JPH02122288A - Makeup testing device for switch - Google Patents

Makeup testing device for switch

Info

Publication number
JPH02122288A
JPH02122288A JP63276947A JP27694788A JPH02122288A JP H02122288 A JPH02122288 A JP H02122288A JP 63276947 A JP63276947 A JP 63276947A JP 27694788 A JP27694788 A JP 27694788A JP H02122288 A JPH02122288 A JP H02122288A
Authority
JP
Japan
Prior art keywords
current
rectifier
switch
making
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63276947A
Other languages
Japanese (ja)
Inventor
Yoshihiko Matsui
芳彦 松井
Kunio Ikemoto
池本 邦雄
Shiyuuji Onomoto
小野本 周司
Shigehiko Fukuda
成彦 福田
Takakazu Matsunami
松波 孝和
Mitsuyasu Shiozaki
塩崎 光康
Shunichi Arakawa
荒川 俊一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP63276947A priority Critical patent/JPH02122288A/en
Publication of JPH02122288A publication Critical patent/JPH02122288A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To surely supply a making current by providing a rectifier for starting a supply of a making current by a flashover of a test switch and an auxiliary making device by which a current is brought to makeup in the first half-wave period in which the making current starts to flow to the rectifier. CONSTITUTION:Before makeup of a test switch 4, a half-wave voltage E1 is applied to a half period of an AC power source 1 by a rectifying operation of a rectifier 9, and in the remaining half period, a half-wave voltage E2 is applied. In this state, when such a makeup control of the switch 4 as a flashover is generated in the switch 4 while a high voltage is applied, the high voltage drops quickly due to the generation of a flashover of the switch 4, and when it becomes lower than the voltage E2 of a tap 2b, the rectifier 9 conducts, and a making current I2 flows. When an auxiliary making device 10 is brought to makeup while the first half-wave of this current I2 is flowing, the current I2 is commutated to the making device 10 and the rectifier 9 becomes an obstructed state. Thereafter, the current I2 is allowed to flow continuously by the making device 10. In such a way, while reducing the operation duty, comparing with a gap, a making current can be supplied surely by an automatic conduction of the rectifier 9.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、開閉器の投入合成試験装置に関する。[Detailed description of the invention] A. Industrial application field The present invention relates to a switching synthesis test device for a switch.

B 発明の概要 本発明は、供試開閉器に高電圧の印加と電流用投入器か
らの投入電流を供給する投入合成試験装置において、 電流用投入器を整流器と補助投入器の並列接続とするこ
とにより、 投入器の動作責務を軽減しながら投入電流を確実、容易
に得るごとができるようにしたものである。
B. Summary of the Invention The present invention provides a switching synthesis test device that applies a high voltage to a test switch and supplies a switching current from a current switching device, in which the current switching device is connected in parallel with a rectifier and an auxiliary switching device. This makes it possible to reliably and easily obtain a charging current while reducing the operational responsibility of the charging device.

0 従来の技術 しゃ断器や接地装置等の開閉器は、その投入責務に基づ
いて投入容量を検証する投入合成試験が行われる、。
0 Conventional Technology Switches such as circuit breakers and grounding devices are subjected to a composite closing test to verify their closing capacity based on their closing duties.

従来の試験装置には、例えば特開昭6123140号公
報に開示されるように、第4図に示す構成のものかある
。同図において、交流電源1を一次入力とする変圧器2
はその二次へ線に接地端子2cとタップ2b間に低圧大
電流(投入電流)を得、端子2cとタップ2a間に高圧
小電流(投入電圧)を得る。タップ2aの高電圧出力は
電流制限用インピーダンス要素3を通して供試開閉器4
に高圧を印加し、タップ2bの低電圧出力は電流用投入
器としての放電ギャップ5を通して供試開閉器4に大電
流を供給する。、閃絡検出用変流器6は供試開閉器4の
閃絡を高圧電流I、を斐成し、この変成出力から閃絡検
出器7は閃絡を検出し、この検出出力によってトリガ回
路8は放電ギャップ5をトリガ放電させる。
A conventional test device has a configuration shown in FIG. 4, as disclosed in, for example, Japanese Patent Application Laid-Open No. 6123140. In the figure, a transformer 2 whose primary input is an AC power source 1
A low voltage large current (turning current) is obtained between the ground terminal 2c and the tap 2b in the wire to the secondary, and a high voltage small current (turning voltage) is obtained between the terminal 2c and the tap 2a. The high voltage output of the tap 2a is passed through the current limiting impedance element 3 to the test switch 4.
A high voltage is applied to the tap 2b, and the low voltage output of the tap 2b supplies a large current to the test switch 4 through the discharge gap 5 as a current energizer. The flash fault detection current transformer 6 generates a high voltage current I when the flash fault occurs in the test switch 4, and the flash fault detector 7 detects the flash fault from this transformed output, and the trigger circuit is activated by this detection output. 8 causes the discharge gap 5 to trigger discharge.

この構成による投入合成試験は、供試開閉器4の開極状
態でタップ2aからの高圧El(投入電圧)を供試開閉
器4に印加しておき、開閉器4の投入開始で該高圧ト〕
、によって開閉器電極間に閃絡が発生したときの先行ア
ークによって高圧電流Iを流す3.この電流11か所定
値を越えたときにトリ力回路8が放電ギヤノブ5を1−
リガ放電させ、タップ2bから供試開閉器4に大電流1
.(投入電流)を流す。従って、開閉器4の閃絡電圧に
はタップ2aから高圧を印加でき、閃絡後の投入電流に
はタップ2bから供給することができる。
In the closing synthesis test with this configuration, high voltage El (closing voltage) from the tap 2a is applied to the test switch 4 in an open state, and when the switch 4 starts closing, the high voltage El (closing voltage) is applied to the test switch 4 in an open state. ]
, high voltage current I is caused to flow by the preceding arc when a flash short occurs between the switch electrodes.3. When this current 11 exceeds a predetermined value, the tri-force circuit 8 switches the discharge gear knob 5 to 1-
The trigger is discharged, and a large current 1 is applied from the tap 2b to the test switch 4.
.. (input current) flows. Therefore, high voltage can be applied to the flash fault voltage of the switch 4 from the tap 2a, and the input current after the flash fault can be supplied from the tap 2b.

D 発明か解決しようとする課題 従来の試験装置において、放電キャップ5は供試開閉器
4の閃絡前には ■号、−r>、−−r> の高電圧が印加されるのに対して、供試開閉器4の閃絡
後のトリガ放電時には低電圧rC2のみとなる。このた
め、放電ギャップ5は高電圧が印加されている間は高い
耐電圧特性が要求され、閃絡後の低電圧印加状態で放電
動作が要求される。このような要求は例えばギャップ長
から見ても逆の要求になり、放電ギヤツブ5の実現を難
しくする。
D Problem to be Solved by the Invention In the conventional test equipment, the discharge cap 5 receives high voltages of -r>, -r> before the test switch 4 flashes. Therefore, at the time of trigger discharge after the test switch 4 flashes, only the low voltage rC2 is applied. For this reason, the discharge gap 5 is required to have high withstand voltage characteristics while a high voltage is applied, and is required to perform a discharge operation in a low voltage applied state after a flash fault. Such a requirement is an opposite requirement in terms of the gap length, for example, and makes it difficult to realize the discharge gear 5.

この問題を解決しようとするものとして、前述の公報に
は供試開閉器の接地側と接地との間に放電ギャップ(接
地用投入器)を増設し、2つの放電ギャップによって変
圧器2の低圧大電流在線から高圧回路を分離しておき、
これにより放電ギャップの耐電圧責務を半減させるもの
が提案されている。
In order to solve this problem, the above-mentioned publication proposes that a discharge gap (grounding device) be added between the ground side of the test switch and the ground, and the two discharge gaps will cause the low voltage of the transformer 2 to rise. Separate high voltage circuits from large current lines,
A method has been proposed in which the withstand voltage responsibility of the discharge gap is thereby halved.

しかしながら、この従来装置では放電ギャップの耐電圧
責務か)1〈減されるも依然として過酷な責務になるし
、2っのの放電ギヤツブと副電圧源を必要として装置を
複雑高価にする問題が残る。また、供試開閉器4の閃絡
検出から迅速に放電ギャップ5を放電させろための検出
器7及びl・リガ回路8に高速動作を得ること及び2つ
の放電ギャップを同時に確実にトリガするためのトリガ
電圧発生回路が複雑高価になる。
However, in this conventional device, although the withstand voltage duty of the discharge gap is reduced by 1, it is still a severe duty, and the problem remains that it requires two discharge gears and an auxiliary voltage source, making the device complicated and expensive. . In addition, the detector 7 and l-trigger circuit 8 are provided with high-speed operation in order to quickly discharge the discharge gap 5 upon detection of a flash fault in the test switch 4, and in order to reliably trigger the two discharge gaps at the same time. The trigger voltage generation circuit becomes complicated and expensive.

本発明の目的は、電流用投入器の動作責務を軽減しなが
ら投入電流を確実、容易に得ることができる投入合成試
験装置を提供することにある。
An object of the present invention is to provide a charge synthesis test device that can reliably and easily obtain a charge current while reducing the operational responsibility of a current charger.

E 課題を解決するための手段と作用 本発明は−に記目的を達成するため、変圧器の高圧タッ
プから供試開閉器に高電圧を印加し、該変圧器の低圧タ
ップから電流用投入器を介して供試開閉器に投入電流を
供給する開閉器の投入合成試験装置において、+iii
記電流用投入器は、供試開閉器の閃絡で導通して投入電
流の供給を開始する整流器と、この整流器に並列接続さ
れ該整流器に投入電流が流れ始めた最初の半波期間内に
投入されて該整流器の電流が転流される補助投入器とを
備え、供試開閉器の閃絡によって整流器を自動導通させ
、この自動導通が次の半波で阻止に戻る前に補助投入器
を投入して投入電流を補助投入器に転流させ、以後には
補助投入器に、Lり投入電流を供給しつづける。
E. Means and Effects for Solving the Problems In order to achieve the object described in -, the present invention applies high voltage from the high voltage tap of the transformer to the test switch, and applies the high voltage to the test switch from the low voltage tap of the transformer. In a switch closing synthesis test device that supplies closing current to the test switch via
The current energizer is connected in parallel to a rectifier that conducts when the test switch flashes and starts supplying the energizing current, and is connected in parallel to this rectifier, and is connected within the first half-wave period when the energizing current begins to flow through the rectifier. It is equipped with an auxiliary energizer that is turned on and the current of the rectifier is commutated, and the auxiliary energizer is equipped with an auxiliary energizer that automatically conducts the rectifier due to the flash fault of the test switch, and before this automatic conduction returns to blocking in the next half wave. The auxiliary energizing device is turned on to commutate the auxiliary energizing current to the auxiliary energizing device, and thereafter continues to supply the L-throwing current to the auxiliary activating device.

F、実施例 第1図は本発明の一実施例を示す回路図である。F. Example FIG. 1 is a circuit diagram showing an embodiment of the present invention.

同図において、変圧器2のタップ2bと供試開閉器4と
の間に、電流用投入器として整流器9と補助投入器IO
の並列接続回路を設け、従来の変流器6と電流検出器7
とトリガ回路8と放電ギャップ5に代える構成にされる
。補助投入器10は供試開閉器4の閃絡発生後に投入制
御され、例えば供試開閉器4の投入信号に合わせてその
信号に少しの遅れを持たせた信号で投入制御される。
In the figure, a rectifier 9 and an auxiliary closing device IO are connected between the tap 2b of the transformer 2 and the test switch 4 as a current closing device.
A parallel connection circuit is provided to connect the conventional current transformer 6 and current detector 7.
The trigger circuit 8 and the discharge gap 5 are replaced with each other. The auxiliary closing device 10 is controlled to close after a flash fault occurs in the test switch 4, and is controlled to close using, for example, a signal with a slight delay in accordance with the closing signal of the test switch 4.

このような構成において、第2図に各部波形図を示すよ
うに、供試開閉器4にはその投入前には整流器9の整流
動作によって交流電源1の半周期には半波電圧E 、が
印加され、残りの半周期には半波電圧E、が印加される
。従って、電流用投入器に印加される電圧はEIの半分
になる。ここで、高電圧E、が印加されている間に供試
開閉器4に閃絡が発生ずるよう該開閉器4の投入制御を
行うと、供試開閉器4の閃絡発生(第2図のタイミング
t、)によってその電圧Eが急速に低下し、タップ2b
の電圧E、よりも低くなったとき(タイミングt、)に
整流器9が導通して投入電流■2の供給を開始する。ご
の電流I、の最初の半波が流れている間に補助投入器l
Oが投入されると(タイミングt3)、電流I、が補助
投入器10に転流されて整流器9は阻止状態になる。以
後には補助投入器10で電流I、を流し続ける。
In such a configuration, as shown in the waveform diagram of each part in FIG. 2, before the test switch 4 is turned on, a half-wave voltage E is generated in the half cycle of the AC power source 1 due to the rectifying operation of the rectifier 9. A half-wave voltage E is applied during the remaining half cycle. Therefore, the voltage applied to the current injector is half of EI. Here, if the closing control of the test switch 4 is performed so that a flash fault occurs in the test switch 4 while the high voltage E is applied, a flash fault occurs in the test switch 4 (see Fig. 2). At timing t,), the voltage E rapidly decreases, and tap 2b
When the voltage E becomes lower than (timing t), the rectifier 9 becomes conductive and starts supplying the input current (2). While the first half-wave of the current I is flowing, the auxiliary input
When O is turned on (timing t3), the current I is commutated to the auxiliary input device 10, and the rectifier 9 enters the blocking state. Thereafter, the auxiliary input device 10 continues to flow the current I.

従って、電流用投入器(9,10)としては、供試開閉
器4の投入までの高電圧E1以」二の耐圧(第4図の放
電ギャップの耐圧の半分)を持つものにしながら、供試
開閉器4の閃絡によって整流器9が自動的に高速に導通
して投入電流I、を供給でき、従来の放電ギャップ5の
高耐圧でかつ低電圧で放電させるという過酷な動作責務
に較べて1/2耐圧の責務のみに軽減されると共にその
トリガ回路を不要にし、さらに確実な投入電流供給にな
る。きた、整流器9の電流責務は補助投入器10の投入
までの極めて短時間だけ投入電流I。
Therefore, the current closing device (9, 10) should have a withstand voltage that is higher than the high voltage E1 until the test switch 4 closes (half the withstand voltage of the discharge gap in Fig. 4). The rectifier 9 automatically conducts at high speed due to the flashing of the test switch 4, and can supply the input current I, compared to the severe operating duty of the conventional discharge gap 5, which requires discharging at a high withstand voltage and a low voltage. The duty is reduced to only 1/2 withstand voltage, the trigger circuit is not required, and current supply is more reliable. The current duty of the rectifier 9 is the input current I for a very short time until the auxiliary input device 10 is closed.

を流し得るものであれば良く、その大容量化が避けられ
る。さらに、補助投入器lOの制御はタイマ等の簡単な
制御回路で済み、従来のトリガ回路のような高速動作で
複雑な回路構成を不要にする。
As long as it can flow a large amount of water, it is possible to avoid increasing the capacity. Furthermore, the auxiliary injection device 1O can be controlled by a simple control circuit such as a timer, eliminating the need for a high-speed operation and complicated circuit configuration like a conventional trigger circuit.

なお、実施例においては、供試開閉器4の投入時期が整
流器9の取付方向で電圧E、の正の半周期に限られるが
、これは第3図に示すように、整流器9の挿入方向を切
換える切換スイッチ11を設けておくことで開閉器4の
試験極性を何れにも切換えできる。
In the embodiment, the closing timing of the test switch 4 is limited to the positive half cycle of the voltage E in the direction in which the rectifier 9 is installed; however, as shown in FIG. By providing a changeover switch 11 for switching the test polarity of the switch 4, it is possible to switch the test polarity of the switch 4 to either one.

G 発明の効果 以」二のとおり、本発明によれば、電流用投入器を整流
器と補助投入器の・112列接続回路としたため、従来
の放電ギャップに較へて動作責務を軽減しながら整流器
の自動導通によって確実な投入電流供給ができ、また、
投入蓋自体及び投入制御回路も簡単化される効果がある
G. Effects of the Invention" 2. According to the present invention, the current injector is made into a 112-column connection circuit of the rectifier and the auxiliary injector, so that the rectifier can be operated while reducing the operational duty compared to the conventional discharge gap. Automatic conduction enables reliable supply of current, and
This has the effect of simplifying the charging lid itself and the charging control circuit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す合成試験回路図、第2
図は第1図の各部波形図、第3図は本発明の他の実施例
を示す回路図、第4図は従来の合成試験回路図である。 2・・変圧器、4・・供試開閉器、9・・・整流器、1
0・・補助投入器。
FIG. 1 is a synthetic test circuit diagram showing one embodiment of the present invention, and FIG.
3 is a circuit diagram showing another embodiment of the present invention, and FIG. 4 is a conventional synthesis test circuit diagram. 2...Transformer, 4...Test switch, 9...Rectifier, 1
0... Auxiliary input device.

Claims (1)

【特許請求の範囲】[Claims] (1)変圧器の高圧タップから供試開閉器に高電圧を印
加し、該変圧器の低圧タップから電流用投入器を介して
供試開閉器に投入電流を供給する開閉器の投入合成試験
装置において、前記電流用投入器は、供試開閉器の閃絡
で導通して投入電流の供給を開始する整流器と、この整
流器に並列接続され該整流器に投入電流が流れ始めた最
初の半波期間内に投入されて該整流器の電流が転流され
る補助投入器とを備えたことを特徴とする開閉器の投入
合成試験装置。
(1) Switch closing synthesis test in which high voltage is applied from the high voltage tap of the transformer to the test switch, and closing current is supplied from the low voltage tap of the transformer to the test switch via the current closing device. In the device, the current making device includes a rectifier that conducts due to a flash fault of the test switch and starts supplying making current, and a rectifier that is connected in parallel to this rectifier and starts supplying making current in the first half wave when the making current starts flowing through the rectifier. A switch closing synthesis test device comprising: an auxiliary closing device which is turned on within a period to commutate the current of the rectifier.
JP63276947A 1988-11-01 1988-11-01 Makeup testing device for switch Pending JPH02122288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63276947A JPH02122288A (en) 1988-11-01 1988-11-01 Makeup testing device for switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63276947A JPH02122288A (en) 1988-11-01 1988-11-01 Makeup testing device for switch

Publications (1)

Publication Number Publication Date
JPH02122288A true JPH02122288A (en) 1990-05-09

Family

ID=17576635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63276947A Pending JPH02122288A (en) 1988-11-01 1988-11-01 Makeup testing device for switch

Country Status (1)

Country Link
JP (1) JPH02122288A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5887912A (en) * 1996-04-19 1999-03-30 Three Bond Co., Ltd. Flare-type pipe joint

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5887912A (en) * 1996-04-19 1999-03-30 Three Bond Co., Ltd. Flare-type pipe joint

Similar Documents

Publication Publication Date Title
US4811163A (en) Automatic power bus transfer equipment
JPS61165997A (en) Arc discharge current limiter in incandescent bulb
US4774449A (en) Transformerless battery charger in combination with a battery, and method of charging a battery
US4967718A (en) Ignition system for an internal combustion engine using thyristors
CA1153421A (en) Relaxation oscillator type spark generator
JP2550046B2 (en) Inspection circuit
JPH02122288A (en) Makeup testing device for switch
EP0011958B1 (en) Dc contactor with solid state arc quenching
US5654625A (en) Switching circuit for a reactive power compensation device having synchronized on and off switching
JP2001042013A (en) Circuit for integrally testing switch capacity of high voltage switchgear
GB1582932A (en) Synthetic testing apparatus for circuit breakers
KR900015424A (en) Switch mode power circuit
US3461345A (en) Spark ignition systems
JPH02122289A (en) Makeup testing device for switch
JP2675649B2 (en) Switchgear test method and device
JPS60125569A (en) Testing method of multithunder operating duty of lightning arrester
SU1561117A1 (en) Switching device
SU1320867A2 (en) Device for controlling rectifier valve
SU1233063A1 (en) Apparatus for synthetic testing of alternating current switch for breaking capacity
RU2022287C1 (en) Three-phase power network phase-control device
SU546029A1 (en) Device for arc-free switching of direct current circuits
JPH04313086A (en) Synthesized short-circuit testing circuit
SU1251198A1 (en) Hybrid arcless device
JPH0224239Y2 (en)
JPH10253680A (en) Test method for short-time withstand current of switchgear