ堆積層と同一の水位を保つ様
水位調整パイプ(11)で調整されているものである。
The treated water after separating the flocs is discharged to the outside of the tank from the outlet (10) at the end of the separation tank (7), but at this time, the water level at this outlet is always kept at the same level as the slatch accumulation layer. The water level is adjusted by a water level adjustment pipe (11).

この様な構造の分離槽に於ては、フロックと処理水との
完全分離に要する時間は最低20〜30分以上が必要と
されているが、この時間は全処理工程に要する時間の半
分に相当するものであり、従って現行排水処理装置の場
合にあたっては、この分離槽のみの為に全装置容積の1
/2が占有されているのが実情である。
In a separation tank with this type of structure, the time required for complete separation of flocs and treated water is at least 20 to 30 minutes, but this time is half of the time required for the entire treatment process. Therefore, in the case of current wastewater treatment equipment, 1 of the total equipment volume is required just for this separation tank.
The reality is that /2 is occupied.

本考案は上記の浮上分離装置とは全(異なり、「浮上と
分離の両機能をl槽内で行うと共にそれに要する時間を
数分以内に短縮したjものであり、この事によって装置
全体の容積及び設置面積を著しく小型化する事に成功し
たものである。
The present invention is different from the above-mentioned flotation separation device in that it performs both flotation and separation functions within a single tank and shortens the time required to do so within a few minutes, thereby reducing the overall volume of the device. Moreover, we succeeded in significantly reducing the installation area.

以下その構造と機能を第2図に基づいて説明する。The structure and function will be explained below based on FIG.

本考案による(i′浮上分離槽u  (12)構造の特
徴は第1、槽の下方空間を縦に仕分けて1万は上下を開
口した「気泡発生部、D  (13)としてその中にr
電極」 (5)を設置し、他の1方は上部は開口し、下
部に放水口(15)を有する「放水部、!l  (14
)としたこと。
The first feature of the flotation separation tank U (12) structure according to the present invention is that the lower space of the tank is divided vertically, and the upper and lower parts are opened as a bubble generating section, D (13).
The other side is open at the top and has a water outlet (15) at the bottom.
).

第2、この2部の上方から水表面に至る間の空間を共通
水域(16)とし、この水域内でフロックの浮上と放流
水の分離を行う構造としたこと。
Second, the space between the upper part of these two parts and the water surface is made into a common water area (16), and the structure is such that floating of flocs and separation of discharged water are carried out within this water area.

第3、放流水の出口には水位調整パイプ(11)を設け
、その水位とスラッヂ層の水位とを連動せしめる構造と
したこと。
Third, a water level adjustment pipe (11) is provided at the outlet of the discharged water, and the water level is linked to the water level of the sludge layer.

第4、この浮上分離槽(12)の大きさは、処理水が2
〜4分程度滞留する容積で足りるが、その深さは1m程
度以上とすることの4点である。
Fourth, the size of this flotation separation tank (12) is such that the treated water is
A volume in which the water stays for about 4 minutes is sufficient, but the depth should be about 1 m or more.

この様な構造を有する本「浮上分離槽A  (12)の
性能は次の通りである。
The performance of the flotation tank A (12) with this structure is as follows.

(イ)「凝集槽(3)で形成されたフロックと処理水は
下方から「気泡発生部A  (13)に入り同室内で気
泡なNHMして浮力を得、そのまま槽内な直行上昇して
逐次水表面にスラッチ堆積層(8)を形成する。この場
合槽内の水位は「水位鋼゛整バイブ、n  (11)に
よって制御されて、常に槽壁の高さよりも低(維持され
ており、下方から積層してその水位に達したスラッチは
常時スキーマ−(9)によって掻取られ槽外に排出され
る。
(b) The flocs and treated water formed in the flocculation tank (3) enter the bubble generation section A (13) from below, form bubbles in the same chamber, become NHM, gain buoyancy, and rise straight into the tank. A slatch deposit layer (8) is successively formed on the water surface.In this case, the water level in the tank is controlled by a "water level control vibrator" (11), and is always maintained lower than the height of the tank wall. The slatch that has accumulated from below and reached that water level is constantly scraped off by the schema (9) and discharged to the outside of the tank.

(ロ)フロック除去後の処理水は槽底部の「放水部、!
l  (14)へ向う下向流となってゆるやかに移動し
、r放水口A  (15)より水位調整パイプ(11)
を経て槽外に放流される。
(b) After removing flocs, the treated water is discharged from the "water discharge section" at the bottom of the tank!
The water slowly moves in a downward direction toward l (14), and then flows from r water outlet A (15) to water level adjustment pipe (11).
After that, it is discharged outside the tank.

(ハ)この一連の経過の中で気泡によって浮力を得たフ
ロック上昇速度は毎分3m程度であって。
(c) During this series of processes, the flocs gained buoyancy due to the air bubbles and the rising speed was about 3 m/min.

深さ1〜1.5mの槽中では凡そ30秒程度でその浮上
を完了するものである。これに対し、槽内な移動する処
理水の流れは槽内な平均で2〜4分間かけて通過する毎
分0.5〜1m程度のゆるやかな流れであって、フロッ
クに正常な浮上刃がある限り、このフロックと放流水と
の分離作業は確実に遂行される。
In a tank with a depth of 1 to 1.5 m, levitation is completed in about 30 seconds. On the other hand, the flow of treated water moving in the tank is a slow flow of about 0.5 to 1 m per minute, taking an average of 2 to 4 minutes to pass through the tank, and the normal floating blades on the flocs. As far as possible, this separation work between flocs and effluent water is reliably carried out.

本考案による「気泡発生部、It  (13)と「放水
部j(14)との相互の位置関係は、相互の上方に了共
通水域A  (16)を共有するという基本原理さえ共
通であれば決して固定的なものではなく、例えば第2図
の位置関係を第4図の位置関係にする事が出来、又第3
図、第5図の如く必要によって放流水滞溜槽(17)を
設けその中に水位調整パイプ(11)を設けることも可
能である。
The mutual positional relationship between the bubble generating part It (13) and the water discharge part J (14) according to the present invention is as long as they share the basic principle of sharing a common water area A (16) above each other. It is by no means fixed; for example, the positional relationship in Figure 2 can be changed to the positional relationship in Figure 4, or the positional relationship in Figure 3 can be changed to the positional relationship in Figure 4.
If necessary, it is also possible to provide a effluent water retention tank (17) and install a water level adjustment pipe (11) therein as shown in FIGS.

(発明−2) 電気分解の効果を高める手段として最も広く行われるの
は水の電気抵抗を低くする方法であり、その手段として
食塩の添加が行われている。従来の方法では初期の反応
槽段階(1)(2)でその添加を行うことによって処理
水全体に対してその塩分濃度を高くしていた。これは従
来の方法では処理水の全量が電極内を通過している事に
より採用されて来た手段であった。
(Invention-2) The most widely used method to enhance the effect of electrolysis is to lower the electrical resistance of water, and one of the methods used is to add common salt. In the conventional method, the salt concentration of the entire treated water was increased by adding it at the initial reaction tank stage (1) and (2). This method has been adopted in the conventional method because the entire amount of treated water passes through the electrode.

本考案は、この塩分添加量を極力少なくし併せて系外に
放出する放流水中の塩分濃度を極力低くする事を目的と
したものであって、その手段として第6図に示す如く処
理水の流れの中に設置したい上方水流(20)と流量の
少ない下方水流(21)とに分かち、下方水流は電極(
5)の下方に入りTi極内を上方に通過する過程で電気
分解をうけて気泡の発生源となり、上方水流は電極の上
方に流れ電極の上方に於て電極から発生する上昇気泡と
混合する形としたものである。
The purpose of the present invention is to reduce the amount of added salt as much as possible, and at the same time to reduce the salt concentration in the effluent water discharged outside the system as much as possible. It is divided into an upper water flow (20) that should be installed in the flow and a lower water flow (21) with a low flow rate.
5) In the process of entering below and passing upward through the Ti electrode, it undergoes electrolysis and becomes a source of bubbles, and the upward water flow flows above the electrode and mixes with rising bubbles generated from the electrode. It is a form.

この際の食塩の添加は専ら流量の少ない下方水流(21
)に開口する「食塩水流入口J  (22)より行われ
る為塩分の添加量は著しく削減されるが、本来電解の場
合の気泡発生量の多少は通過水量とは関係なく専らその
消費電力量に比例し、その電力量は水の電気抵抗値(本
例の場合は塩分濃度)に比例するものであるから、塩分
濃度が同一である限り通過水量は少量であっても気泡発
生量に変化はないものであり、この方法への変更による
フロックの浮上効率の低下は全(認められない。
At this time, salt is added exclusively to the downward flow with a small flow rate (21
) The salt water inlet J (22) is used to significantly reduce the amount of salt added. The amount of electricity is proportional to the electrical resistance value of the water (in this case, the salt concentration), so as long as the salt concentration remains the same, there will be no change in the amount of bubbles generated even if the amount of water passing through is small. Therefore, no decrease in floc flotation efficiency was observed due to changes to this method.

(発明−3) 本考案は電解気泡量のバロメーターである電流量の変化
に対応して、処理水の電気抵抗を調整して常時一定の電
流量を維持する事を目的として、電極部を通過する直前
の処理水に対する工業塩水の添加量を増減する様したも
であって、その手段として設定電流量(アンペア)が不
足した場合には工業用塩水供給ポンプの回転を行い、設
定アンペアを上回った場合にはその回転を停止する機能
をもつ電気回路を設けたことを特徴としたものである。
(Invention-3) The present invention aims to adjust the electrical resistance of treated water in response to changes in the amount of current, which is a barometer of the amount of electrolyzed bubbles, and to maintain a constant amount of current at all times. This is a system that increases or decreases the amount of industrial salt water added to the treated water immediately before treatment, and as a means of doing so, if the set amount of current (ampere) is insufficient, the industrial salt water supply pump is rotated to increase or decrease the amount of industrial salt water added to the treated water. The device is characterized by being equipped with an electric circuit that has the function of stopping the rotation if the rotation occurs.

この場合の工業塩水の濃度は処理水の条件変化にもよる
が一般的には10%以上の濃度のものを使用する。
The concentration of industrial salt water in this case depends on changes in the conditions of the treated water, but generally a concentration of 10% or more is used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図、第4図、第5図、第6図共通 ■、第1反応槽    79分離槽 2、第2反応槽    8.スラッヂ堆積層3、凝集槽
      9.スキーマ−4、浮上槽      1
0.放流口 5、電極       11.水位調整バイブロ、隔壁
       12.浮上分離槽気泡発生部 放水部 放水口 共通水域 放流水滞溜槽 スラッヂ排出口 補助yゐ複 上方水流 下方水流 食塩水流入口 食塩水タンク 食塩水ポンプ アンベヤ−ター ター 桂  木  行  人 北  野  澄  夫 第1図 手続補正書 (方式) 事件の表示 昭和63年特許第276124号 発明の名称 浮上分離槽の構造 補正をする者 事件との関係  特許出願人 住所 東京都国立市富士見台1丁目28番地2、願書の
発明の名称の欄 3、明細書における図面の簡単な説明の欄/1≧\補正
の内容 明細書の9頁上より13行及14行を削除し次の文を挿
入する。 第1図は 従来の浮上分離槽の構造図 第2図は 1槽内の底辺に電極と排水管を設け、その上
方の共通水域内でフロックの浮上除去と排水の分離を行
い、底辺の排水パイプの先端に水位調整パイプを設けた
浮上分離槽の構造図第3図は 浮上分離槽と底辺で相互
に連結している放水槽を設け、その放水槽中に水位調整
パイプを設けた浮上分離槽の構造図 第4図は 電極と放水口を第2図とは反対の位置に設け
た浮上分iii!槽の構造図 第5図は 浮上分離槽と放水槽を第3図とは反対の位置
に設けた浮上分離槽の構造図 第6図は 電極をはさんで処理水を上方流を下方流とに
別けた電解槽の構造及び、電極内を流れる電流量の大小
に対応して電解質供給ポンプの稼動を制御する制御ライ
ンの構造図
Common to Figures 1, 2, 3, 4, 5, and 6 ■, 1st reaction tank 79 Separation tank 2, 2nd reaction tank 8. Sludge accumulation layer 3, coagulation tank 9. Schema-4, flotation tank 1
0. Outlet port 5, electrode 11. Water level adjustment vibro, bulkhead 12. Flotation separation tank Bubble generation section Water discharge section Water outlet Common area Discharge water Retention tank Sludge discharge port Auxiliary upper water flow Lower water flow Saline water inlet Saline water tank Saline water pump Unveyor Tarter Katsura Wood line Hitokita No Sumio Diagram 1 Procedure Written amendment (method) Indication of the case 1986 Patent No. 276124 Name of the invention Person who makes structural amendments to the flotation separation tank Relationship to the case Patent applicant address 1-28-2 Fujimidai, Kunitachi-shi, Tokyo Invention of the application Name column 3, brief description of drawings in the specification column/1≧\Contents of amendment Delete lines 13 and 14 from the top of page 9 of the specification and insert the following sentence. Figure 1 shows the structure of a conventional flotation tank. Figure 2 shows the structure of a conventional flotation tank. Figure 2 shows the structure of a conventional flotation tank. Electrodes and a drain pipe are installed at the bottom of the tank, and the flocs are floated and removed in the common water area above, and the waste water is separated. Figure 3 shows the structure of a flotation separation tank with a water level adjustment pipe installed at the tip of the pipe.The flotation separation tank has a water discharge tank that is connected to the flotation tank at the bottom, and a water level adjustment pipe is installed in the water discharge tank. The structural diagram of the tank, Figure 4, shows the floating portion iii with the electrodes and water outlet located in the opposite position from those shown in Figure 2! Figure 5 is a structural diagram of the tank. Figure 6 is a structural diagram of a flotation tank with a flotation tank and a water discharge tank installed in the opposite positions from those shown in Figure 3. A structural diagram of the structure of the electrolytic cell divided into two parts and the control line that controls the operation of the electrolyte supply pump depending on the amount of current flowing through the electrodes.

Claims (3)

【特許請求の範囲】[Claims] (1)凝集排水の電解浮上分離装置に於て、1つの槽の
下辺に気泡発生部と放流水部を設け、この両部の上から
水表面に至る間を共通水域とし、その共通水域内で凝集
フロックの浮上と放流水の分離とを同時に行うことを特
徴とする浮上分離槽の構造。
(1) In an electrolytic flotation separation device for coagulated wastewater, a bubble generation part and a discharge water part are provided at the bottom of one tank, and the area between the top of these two parts and the water surface is a common water area, and within that common water area The structure of a flotation separation tank is characterized in that it simultaneously floats flocs and separates discharged water.
(2)通過する排水の流れを上方流と下方流とに2分し
双方の間に電極を設置した電解浮上槽の構造。
(2) Structure of an electrolytic flotation tank in which the flow of passing wastewater is divided into an upward flow and a downward flow, and electrodes are installed between the two.
(3)電解浮上装置に於て電解気泡発生の為に消費され
る電力量に対応して電解処理水に対する塩分の添加量の
増減を行う事を特徴とする塩水供給装置の構造。
(3) A structure of a salt water supply device characterized in that the amount of salt added to electrolytically treated water is increased or decreased in accordance with the amount of electricity consumed for electrolytic bubble generation in an electrolytic flotation device.
JP27612488A 1988-11-02 1988-11-02 Structure of floatation-separation vessel Pending JPH02122887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27612488A JPH02122887A (en) 1988-11-02 1988-11-02 Structure of floatation-separation vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27612488A JPH02122887A (en) 1988-11-02 1988-11-02 Structure of floatation-separation vessel

Publications (1)

Publication Number Publication Date
JPH02122887A true JPH02122887A (en) 1990-05-10

Family

ID=17565127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27612488A Pending JPH02122887A (en) 1988-11-02 1988-11-02 Structure of floatation-separation vessel

Country Status (1)

Country Link
JP (1) JPH02122887A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231256B2 (en) * 1974-08-14 1977-08-13
JPS5437161U (en) * 1977-08-19 1979-03-10
JPS5955400A (en) * 1982-09-22 1984-03-30 Mitsubishi Electric Corp Electric floating sludge thickener

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231256B2 (en) * 1974-08-14 1977-08-13
JPS5437161U (en) * 1977-08-19 1979-03-10
JPS5955400A (en) * 1982-09-22 1984-03-30 Mitsubishi Electric Corp Electric floating sludge thickener

Similar Documents

Publication Publication Date Title
FI70874B (en) BIOREACTOR ORGANIZATION WITH VERTICAL SCHEME SAMT FOERFARANDE FOERSKYDDANDE AV EN UNDER TRYCK STAOENDE BIOREACTOR SOM UPPVI SA VERTICAL SCHAKT MOT NETWORK AV OEVERSVAEMNING AV INKOMMA ND AVFALLSVAETSKA
US3505188A (en) Electrolytic flotation method and apparatus
CN101983941B (en) Electric flocculation-air flotation integrated waste water treatment equipment
US4732661A (en) Electrolytic purification system
US3756933A (en) Method of purifying sewage efluent and apparatus therefor
CN103523966A (en) Advanced wastewater treatment system and treatment method
US4743379A (en) Flotation device
JPH02122887A (en) Structure of floatation-separation vessel
US4202767A (en) Process and device for the purification of waste water by means of electroflotation
CN110606602A (en) Domestic sewage treatment process
US2456897A (en) Electrolytic clarification apparatus
JP3739242B2 (en) Multi-stage concentration equipment for excess sludge
JPS59186689A (en) Process and device for eliminating turbidity of turbid water by flocculation
KR20210019150A (en) Wastewater treatment apparatus using electrocoagulation with back wash filter
SU1411289A1 (en) Apparatus for electrochemical purification of waste water
SU1675215A1 (en) Method for sewage purification against ions metals and device for it realization
JPH04131185A (en) Electric floating device
EP2417071B1 (en) Colloid decomposition method and apparatus for electrochemically separating emulsions
CN2510483Y (en) Waste-water purifying equipment
JPS59109209A (en) Deaerating and defoaming method of sludge
JPS5927636B2 (en) flotation separation device
JPH04267988A (en) Electric floating apparatus
JPH04300694A (en) Water purifying apparatus due to electrolytic treatment
CN105347563A (en) Air floating and filtering integrated device
SU1006381A1 (en) Method for purifying fat-bearing effluents