JPH04131185A - Electric floating device - Google Patents

Electric floating device

Info

Publication number
JPH04131185A
JPH04131185A JP24969290A JP24969290A JPH04131185A JP H04131185 A JPH04131185 A JP H04131185A JP 24969290 A JP24969290 A JP 24969290A JP 24969290 A JP24969290 A JP 24969290A JP H04131185 A JPH04131185 A JP H04131185A
Authority
JP
Japan
Prior art keywords
tank
floc
waste water
gas bubbles
flocs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24969290A
Other languages
Japanese (ja)
Inventor
Sakujiro Kadota
門田 作次郎
Yasuo Itaya
板谷 康男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SYST GEITO KK
TAFU KAIHATSU KK
Original Assignee
SYST GEITO KK
TAFU KAIHATSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SYST GEITO KK, TAFU KAIHATSU KK filed Critical SYST GEITO KK
Priority to JP24969290A priority Critical patent/JPH04131185A/en
Publication of JPH04131185A publication Critical patent/JPH04131185A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE:To permit an efficient treatment of an org. waste water by providing a floating tank for floating floc in association with hydrogen gas bubbles, a separating tank for separating the floc from the waste water to be treated and a skimmer for removing the floc. CONSTITUTION:The floc introduced into a floating tank 7 associates at once with high density hydrogen gas bubbles produced from an electrode 9 and rises along the side wall of the floating tank 7 due to its buoyant force. At this time, a small amt. of the floc which has not been able to associate with the hydrogen gas bubbles immediately after introduction of the floc into the floating tank 7 is raised again to associate with the hydrogen gas bubbles and floated to the surface. The waste water runs from below to above between gaps between the electrodes 9 and BOD, COD, and coloring matter in the waste water are removed therefrom due to the oxidation-reduction reaction caused by electrolysis. On the other hand, the floc floating in assocoation with the hydrogen gas bubbles, together with the waste water is sent to a separating tank 12, there-after separated from the waste water by a skimmer 13 provided above and carried out from an outlet opening 14a of a sludge tank 14. In this way the org. waste water can be treated efficiently.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、産業排水の処理技術に関し、特に電気浮上法
を利用した有機排水処理に適用して有効な技術に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a technology for treating industrial wastewater, and in particular to a technology that is effective when applied to organic wastewater treatment using electric levitation.

〔従来の技術〕[Conventional technology]

産業排水の処理方法には、大別して生物的処理方法と物
理化学的処理方法とがあり、有機排水の処理には、主と
して(1)活性汚泥法、(2)接触酸化法、(3〕円板
曝気法などの生物的処理方法が利用されている。しかし
、生物的処理方法は、処理BOD 1kg/日に対し、
水量0.5〜1m’/日、空気量5ONm’/日を必要
とするため、設備面積、施設費などに莫大が経費を要す
る欠点のあることが指摘されている。
Treatment methods for industrial wastewater can be roughly divided into biological treatment methods and physicochemical treatment methods.The treatment methods for organic wastewater are mainly (1) activated sludge method, (2) catalytic oxidation method, and (3) catalytic oxidation method. Biological treatment methods such as plate aeration method are used. However, biological treatment methods have a
It has been pointed out that since it requires a water volume of 0.5 to 1 m'/day and an air volume of 5 ONm'/day, it has the drawback of requiring a huge amount of equipment area and facility costs.

一方、物理化学的処理方法には、(1)凝集沈澱法、(
2)加圧浮上法、(3)電気浮上法、(4)吸着法、(
5)逆浸透圧法などがある。これらの処理方法のうち、
吸着法および逆浸透圧法は、生物的処理方法などで処理
された排水をより高度に処理するために利用されている
。凝集沈澱法は、重い粒子を含み、かつ油分を含まない
排水の処理に利用されている。
On the other hand, physicochemical treatment methods include (1) coagulation-precipitation method, (
2) Pressure levitation method, (3) Electric levitation method, (4) Adsorption method, (
5) There is a reverse osmosis method. Among these processing methods,
Adsorption methods and reverse osmosis methods are used to more advancedly treat wastewater that has been treated with biological treatment methods. The coagulation-sedimentation method is used to treat wastewater that contains heavy particles but does not contain oil.

加圧浮上法は、高濃度排水中の55SBOD、C0D、
油分などを効率よく除去できることから、生物的処理の
前処理として、また水質規制値があまり厳しくない場合
には単独で利用されている。
The pressure flotation method is used to remove 55SBOD, COD, and COD in high concentration wastewater.
Because it can efficiently remove oil and other substances, it is used as a pretreatment for biological treatment, and when water quality regulations are not too strict, it is used alone.

電気浮上法は、■有機排水を無機反応槽および高分子反
応槽に導き、排水中の親永住物質の一部および疎水性汚
濁物質を凝集させてフロックを形成する工程、■フロッ
クを形成した排水を浮上槽に導き、フロックに電解ガス
気泡を会合させて浮上させる工程、■浮上したフロック
を浮上分離槽に導き、スキーマ−によって除去する工程
からなり、加圧浮上法と同様、高濃度排水中の5SSB
OD。
Electric levitation is a process in which organic wastewater is introduced into an inorganic reaction tank and a polymer reaction tank, and part of the parent permanent resident substances and hydrophobic pollutants in the wastewater are flocculated to form flocs; The process consists of the following steps: 1. Guide the floated flocs to a flotation tank, make electrolytic gas bubbles associate with the flocs, and float the flocs; 1) Guide the floated flocs to a flotation separation tank and remove them using a schema; 5SSB
O.D.

COD、油分などを効率よく除去できる利点を有してい
る。また、電気浮上法は、加圧浮上法に比べて下記のよ
うな利点を有している。
It has the advantage of efficiently removing COD, oil, etc. Furthermore, the electric levitation method has the following advantages over the pressure levitation method.

(1)、コンプレッサーや加圧ポンプを使用しないので
、騒音が発生しない。
(1) Since no compressor or pressure pump is used, no noise is generated.

(2)、加圧水を使用しないので、浮上分離槽を小形化
することができる。また、加圧水製造装置を必要としな
いので、設備全体を小形化することができる。
(2) Since pressurized water is not used, the flotation tank can be made smaller. Furthermore, since a pressurized water production device is not required, the entire equipment can be downsized.

(3)、電解電流の変動操作により、微細な電解ガス気
泡の増減、制御を容易に行うことができる。
(3) By varying the electrolytic current, it is possible to easily control and increase the number of fine electrolytic gas bubbles.

(4)、!解の副次的効果として、次亜塩素ガス、塩素
ガスの副生によるBOD5C0Dの低減、脱色効果が得
られる。
(4),! As a side effect of the solution, a reduction in BOD5C0D and a decolorizing effect can be obtained due to the by-product of hypochlorite gas and chlorine gas.

なお、上記電気浮上法を利用した排水処理装置について
は、特開昭62−38286号公報、特開平2−219
94号公報などに記載がある。
Regarding wastewater treatment equipment using the above-mentioned electric levitation method, Japanese Patent Application Laid-Open No. 62-38286 and Japanese Patent Application Laid-open No. 2-219
There is a description in Publication No. 94, etc.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

電気浮上法は、前述したような多くの利点を有する優れ
た排水処理方法であるが、この電気浮上法を利用した従
来の排水処理装置は、下記のような実用上の問題点を有
しているため、有機排水の処理には殆ど利用されていな
いのが現状である。
The electric levitation method is an excellent wastewater treatment method that has many advantages as mentioned above, but conventional wastewater treatment equipment that uses this electric levitation method has the following practical problems. Currently, it is hardly used for treating organic wastewater.

(1)、浮上槽における電解ガス気泡の密度が小さいた
と、電解ガス気泡とフロックとの会合が不充分となり、
会合を受けないフロックが多量に発生してキャリオーバ
ー現象が生じる。また、−旦浮上したフロックから電解
ガス気泡が分離、逸散し、フロックが再沈澱し易い。こ
れらの理由により、SSの除去効率が低い。
(1) If the density of electrolytic gas bubbles in the flotation tank is low, the association between electrolytic gas bubbles and flocs will be insufficient;
A large amount of flocs that do not undergo association occurs, causing a carryover phenomenon. Moreover, electrolytic gas bubbles separate and dissipate from the flocs that have floated once, and the flocs tend to re-sediment. For these reasons, the SS removal efficiency is low.

(2)、浮上槽に導かれた排水が電極間を通過する際、
フロックによって架橋が形成され易いため、電気的な短
絡が生じて電解ガス気泡の発生が停止する事故が発生す
る。
(2) When the wastewater led to the flotation tank passes between the electrodes,
Since crosslinks are easily formed by the flocs, an accident occurs in which an electrical short circuit occurs and the generation of electrolytic gas bubbles is stopped.

(3)、浮上槽の構造上、電極の洗浄やスケール除去が
困難なため、SSの除去効率が経時的に低下する。
(3) Due to the structure of the flotation tank, it is difficult to clean the electrodes and remove scale, so the SS removal efficiency decreases over time.

(4)、キャリオーバーによるフロックの発生によって
、BOD5C0Dの除去効率も低下する。
(4) The removal efficiency of BOD5C0D also decreases due to the occurrence of flocs due to carryover.

本発明の目的は、電気浮上法を利用した排水処理装置(
以下、単に電気浮上装置という)の上記した問題点を改
善し、有機排水を効率的に処理することのできる電気浮
上装置を提供することにある。
The purpose of the present invention is to provide a wastewater treatment device (
It is an object of the present invention to provide an electric levitation device which can improve the above-mentioned problems of the electric levitation device (hereinafter simply referred to as an electric levitation device) and can efficiently treat organic wastewater.

〔問題点を解決するための手段〕[Means for solving problems]

本願において開示される発明のうち、代表的なものの概
要を簡単に説明すれば、次のとおりである。
A brief overview of typical inventions disclosed in this application is as follows.

本願の一発胡である電気浮上装置は、被処理排水に凝集
剤を作用させてフロックを形成する反応槽と、側壁に配
置した電極の直上にフロック流入口を配置し、前記フロ
ック流入口を通じて供給された前記フロックを前記電極
から発生する電解ガス気泡と会合させて浮上させる浮上
槽と、前記フロックと被処理排水とを分離する分離槽と
、前記フロックを除去するスキーマ−とを備えた一次電
気浮上装置の後段に第二の浮上槽を設けた構成を備えて
いる。
The electric flotation device, which is the basis of this application, includes a reaction tank that applies a flocculant to wastewater to be treated to form flocs, and a floc inlet placed directly above the electrodes placed on the side wall. A primary device comprising: a flotation tank that floats the supplied flocs by associating them with electrolytic gas bubbles generated from the electrodes; a separation tank that separates the flocs from wastewater to be treated; and a schema that removes the flocs. It has a configuration in which a second flotation tank is provided after the electric flotation device.

〔作用〕[Effect]

上記した手段によれば、−次電気浮上装置の電極を浮上
槽の側壁に配置し、その直上にフロック流入口を配置す
ることにより、浮上槽に流入したフロックを高密度の電
解ガス気泡と接触させることができるので、被処理排水
中のSSの殆どを一次電気浮上装置で除去することがで
きる。これにより、上記−次電気浮上装萱の後段に設け
た第二の浮上槽において、電解による酸化還元反応がS
Sによって阻害されることなく効率的に進行するので、
BOD、CODの殆どを除去することができ、有機排水
の高度処理を実現することができる。
According to the above-mentioned means, the electrodes of the secondary electric levitation device are placed on the side wall of the flotation tank, and the floc inlet is placed directly above it, so that the flocs flowing into the flotation tank are brought into contact with high-density electrolytic gas bubbles. Therefore, most of the SS in the wastewater to be treated can be removed by the primary electric flotation device. As a result, the oxidation-reduction reaction due to electrolysis is carried out in the second flotation tank installed after the above-mentioned secondary electric flotation device.
Because it progresses efficiently without being inhibited by S,
Most of BOD and COD can be removed, and advanced treatment of organic wastewater can be realized.

以下、実施例により本発明を説明する。The present invention will be explained below with reference to Examples.

ご実施例〕 本実施例による電気浮上装置の要部の構成を第1図およ
び第2図に示す。
Embodiment] FIGS. 1 and 2 show the configuration of the main parts of an electric levitation device according to this embodiment.

被処理有機排水は、スクリーンなどによって粗大ゴミを
取り除いた後、まず電気浮上装置1の一端に設けられた
排水流入口2を通じて第一の無機反応槽3aに導入され
る。上記無機反応槽3a1=は、有機排水の種類に応じ
て選択された、例えば塩化第二鉄などを含む無機凝集剤
が所定濃度注入されており、ここで排水のpH調整が行
われるとともに、排水中の親水性物質の一部と凝集剤と
が作用してフロックが形成される。上記無機反応槽3a
には、排水を撹拌する撹拌手段4や、図示は省略するが
、排水のpHを測定するpHセンサなどが設置されてい
る。
The organic wastewater to be treated is first introduced into the first inorganic reaction tank 3a through the wastewater inlet 2 provided at one end of the electric levitation device 1 after removing bulky waste using a screen or the like. The inorganic reaction tank 3a1= is injected with a predetermined concentration of an inorganic flocculant containing, for example, ferric chloride, which is selected according to the type of organic wastewater, and the pH of the wastewater is adjusted here. A part of the hydrophilic substance therein acts with the flocculant to form a floc. The above inorganic reaction tank 3a
A stirring means 4 for stirring the waste water, a pH sensor for measuring the pH of the waste water, etc. are installed, although not shown.

上記無機反応槽3aの隣りには、同様の構成を備えた第
二の無機反応槽3bが設けられており、第一の無機反応
槽3aで概ね調整された排水のpHl17)微調整が行
われる。また、排水中の親水性物質の一部は、ここで凝
集してフロックを形成する。
A second inorganic reaction tank 3b having a similar configuration is provided next to the inorganic reaction tank 3a, and the pH of the wastewater that has been roughly adjusted in the first inorganic reaction tank 3a is finely adjusted. . In addition, some of the hydrophilic substances in the wastewater aggregate here to form flocs.

上記第二の無機反応槽3bは、必要に応じて設けられる
もので、有機排水の種類によっては、第一の無機反応槽
3aだけでよい場合もある。また、有機排水の種類によ
っては、第二の無機反応槽3bの後段に第三の無機反応
槽を設けてもよい。
The second inorganic reaction tank 3b is provided as needed, and depending on the type of organic wastewater, only the first inorganic reaction tank 3a may be required. Further, depending on the type of organic wastewater, a third inorganic reaction tank may be provided after the second inorganic reaction tank 3b.

上記無機反応槽3a、3bて形成されたフロックは、排
水とともに隣りの高分子反応槽5に導入される。上記高
分子反応槽5には、有機排水の種類に応じて選択された
所定濃度の高分子凝集剤が注入されており、ここて上記
凝集剤と排水中の疎水性汚濁物質とが作用してフロック
が形成される。
The flocs formed in the inorganic reaction tanks 3a and 3b are introduced into the adjacent polymer reaction tank 5 together with the waste water. A polymer flocculant at a predetermined concentration selected according to the type of organic wastewater is injected into the polymer reaction tank 5, and the flocculant and hydrophobic pollutants in the wastewater interact with each other. Flocks are formed.

なお、有機排水中の疎水性汚濁物質の濃度が高い場合は
、上記高分子反応槽5の後段に第二、またはさらに第三
の高分子反応槽を設置してもよい。
Note that if the concentration of hydrophobic pollutants in the organic wastewater is high, a second or third polymer reaction tank may be installed after the polymer reaction tank 5.

上記無機反応槽3a、3bおよび高分子反応槽5で形成
されたフロックは、排水とともにフロック流入槽6を通
じて浮上槽7に導入される。上記フロック流入槽6には
、フロックを均一に浮上槽7に導入するだめの案内板8
が設けられている。
The flocs formed in the inorganic reaction tanks 3a, 3b and the polymer reaction tank 5 are introduced into the flotation tank 7 through the floc inflow tank 6 together with the waste water. The floc inflow tank 6 has a guide plate 8 for uniformly introducing the flocs into the flotation tank 7.
is provided.

上記浮上槽7の下部側壁には、電極9が配置されている
。上記電極9は、複数の陽極と陰極とを交互に配置した
構造を有しており、水の電気分解によって陰極から発生
した水素ガス気泡が、陽極と陰極との隙間から浮上する
ようになっている。上記電極9の直上には、フロック流
入口10が配置されており、フロックを含む排水は、上
記フロック流入口10を通じて浮上槽7に導入される。
Electrodes 9 are arranged on the lower side wall of the flotation tank 7. The electrode 9 has a structure in which a plurality of anodes and cathodes are arranged alternately, and hydrogen gas bubbles generated from the cathode by electrolysis of water float up from the gap between the anode and the cathode. There is. A floc inlet 10 is arranged directly above the electrode 9, and the waste water containing flocs is introduced into the flotation tank 7 through the floc inlet 10.

このように、上記浮上槽7は、その側壁に電極9を配置
し、上記電極9の直上にフロック流入口10を配置した
構成になっているため、フロック流入口10を通じて浮
上槽7に導入されたフロックは、電極9から発生する高
密度の水素ガス気泡と直ちに会合し、その浮力により浮
上槽7の側壁に沿って上昇する。またこのとき、電極9
の上方には、第2図に示すような対流(B)が形成され
るので、浮上槽7に導入された直後に水素ガス気泡と会
合できなかった少量のフロックも、この対流(B)に巻
き込まれて電極9の上方で再浮上し、水素ガス気泡と会
合して浮上する。なお、上記フロック流入口10には、
逆流防止板11が設けてあり、水素ガス気泡と会合して
浮上するフロックがフロック流入口10を通じて流入口
6に逆流するのを防止している。
In this way, the flotation tank 7 has the electrode 9 disposed on its side wall and the floc inlet 10 disposed directly above the electrode 9, so that the flocs are introduced into the flotation tank 7 through the floc inlet 10. The flocs immediately associate with high-density hydrogen gas bubbles generated from the electrode 9, and rise along the side wall of the flotation tank 7 due to their buoyancy. Also at this time, the electrode 9
Since a convection current (B) as shown in Fig. 2 is formed above, a small amount of flocs that were not able to associate with the hydrogen gas bubbles immediately after being introduced into the flotation tank 7 are also absorbed by this convection flow (B). It gets caught up and resurfaces above the electrode 9, and floats together with hydrogen gas bubbles. Note that the flock inlet 10 includes:
A backflow prevention plate 11 is provided to prevent flocs that float together with hydrogen gas bubbles from flowing back into the inlet 6 through the floc inlet 10.

上記電極9の側方および下方には、第2図に示すような
対流(A)が形成される。排水はこの対流(A)に沿っ
て電極9の隙間を下方から上方に流れ、電解による酸化
還元反応によって排水中のBOD、COD、色素などが
除去される。また、前述したように、浮上槽7に導入さ
れたフロックは、電極9上で水素ガス気泡と会合して浮
上するので、電極9の隙間を通過する排水中にはフロッ
クが殆ど含まれない。すなわち、上記浮上槽7は、フロ
ックによる電極9の隙間の目詰まりを防止することがで
きる構造となっている。
Convection (A) as shown in FIG. 2 is formed on the sides and below the electrode 9. The wastewater flows from below to above through the gap between the electrodes 9 along this convection (A), and BOD, COD, pigments, etc. in the wastewater are removed by an oxidation-reduction reaction caused by electrolysis. Further, as described above, the flocs introduced into the flotation tank 7 combine with hydrogen gas bubbles on the electrodes 9 and float, so that the waste water passing through the gaps between the electrodes 9 contains almost no flocs. That is, the flotation tank 7 has a structure that can prevent the gaps between the electrodes 9 from being clogged with flocs.

一方、水素ガス気泡と会合して浮上したフロックは、排
水とともに分離!’!12に導かれた後、その上方に設
けられたスキーマ−13によって排水から分離され、汚
泥槽14の排出口14aを通じて外部に排出される。水
素ガス気泡と会合して馬上したフロックは、高濃度の水
素ガス気泡を多タコ含むためにその浮力が大きく、従っ
て、−旦淳上したフロックが再沈澱することは殆どなし
)。このように、上記浮上槽7は、水素ガス気泡と会合
しないフロックが多量に発生ずるキアリオーバー現象を
確実に防止することができ、かつ−旦浮上したフロック
の再沈澱も防止することができる櫂造になってL′する
ので、排水中の55.BOD、COD、色素などを有効
に除去することができ、請にSSは、はぼ完全に除去す
る二とができる。また、上記浮上槽7におし)では、フ
ロック中に水沫ガス気泡が多量に含まれているので、ス
キーマ−13によって排水かち分離されたフロック中の
含水率が少なく、これにより、汚泥槽14の排出:1、
4 aから排出されるスラッジの量を少なくすることが
できる。
On the other hand, the flocs that float to the surface after combining with the hydrogen gas bubbles are separated along with the drainage! '! After being led to the sludge tank 12, the sludge is separated from the waste water by a schema 13 provided above, and is discharged to the outside through the discharge port 14a of the sludge tank 14. The flocs that float up in association with the hydrogen gas bubbles have a large buoyancy because they contain many high-concentration hydrogen gas bubbles; therefore, the flocs that have been lifted up are almost never re-sedimented. In this way, the flotation tank 7 is a paddle that can reliably prevent the chiariover phenomenon in which a large amount of flocs that do not combine with hydrogen gas bubbles is generated, and also prevent re-sedimentation of flocs that have already floated. Since the structure becomes L', 55. BOD, COD, pigments, etc. can be effectively removed, and SS can be almost completely removed. In addition, in the flotation tank 7), since the flocs contain a large amount of water droplet gas bubbles, the water content in the flocs drained and separated by the schema 13 is low. Emission: 1,
4. The amount of sludge discharged from a can be reduced.

上記のようにして、SSがほぼ完全に除去された排水は
、−次処理水導管15を通じて水位調議管】6に送られ
て水位の調整が行われた後、誘」管17および処理水流
入槽18を経て第二の浮上槽19に導入される。上記水
位調整管16と誘導管17との間には、必要に応じて無
機反応槽3Cが設けられる。上記反応槽3Cには、排水
の種類に応じて選択された、例えば塩化第二鉄などを含
む無機凝集剤が所定濃度注入されており、ここで排水の
pHの再調整が行われるとともに、排水中に僅かに残っ
ている親水性物質と凝集剤とが作用してフロックを形成
される。上記無機凝集剤は、電解によって次亜塩素ガス
や塩素ガスを発生するので、上記反応槽3Cを設けるこ
とにより、第二の浮上槽19におけるBOD、CODの
除去率および色素の脱色効果を向上させることができる
As described above, the wastewater from which SS has been almost completely removed is sent to the water level adjustment pipe 6 through the next treated water conduit 15, and the water level is adjusted. The liquid is introduced into a second flotation tank 19 via an inflow tank 18 . An inorganic reaction tank 3C is provided between the water level adjustment pipe 16 and the guide pipe 17, if necessary. An inorganic flocculant containing, for example, ferric chloride is injected into the reaction tank 3C at a predetermined concentration, which is selected according to the type of wastewater, and the pH of the wastewater is readjusted here. A small amount of hydrophilic substance remaining inside and the flocculant interact to form flocs. Since the inorganic flocculant generates hypochlorite gas and chlorine gas through electrolysis, the provision of the reaction tank 3C improves the removal rate of BOD and COD and the decolorization effect of pigments in the second flotation tank 19. be able to.

なお、上記無機反応槽3Cには、前記無機反応槽3a、
3bと同様、排水を撹拌する撹拌手段4、排水のpHを
測定するpHセンサなどが設置されている。上記反応槽
3CでpH調整された排水は、ポンプ20によって誘導
管17に送られ、次いで処理水流入槽18に導入される
Note that the inorganic reaction tank 3C includes the inorganic reaction tank 3a,
Similar to 3b, a stirring means 4 for stirring the waste water, a pH sensor for measuring the pH of the waste water, etc. are installed. The waste water whose pH has been adjusted in the reaction tank 3C is sent to the guide pipe 17 by the pump 20, and then introduced into the treated water inflow tank 18.

処理水流入槽18に導入された上記排水は、その底部に
設けられた開口21を通じて第二の浮上槽19に導入さ
れる。上記浮上槽19の底部側壁には、前記第一の浮上
W!7と同種の電極9が設けられている。排水は、この
電極9の隙間を下方から上方に流れ、電解による酸化還
元反応によってBOD、COD、色素などが除去される
。上記第二の浮上槽19に導入された排水中の55は、
その殆どが前記第一の浮上槽7て除去されているので、
上記酸化還元反応は、SSによって阻害されることな(
効率的に進行する。これにより、前記第一の浮上槽7で
除去できなかった残りのBODCOD、色素などは、上
記第二の浮上槽19てほぼ完全に除去される。一方、電
極9から発生する水素ガス気泡と会合して浮上した少量
のフロックは、排水とともに分n横22に導かれた後、
その上方に設けられたスキーマ−13によって排水から
分離され、汚泥槽14の排出口14aを通じて外部に排
出される。また、分離槽22に導入された排水は、二次
処理水導管23を経て水位調整管16に送られ、必要に
応じてpH調整などが付われた後、外部に排出される。
The wastewater introduced into the treated water inflow tank 18 is introduced into the second flotation tank 19 through an opening 21 provided at the bottom thereof. On the bottom side wall of the flotation tank 19, the first flotation W! An electrode 9 of the same type as 7 is provided. The waste water flows from below to above through the gap between the electrodes 9, and BOD, COD, pigments, etc. are removed by an oxidation-reduction reaction caused by electrolysis. 55 in the waste water introduced into the second flotation tank 19,
Since most of it has been removed by the first flotation tank 7,
The above redox reaction is not inhibited by SS (
Proceed efficiently. As a result, the remaining BODCOD, pigment, etc. that could not be removed in the first flotation tank 7 are almost completely removed in the second flotation tank 19. On the other hand, a small amount of flocs that floated together with the hydrogen gas bubbles generated from the electrode 9 were led to the horizontal direction 22 along with the drainage water.
It is separated from the waste water by a schema 13 provided above, and is discharged to the outside through the discharge port 14a of the sludge tank 14. Further, the wastewater introduced into the separation tank 22 is sent to the water level adjustment pipe 16 via the secondary treated water conduit 23, and after being subjected to pH adjustment as necessary, is discharged to the outside.

このように、本実施例の電気浮上装置1によれば、第一
の浮上槽7で排水中のSSをほぼ完全に除去することが
でき、第二の浮上槽19で排水中のBOD、COD、色
素などをほぼ完全に除去することができるので、従来の
生物的処理装置と同等、もしくはそれ以上の高度有機排
水処理を、生物的処理装置に比べて少ない設置面積、施
設費、ランニングコストで実現することができる。ちな
みに、上記電気浮上装置1は、同等の処理能力を有する
従来の生物的処理装置に比べて、排水処理施設面積で1
15〜1/10、施設費で50〜70%、ランニングコ
ストで50〜70%の低減を実現できる二とが、本発明
者の実験により判明し上記電気浮上装置1を用ヒ)で実
施した有機排水(水産加工排水)処理の分析値の一例を
下記の表に示す。
As described above, according to the electric flotation device 1 of this embodiment, the SS in the drain water can be almost completely removed in the first flotation tank 7, and the BOD and COD in the drain water can be removed in the second flotation tank 19. Since it is possible to almost completely remove pigments, etc., it is possible to perform advanced organic wastewater treatment equivalent to or better than conventional biological treatment equipment, with less installation space, facility costs, and running costs compared to biological treatment equipment. It can be realized. By the way, the above-mentioned electric levitation device 1 has a wastewater treatment facility area of 1 less than a conventional biological treatment device with the same treatment capacity.
The present inventor's experiments revealed that the above electric levitation device 1 can be used in the following manner. An example of analysis values for organic wastewater (fisheries processing wastewater) treatment is shown in the table below.

表中、被処理排水は、解凍、洗浄および解体加工後の水
産加工排水を用いた(排水量:100m’7日)。
In the table, as the wastewater to be treated, fishery processing wastewater after thawing, washing, and disassembly processing was used (discharge volume: 100 m'7 days).

被処理排水は、集水槽にて粗大ゴミの除去、油水分離槽
にて浮上分離、ストレーナによる微細ゴミの除去後、流
量調整槽に送り、腐敗防止のため曝気したもので、採取
点は電気浮上装置の入口で行った。
The wastewater to be treated is treated by removing bulky debris in a water collection tank, flotation separation in an oil-water separation tank, and removing fine debris by a strainer, and then sent to a flow rate adjustment tank where it is aerated to prevent spoilage.The collection point is electrically floated. This was done at the entrance of the device.

表 以上、本発明を実施例により説明したが、本発明は上記
実施例に限定されるものではなく、その要旨を変更しな
い範囲で種々の設計変更を行うことができる。
Although the present invention has been explained using Examples above, the present invention is not limited to the above-mentioned Examples, and various design changes can be made without changing the gist thereof.

〔発明の効果〕〔Effect of the invention〕

本願において開示される発明のうち、代表的なものによ
って得ちれる効果を簡単に説明すれば、次のとおりであ
る。
Among the inventions disclosed in this application, the effects obtained by typical inventions are briefly explained below.

(j)、従来の生物的処理装置に比べて、処理施設の面
積を大幅に縮小することができる。
(j) Compared to conventional biological treatment equipment, the area of the treatment facility can be significantly reduced.

(2)、従来の生物的処理装置に比べて、施設費を大巾
晶jこ削減することができる。
(2) Compared to conventional biological treatment equipment, facility costs can be significantly reduced.

(3)、従来の生物的処理装置に比べて、ランニングコ
ストを大幅に削減することができる。特に、生物的処理
装置と異−;す、曝気槽を必要と巳な1.)ので、消費
電力を大幅に削減することができる。
(3) Running costs can be significantly reduced compared to conventional biological treatment equipment. In particular, unlike biological treatment equipment, an aeration tank is required. ), power consumption can be significantly reduced.

(4)  水産加工排水などに含まれる蛋白質の再利用
が可能となる。
(4) It becomes possible to reuse proteins contained in wastewater from seafood processing.

(5)、濾過法によらないで、SSを完全除去すること
ができる。
(5) SS can be completely removed without using a filtration method.

(6)、BOD20 ppm以下、coD3oppm以
下の高度処理を実現することができるので、被処理排水
の再利用が可能となる。
(6) Since it is possible to achieve advanced treatment with BOD of 20 ppm or less and coD of 3 oppm or less, it is possible to reuse the wastewater to be treated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例である電気浮上装置の全体
構成を示す概略図、 第2図は、この電気浮上装置の要部断面図である。 1・・・電気浮上装置、2・・・排水流入口、3a、3
b、3c・・・無機反応槽、4・・・撹拌手段、5・・
・高分子反応槽、6・・・フロック流入口、7.19・
・・浮上槽、8・・・案内板、9・・・電極、10・・
・フロック流入口、11・・・逆流防止板、12.22
・・・分離槽13・・・スキーマ−14・・・汚泥槽、
14a・・・汚泥排出口、】5・・・−次処理水導管1
6・・・水位調整管、17・・・誘導管、18・・・処
理水流入口、20・・・ポンプ、21・・・開口、23
・・・二次処理水導管。 特許出願人  システム ゲイト株式会社同     
株式会社 タ フ 開 発代理人 弁理士  筒 井 
大 相
FIG. 1 is a schematic diagram showing the overall configuration of an electric levitation device according to an embodiment of the present invention, and FIG. 2 is a sectional view of a main part of this electric levitation device. 1...Electric levitation device, 2...Drainage inlet, 3a, 3
b, 3c... Inorganic reaction tank, 4... Stirring means, 5...
・Polymer reaction tank, 6...floc inlet, 7.19・
...Flotation tank, 8...Guide plate, 9...Electrode, 10...
・Flock inlet, 11... Backflow prevention plate, 12.22
...Separation tank 13...Schema-14...Sludge tank,
14a...Sludge discharge port, ]5...-Next treated water conduit 1
6... Water level adjustment pipe, 17... Guide pipe, 18... Treated water inlet, 20... Pump, 21... Opening, 23
...Secondary treated water conduit. Patent applicant System Gate Co., Ltd.
Tahu Co., Ltd. Development Agent Patent Attorney Tsutsui
Grand phase

Claims (1)

【特許請求の範囲】 1、被処理排水に凝集剤を作用させてフロックを形成す
る反応槽と、側壁に配置した電極の直上にフロック流入
口を配置し、前記フロック流入口を通じて供給される前
記フロックを前記電極から発生する電解ガス気泡と会合
させて浮上させる浮上槽と、前記フロックと被処理排水
とを分離する分離槽と、前記フロックを除去するスキー
マーとを備えた電気浮上装置の後段に第二の浮上槽を設
けたことを特徴とする電気浮上装置。 2、前記第二の浮上槽の前段に、被処理排水のpHを微
調整するための反応槽を設けたことを特徴とする請求項
1記載の電気浮上装置。
[Scope of Claims] 1. A reaction tank in which a flocculant is applied to wastewater to be treated to form flocs, and a floc inlet is disposed directly above an electrode disposed on a side wall, and the floc is supplied through the floc inlet. A downstream part of an electric flotation device comprising a flotation tank that causes flocs to float by associating them with electrolytic gas bubbles generated from the electrodes, a separation tank that separates the flocs from wastewater to be treated, and a schemer that removes the flocs. An electric levitation device characterized in that a second levitation tank is provided. 2. The electric flotation device according to claim 1, further comprising a reaction tank for finely adjusting the pH of the wastewater to be treated, provided upstream of the second flotation tank.
JP24969290A 1990-09-19 1990-09-19 Electric floating device Pending JPH04131185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24969290A JPH04131185A (en) 1990-09-19 1990-09-19 Electric floating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24969290A JPH04131185A (en) 1990-09-19 1990-09-19 Electric floating device

Publications (1)

Publication Number Publication Date
JPH04131185A true JPH04131185A (en) 1992-05-01

Family

ID=17196785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24969290A Pending JPH04131185A (en) 1990-09-19 1990-09-19 Electric floating device

Country Status (1)

Country Link
JP (1) JPH04131185A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100355955B1 (en) * 2000-01-24 2002-10-12 한무영 Apparatus for Generating Microbubbles with Positive Charge by Electrolysis
KR20020094706A (en) * 2001-06-13 2002-12-18 한무영 Removal method of organic suspension material from livestock wastewater by electroflotation
JP2007319817A (en) * 2006-06-02 2007-12-13 Yanmar Co Ltd Wastewater treatment method and its equipment, and wastewater treatment apparatus
WO2010092265A1 (en) * 2009-02-16 2010-08-19 Orege Method and device for scrubbing effluents
WO2013156002A1 (en) * 2012-04-19 2013-10-24 波鹰(厦门)科技有限公司 Nano catalyst electrolysis flocculation air flotation device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52146964A (en) * 1976-06-01 1977-12-07 Mitsubishi Electric Corp Process for treating waste waters drained from fisheries working

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52146964A (en) * 1976-06-01 1977-12-07 Mitsubishi Electric Corp Process for treating waste waters drained from fisheries working

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100355955B1 (en) * 2000-01-24 2002-10-12 한무영 Apparatus for Generating Microbubbles with Positive Charge by Electrolysis
KR20020094706A (en) * 2001-06-13 2002-12-18 한무영 Removal method of organic suspension material from livestock wastewater by electroflotation
JP2007319817A (en) * 2006-06-02 2007-12-13 Yanmar Co Ltd Wastewater treatment method and its equipment, and wastewater treatment apparatus
WO2010092265A1 (en) * 2009-02-16 2010-08-19 Orege Method and device for scrubbing effluents
CN102438955A (en) * 2009-02-16 2012-05-02 奥里格公司 Method and device for scrubbing effluents
WO2013156002A1 (en) * 2012-04-19 2013-10-24 波鹰(厦门)科技有限公司 Nano catalyst electrolysis flocculation air flotation device

Similar Documents

Publication Publication Date Title
US6746593B2 (en) High volume electrolytic water treatment system and process for treating wastewater
US8632685B2 (en) Multistage DAF-advanced oxidation system
KR20120109341A (en) Water disposal apparatus and process for eliminating contaminating materials in wastewater
CN107522327A (en) The oxidation integrated papermaking wastewater treatment device of electric flocculation precipitate high grade
CN105129969B (en) Perimeter filter water outlet biochemical sedimentation basin
CN110451697A (en) Salt-containing organic wastewater electrocatalytic oxidation coupling pretreatment method and device
JPH04131185A (en) Electric floating device
JP2002177956A (en) Water cleaning method and water cleaning plant
KR101913754B1 (en) Apparatus of solid-liquid separation comprising settling tank and floatation separation tank and method using the same
JP3281161B2 (en) Water purification equipment
JP2000185279A (en) Sewage treatment method and apparatus
JP6371970B2 (en) Water treatment equipment
JP5270247B2 (en) Wastewater treatment facility at food processing plant
KR100316298B1 (en) Fiber Membrane Separation and Activated Sludge Process with Electrolytic Treatement Process of Animal WasteWater
JP2005137991A (en) Drainage treatment apparatus
JP2000354858A (en) Sewage treatment method and device therefor
KR20010090404A (en) The sewage treatment device
KR20020031121A (en) Treating Equipment of Waste Water and the Operation Method of therof
FI95234C (en) Method and apparatus for purifying aqueous solutions or the like
KR20200125217A (en) Water treatment device comprising plasma underwater discharge module
CN111573972A (en) Grinding ultrasonic cleaning wastewater zero-discharge recycling or standard-reaching treatment system and process
Robinson Electroflocculation in the treatment of polluted water
JPH04118091A (en) Electric flotation device
SU1675215A1 (en) Method for sewage purification against ions metals and device for it realization
CN216106521U (en) Organic sewage treatment system