JPH02122134A - Multi chamber cooling and heating device - Google Patents

Multi chamber cooling and heating device

Info

Publication number
JPH02122134A
JPH02122134A JP27490188A JP27490188A JPH02122134A JP H02122134 A JPH02122134 A JP H02122134A JP 27490188 A JP27490188 A JP 27490188A JP 27490188 A JP27490188 A JP 27490188A JP H02122134 A JPH02122134 A JP H02122134A
Authority
JP
Japan
Prior art keywords
heat exchangers
auxiliary heat
refrigerant
cycle
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27490188A
Other languages
Japanese (ja)
Inventor
Takahiro Takahashi
孝弘 高橋
Masao Kurachi
蔵地 正夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP27490188A priority Critical patent/JPH02122134A/en
Publication of JPH02122134A publication Critical patent/JPH02122134A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to minimize a drop in capacity due to long piping and carry out capacity control operation with efficiency by installing an on/off valve respectively in linear to all plural auxiliary heat exchangers excluding one and linear piping which comprises the second auxiliary heat exchangers and piping for the second auxiliary heat exchangers alone in parallel. CONSTITUTION:During cooling operation for example, high temperature and high pressure gas discharged from compressors 11a and 11b is irradiated and liquefied in heat source side heat exchangers 13a and 13b by way of four way valves 12 and 12b, and decompressed decompression device 16a and 16b for cooling service, passing through check valves 15a and 15b. The decompressed gas is heat adsorbed and vaporized in first auxiliary heat exchangers 18 and 18b, and returned to the compressors 11a and 11b from the four way valves 12a and 12b, thus forming a refrigerating cycle. During this cycle, a refrigerant transfer device 21 for a user side refrigerant cycle H is operated and the refrigerant cooled by second auxiliary heat exchangers 19a and 19b (by way of an on/off valve 20) which heat exchanges with the first heat exchangers 18a and 18b, is transferred into rooms 22a and 22b, thereby carrying out cooling operation. In this manner, the heat source side refrigerant cycle is separated from the user side refrigerating cycle so that the configuration of the heat side refrigerating cycle may not be subjected to any change all the time. It is, therefore, possible to minimize a drop in capacity, even if the length or height of a communication pipe is increased.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は多室冷暖房装置の冷媒サイクルに関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a refrigerant cycle for a multi-room heating and cooling system.

従来の技術 2 ページ 従来1台の室外ユニットに複数の圧縮機、熱源側熱交換
器等で構成した複数の冷媒サイクルを有する多室ヒート
ポンプ式冷暖房装置は第2図のように構成されていた。
BACKGROUND ART Page 2 Conventionally, a multi-room heat pump type air-conditioning system having a plurality of refrigerant cycles including a plurality of compressors, a heat source side heat exchanger, etc. in one outdoor unit was constructed as shown in FIG.

第2図において1a、1bは圧縮機、2a、 2bは四
方弁、3a、  3bは熱源側熱交換器、4a。
In Fig. 2, 1a and 1b are compressors, 2a and 2b are four-way valves, 3a and 3b are heat exchangers on the heat source side, and 4a.

4bは暖房用減圧装置、sa、sbは冷房時暖房用減圧
装置4a、4bをバイパスする通路を形成する逆止弁、
6a、ebはアキュムレータでこれらは室外ユニッ)A
に設けられている。7a、7bは冷房用減圧装置、sa
、sbは暖房時冷房用減圧装置7a、7bをバイパスす
る通路を形成する逆止弁、9a、9bは利用側熱交換器
でこれらは、それぞれ室内ユニッ)BCに設けられ、室
外ユニッ)Aと室内ユニットBは連接管10a、10a
’で連接され衆知のヒートポンプ式冷媒サイクルaを形
成し、また、室外ユニソ)Aと室内ユニットCは連続管
10b、10b’で連接され衆知のヒートポンプ式冷媒
サイクルbを形成し、それぞれの冷媒サイクルの単独運
転も可能としている。
4b is a pressure reducing device for heating, sa and sb are check valves that form passages that bypass the heating pressure reducing devices 4a and 4b during cooling;
6a and eb are accumulators and these are outdoor units) A
It is set in. 7a and 7b are cooling pressure reducing devices, sa
, sb is a check valve that forms a passage that bypasses the cooling pressure reducing devices 7a and 7b during heating, and 9a and 9b are user-side heat exchangers, which are respectively installed in the indoor unit) BC and the outdoor unit) A. Indoor unit B has connecting pipes 10a, 10a
The outdoor unit A and the indoor unit C are connected by continuous pipes 10b and 10b' to form the well-known heat pump refrigerant cycle b, and each refrigerant cycle It is also possible to operate independently.

3ページ 発明が解決しようとする課題 しかしながら上記のような構成では、各冷媒サイクルの
能力は常に一定であシ、能力制御ができない問題点があ
る。まだ、室外ユニットと室内ユニットの連接管の長さ
や高さが大きく々るとこの連接管での圧力損失のために
能力が低下するとともに、冷媒サイクル内の冷媒封入量
が多くなシ、液圧縮による圧縮機の損傷の恐れが大きく
なる。
Page 3 Problems to be Solved by the Invention However, in the above configuration, the capacity of each refrigerant cycle is always constant, and there is a problem that the capacity cannot be controlled. However, if the length and height of the connecting pipe between the outdoor unit and the indoor unit become large, the capacity will decrease due to pressure loss in this connecting pipe, and the amount of refrigerant sealed in the refrigerant cycle will be large, and liquid compression There is a greater risk of damage to the compressor due to

さらに、各冷媒サイクルの前記連接管の長さによシ各室
内ユニットの能力が変わる問題点を有していた。
Furthermore, there is a problem in that the capacity of each indoor unit varies depending on the length of the connecting pipe of each refrigerant cycle.

また、室外ユニットと各室内ユニットの連接管は各冷媒
サイクル毎に必要であシ、配管工事も高くつく問題点も
あった。
In addition, connecting pipes between the outdoor unit and each indoor unit are required for each refrigerant cycle, and there is also the problem that piping work is expensive.

本発明は上記問題点に鑑み、長配管での能力低下が少な
く、効率の良い能力制御運転が可能で、かつ、配管工事
も安くなる多室冷暖房装置を提供するものである。
In view of the above-mentioned problems, the present invention provides a multi-room air-conditioning and heating system that has less capacity drop with long piping, enables efficient capacity control operation, and reduces piping work.

課題を解決するだめの手段 上記問題点を解決するために本発明の多室冷暖房装置は
、複数の熱源側冷媒サイクルの第1補助熱交換器と一体
に形成し熱交換する利用側冷媒サイクルの複数の第2補
助熱交換器の1つ以外のすべてに各々直列に開閉弁を設
けると共に第2補助熱交換器と開閉弁からなる直列配管
と第2補助熱交換器だけの配管を並列に設け、冷媒搬送
装置。
Means for Solving the Problems In order to solve the above-mentioned problems, the multi-room air conditioning system of the present invention includes a plurality of user-side refrigerant cycles that are integrally formed with first auxiliary heat exchangers of a plurality of heat source-side refrigerant cycles to exchange heat. An on-off valve is provided in series for all but one of the plurality of second auxiliary heat exchangers, and a series piping consisting of the second auxiliary heat exchanger and the on-off valve and piping for only the second auxiliary heat exchanger are provided in parallel. , refrigerant conveyance equipment.

複数の利用側熱交換器からなる利用側冷媒サイクルを有
するという構成を備えたものである。
It has a configuration in which it has a usage-side refrigerant cycle consisting of a plurality of usage-side heat exchangers.

作  用 本発明は上記した構成によって熱源側と利用側冷媒サイ
クルを補助熱交換器で熱交換し、熱交換した熱を冷媒搬
送装置で循環させて利用する様にしているので、長配管
によって圧力損失が大きくなる度合が少なくなシ、能力
を低下度合も少なく出来る。
Function The present invention uses the above-described configuration to exchange heat between the heat source side and the user side refrigerant cycle with the auxiliary heat exchanger, and circulate the heat exchanged with the refrigerant conveying device for use. The degree of increase in loss is small, and the degree of deterioration of capacity can be reduced.

又、複数の熱源側冷媒サイクルと複数の利用側熱交換器
を有する利用側冷媒サイクルを補助熱交換器を介して接
続しているので、利用側冷媒サイクルの利用側熱交換器
の運転台数が少ない場合には、開閉弁を直列に接続して
いない補助熱交換器5 ページ 及び熱源側冷媒サイクルのみ運転する能力制御運転が出
来る。
In addition, since the user-side refrigerant cycle having multiple heat source-side refrigerant cycles and multiple user-side heat exchangers is connected via an auxiliary heat exchanger, the number of operating user-side heat exchangers in the user-side refrigerant cycle can be reduced. If the amount is low, capacity control operation can be performed in which only the auxiliary heat exchanger and the heat source side refrigerant cycle are operated without the on-off valves connected in series.

実施例 以下本発明の一実施例の多室冷暖房装置について図面を
参照しながら説明する。第1図において、11a、11
bは圧縮機、12a、12bは四方弁、1sa、1sb
は熱源側熱交換器、14a。
EXAMPLE Hereinafter, a multi-room air conditioning system according to an example of the present invention will be described with reference to the drawings. In FIG. 1, 11a, 11
b is a compressor, 12a, 12b are four-way valves, 1sa, 1sb
is a heat source side heat exchanger, 14a.

14bは暖房用減圧装置、1esa、15bは冷房時暖
房用減圧装置14a、14bをそれぞれバイパスする通
路を形成する逆止弁、1aa、1ebは冷房用減圧装置
、17a、17bは暖房用冷房用減圧装置16a、16
bをそれぞれバイパスする通路を形成する逆止弁、18
a、  1 sbは第1補助熱交換器で冷房時吸熱し暖
房時放熱するものであシ、これらは、それぞれ連接され
熱源側冷媒サイクルDaおよびDbを形成している。
14b is a pressure reducing device for heating, 1esa and 15b are check valves that form passages that bypass the heating pressure reducing devices 14a and 14b during cooling, 1aa and 1eb are pressure reducing devices for cooling, and 17a and 17b are pressure reducing devices for heating and cooling. Devices 16a, 16
check valves 18 each forming a passage bypassing b.
a, 1sb are first auxiliary heat exchangers that absorb heat during cooling and radiate heat during heating; these are connected to form heat source side refrigerant cycles Da and Db, respectively.

ここで、前記第1補助熱交換器18a、18bにはそれ
ぞれ一体に形成し、熱交換する第2補助熱交換器19a
、19bが設けられ、第2補助熱交換器19aにだけ開
閉弁20を直列に設け、が6 ページ つ第2補助熱交換器19a及び開閉弁2Qと第2補助熱
交換器19bは並列に設けられ、冷媒搬送装置21を連
接し、室外ユニットEが構成されている。室内ユニット
F、Gには利用側熱交換器22a、22bが設けられて
おシ、前記室外ユニットEと連接管23.24で接続さ
れている。この連接管j3,24.室内ユニットF、G
、室外ユニットEに設けられた第2補助熱交換器19a
Here, the first auxiliary heat exchangers 18a and 18b are each integrally formed with a second auxiliary heat exchanger 19a for heat exchange.
, 19b are provided, and only the second auxiliary heat exchanger 19a is provided with an on-off valve 20 in series, and the second auxiliary heat exchanger 19a and on-off valve 2Q and the second auxiliary heat exchanger 19b are provided in parallel. The refrigerant conveying device 21 is connected to form an outdoor unit E. The indoor units F and G are provided with user-side heat exchangers 22a and 22b, and are connected to the outdoor unit E through connecting pipes 23 and 24. This connecting pipe j3, 24. Indoor unit F, G
, the second auxiliary heat exchanger 19a provided in the outdoor unit E
.

19bおよび冷媒搬送装置21を連接し利用側冷媒サイ
クルHを構成している。
19b and the refrigerant transport device 21 are connected to form a user refrigerant cycle H.

また、Xは圧力差をつける絞シ装置、Yは冷媒の流入を
防止する弁である。
Further, X is a throttling device that creates a pressure difference, and Y is a valve that prevents the inflow of refrigerant.

以上のように構成された多室冷暖房装置について以下動
作を説明する。
The operation of the multi-room heating and cooling system configured as described above will be described below.

冷房運転時、圧縮機11a、11bよシ吐出された高温
高圧ガスは四方弁12a、12bを経て熱源側熱交換器
13a、13bで放熱液化し逆止弁16a、16bを通
って冷房用減圧装置16a。
During cooling operation, high-temperature, high-pressure gas discharged from the compressors 11a and 11b passes through four-way valves 12a and 12b, heat-radiates and liquefies in heat source-side heat exchangers 13a and 13b, and passes through check valves 16a and 16b to a cooling pressure reducing device. 16a.

16bで減圧され第1補助熱交換器18a、18bで吸
熱蒸発し四方弁12a、12bから圧縮機7 ページ 11a、11bにもどる冷媒サイクルとなる。この時利
用側冷媒サイクルHの冷媒搬送装置21は運転されてお
り、第1補助熱交換器18a、18bと熱交換される第
2補助熱交換器19a(開閉弁2oを経て)、19bで
冷却された冷媒が室内22a、22bに送られ冷房運転
することになる。
The refrigerant is depressurized at 16b, endothermically evaporated at first auxiliary heat exchangers 18a and 18b, and returns to the four-way valves 12a and 12b to the compressor 7 pages 11a and 11b, forming a refrigerant cycle. At this time, the refrigerant transfer device 21 of the user-side refrigerant cycle H is in operation, and the second auxiliary heat exchanger 19a (via the on-off valve 2o) and 19b exchange heat with the first auxiliary heat exchanger 18a and 18b. The refrigerant is sent to the indoor rooms 22a and 22b for cooling operation.

一方、暖房運転時は圧縮機11a、11bより吐出され
た高温高圧ガスは四方弁12a、12bを経て第1補助
熱交換器で放熱液化し逆止弁17a。
On the other hand, during heating operation, the high-temperature, high-pressure gas discharged from the compressors 11a and 11b passes through the four-way valves 12a and 12b, and is liquefied by heat dissipation in the first auxiliary heat exchanger, and is then connected to the check valve 17a.

1了すを通って暖房用減圧装置14a、14bで減圧さ
れ、熱源側熱交換器13a、13bで吸熱蒸発し、四方
弁12a、12bから圧縮機11a。
1, the pressure is reduced by the heating pressure reducing devices 14a and 14b, endothermic evaporation occurs in the heat source side heat exchangers 13a and 13b, and the compressor 11a is passed through the four-way valves 12a and 12b.

11bにもどる冷媒サイクルとなる。The refrigerant cycle returns to step 11b.

この時、利用側冷媒サイクルHは冷媒搬送装置21で冷
媒が循環されておシ、第1補助熱交換器18a、18b
と熱交換される第2補助熱交換器19a、’19bで過
熱された冷媒が前者のみ開閉弁2oを経て、室内ユニソ
)22a、22bに送られて暖房運転することになる。
At this time, the refrigerant cycle H on the user side is circulated by the refrigerant conveying device 21, and the refrigerant is circulated through the first auxiliary heat exchanger 18a, 18b.
The refrigerant superheated in the second auxiliary heat exchangers 19a and 19b, which exchanges heat with the auxiliary heat exchangers 19a and 19b, is sent to the indoor units 22a and 22b through the on-off valve 2o for heating operation.

能力制御の冷房運転時、圧縮機11bよシ吐出されだ高
温高圧ガスは四方弁12aを経て熱源側熱交換器13b
で放熱液化し逆止弁15bを通って冷房用減圧装置16
bで減圧され第1補助熱交換器18bで吸熱蒸発し四方
弁12bから圧縮機11bにもどる冷媒サイクルとなる
。この時利用側冷媒サイクルHの冷媒搬送装置21は運
転されておシ、開閉弁2oを閉じているので第1補助熱
交換器18bと熱交換される第2補助熱交換器19bで
のみ冷却されて室内22a、22bに送られ冷房運転す
ることになる。
During cooling operation under capacity control, high-temperature, high-pressure gas discharged from the compressor 11b passes through the four-way valve 12a to the heat source side heat exchanger 13b.
The heat dissipates into liquid and passes through the check valve 15b to the cooling pressure reducing device 16.
It becomes a refrigerant cycle in which the pressure is reduced in step b, endothermic evaporation occurs in the first auxiliary heat exchanger 18b, and the refrigerant returns to the compressor 11b through the four-way valve 12b. At this time, the refrigerant transfer device 21 of the user-side refrigerant cycle H is operated and the on-off valve 2o is closed, so that cooling is performed only in the second auxiliary heat exchanger 19b, which exchanges heat with the first auxiliary heat exchanger 18b. The air is sent to the indoor rooms 22a and 22b for cooling operation.

一方、能力制御の暖房運転時は圧縮機11bよシ吐出さ
れた高温高圧ガスは四方弁12bを経て第1補助熱交換
器で放熱液化し逆止弁17bを通って暖房用減圧装置1
4bで減圧され、熱源側熱交換器13bで吸熱蒸発し、
四方弁12bから圧縮機11bにもどる冷媒サイクルと
なる。
On the other hand, during heating operation under capacity control, the high-temperature, high-pressure gas discharged from the compressor 11b passes through the four-way valve 12b, liquefies heat in the first auxiliary heat exchanger, passes through the check valve 17b, and passes through the heating pressure reducing device 1.
4b, and is endothermically evaporated in the heat source side heat exchanger 13b.
The refrigerant cycle returns from the four-way valve 12b to the compressor 11b.

この時、利用側冷媒サイクルHは冷媒搬送装置21で冷
媒が循環されておシ、開閉弁20を閉じているので第1
補助熱交換器18bと熱交換される第2補助熱交換器1
9bで過熱された冷媒が室9 ページ 内ユニッ)22a、22bに送られて暖房運転すること
になる。
At this time, the refrigerant cycle H on the user side is circulated by the refrigerant conveying device 21, and the on-off valve 20 is closed, so the first
Second auxiliary heat exchanger 1 that exchanges heat with auxiliary heat exchanger 18b
The refrigerant superheated in room 9b is sent to indoor units 22a and 22b for heating operation.

以上のように本実施例によれば熱源側冷媒サイクルと利
用側冷媒サイクルを分離しているので熱源側冷媒サイク
ルが常に構成が変わらないため前記連接管の長さや高さ
が大きくなっても、能力の低下が少なく、熱源側冷媒サ
イクルの冷媒封入量も少なく増加することがないので圧
縮機の液圧縮による損傷の恐れもない。また、2つの熱
源側冷媒サイクルに対して利用側冷媒サイクルが1つで
あるため、各熱源側冷媒サイクルの運転停止によって能
力制御が可能となシ、さらに、利用側冷媒サイクルの熱
交換器を並列に設けているので、各々の熱源側冷媒サイ
クルに対応した各々の利用側冷媒サイクルの補助熱交換
器にだけ冷媒が流れるため、直列の場合のように停止側
の補助熱交換器で熱ロスを生じたり、圧力損失を生じる
ことで冷媒搬送装置に負荷がかかり利用側冷媒サイクル
の流量が低下して能力がおちることがなく、効率の良い
能力制御運転が出来るものである。
As described above, according to this embodiment, since the heat source side refrigerant cycle and the user side refrigerant cycle are separated, the configuration of the heat source side refrigerant cycle does not change at all times, so even if the length and height of the connecting pipe increases, There is little reduction in capacity, and the amount of refrigerant charged in the heat source side refrigerant cycle is small and will not increase, so there is no risk of damage due to liquid compression in the compressor. In addition, since there is one user-side refrigerant cycle for each heat source-side refrigerant cycle, capacity control is possible by stopping the operation of each heat source-side refrigerant cycle. Since they are installed in parallel, the refrigerant flows only to the auxiliary heat exchanger of each user-side refrigerant cycle corresponding to each heat source-side refrigerant cycle, so there is no heat loss in the stop-side auxiliary heat exchanger like in the case of series. This prevents the refrigerant transport device from being loaded due to pressure loss and reducing the flow rate of the refrigerant cycle on the user side, thereby enabling efficient capacity control operation.

1o9−ジ 又、能力制御運転時、利用する補助熱交換器を限定する
ことにより運転を停止する際に冷媒の流れを防止する開
閉弁を省略出来るため構造が簡単で低コストなものを提
供出来る。
1o9-Also, by limiting the number of auxiliary heat exchangers to be used during capacity control operation, it is possible to omit the on-off valve that prevents the flow of refrigerant when the operation is stopped, making it possible to provide a simple structure and low cost. .

発明の効果 以上のように本発明は圧縮機、熱源側熱交換器および第
1補助熱交換器を環状に連接してなる複数の熱源側冷媒
サイクルとこの複数の第1補助熱交換器と一体に形成し
、それぞれ熱交換する1つを除き開閉弁を設けた複数の
第2補助熱交換器と、前記開閉弁を有しない第2補助熱
交換器と開閉弁を設けた第2補助熱交換器を並列に設け
ると共に冷媒搬送装置、複数の利用側熱交換器を有する
利用側冷媒サイクルとを設けることによシ、熱源側熱交
換器と利用側熱交換器の長さや高さが大きくなっても圧
力損失による能力低下が少なく、熱源側冷媒サイクル内
の冷媒封入量も増加しないので、圧縮機の液圧縮による
損傷の恐れがない。また、複数の熱源側冷媒サイクルに
対して1つの利用側冷媒サイクルのために、能力制御が
可能であシ、11 ページ かつ、第1補助熱交換器に対して独立して第2補助熱交
換器が並列に設けであるので直列時のように冷媒が停止
側の第2補助熱交換器に流れて熱ロスを生じたシ、圧力
損失を生じて利用側冷媒サイクルの能力が低下すること
がなく省エネルギー運転出来るとともに、利用側冷媒サ
イクルの配管本数が少なくなシ、配管工事や配管スペー
スが少なく々る効果がある。さらに、能力制御運転時運
転する熱源側冷媒サイクルを限定することで利用側冷媒
サイクルの内少なくとも1つの開閉弁が不要となシ、構
成が簡単で低コストとなる。
Effects of the Invention As described above, the present invention provides a plurality of heat source side refrigerant cycles formed by connecting a compressor, a heat source side heat exchanger, and a first auxiliary heat exchanger in an annular manner, and a plurality of first auxiliary heat exchangers integrated with each other. a plurality of second auxiliary heat exchangers each having an on-off valve except one for heat exchange; a second auxiliary heat exchanger having no on-off valve; and a second auxiliary heat exchanger having an on-off valve. By providing a refrigerant transport device and a user-side refrigerant cycle having multiple user-side heat exchangers, the length and height of the heat source-side heat exchanger and the user-side heat exchanger become larger. However, there is little reduction in capacity due to pressure loss, and the amount of refrigerant sealed in the heat source side refrigerant cycle does not increase, so there is no risk of damage due to liquid compression in the compressor. In addition, capacity control is possible for one user-side refrigerant cycle for multiple heat source-side refrigerant cycles. Since the refrigerant is installed in parallel, the refrigerant flows to the second auxiliary heat exchanger on the stop side and causes heat loss, which is the case when the refrigerant is connected in series.It also causes pressure loss and reduces the capacity of the refrigerant cycle on the user side. In addition to enabling energy-saving operation, the number of pipes in the user-side refrigerant cycle is reduced, which has the effect of reducing piping work and piping space. Furthermore, by limiting the heat source side refrigerant cycle that is operated during the capacity control operation, at least one on-off valve in the user side refrigerant cycle is not required, resulting in a simple configuration and low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における多室冷暖房装置の冷
媒サイクル図、第2図は従来の多室冷暖房装置の冷媒サ
イクル図である。 11 a、  11 b−−−−−・圧縮機、13a、
  1 sb・−・・・熱源側熱交換器、18a、18
b・・・・・・第1補助熱交換器、19a、19b・・
・・・・第2補助熱交換器、2o・・・・・・開閉弁、
Da、Db・・・・・・熱源側冷媒サイクル、21 ・
・・・冷媒搬送装置、22a、22b・・・・・・利用
側熱交換器、 H・・・・・・利用側冷媒サイクル。
FIG. 1 is a refrigerant cycle diagram of a multi-room air conditioning system according to an embodiment of the present invention, and FIG. 2 is a refrigerant cycle diagram of a conventional multi-room air conditioning system. 11 a, 11 b-----Compressor, 13a,
1 sb---Heat source side heat exchanger, 18a, 18
b...First auxiliary heat exchanger, 19a, 19b...
...Second auxiliary heat exchanger, 2o...Opening/closing valve,
Da, Db...Heat source side refrigerant cycle, 21 ・
...Refrigerant conveyance device, 22a, 22b...Use side heat exchanger, H...Use side refrigerant cycle.

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、熱源側熱交換器、減圧装置および第1補助熱交
換器を環状に連接してなる複数の熱源側冷媒サイクルと
、この複数の第1補助熱交換器と一体に形成し、それぞ
れ熱交換する複数の第2補助熱交換器と冷媒搬送装置、
複数の利用側熱交換器を有する利用側冷媒サイクルとか
ら成り、前記複数の第2補助熱交換器の1つ以外のすべ
てに直列に開閉弁を設けると共に、前記第2補助熱交換
器及び開閉弁からなる複数の直列回路と開閉弁を設けな
い1つの第2補助熱交換器を並列に設けたことを特徴と
する多室冷暖房装置。
A plurality of heat source side refrigerant cycles formed by connecting a compressor, a heat source side heat exchanger, a pressure reducing device, and a first auxiliary heat exchanger in an annular manner are integrally formed with the plurality of first auxiliary heat exchangers, and each a plurality of second auxiliary heat exchangers and a refrigerant conveyance device to be exchanged;
a user-side refrigerant cycle having a plurality of user-side heat exchangers, and all but one of the plurality of second auxiliary heat exchangers are provided with on-off valves in series, and the second auxiliary heat exchanger and the on-off valve are provided in series. A multi-room air conditioning/heating system characterized in that a plurality of series circuits each consisting of valves and one second auxiliary heat exchanger without an on-off valve are provided in parallel.
JP27490188A 1988-10-31 1988-10-31 Multi chamber cooling and heating device Pending JPH02122134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27490188A JPH02122134A (en) 1988-10-31 1988-10-31 Multi chamber cooling and heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27490188A JPH02122134A (en) 1988-10-31 1988-10-31 Multi chamber cooling and heating device

Publications (1)

Publication Number Publication Date
JPH02122134A true JPH02122134A (en) 1990-05-09

Family

ID=17548107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27490188A Pending JPH02122134A (en) 1988-10-31 1988-10-31 Multi chamber cooling and heating device

Country Status (1)

Country Link
JP (1) JPH02122134A (en)

Similar Documents

Publication Publication Date Title
US11555618B2 (en) Multi-zone variable refrigerant flow heating/cooling unit
JP5183804B2 (en) Refrigeration cycle equipment, air conditioning equipment
JPH05280818A (en) Multi-chamber type cooling or heating device
US20060123817A1 (en) Air conditioner
CN210951942U (en) Thermal management system
KR100225636B1 (en) Airconditioner for both cooling and warming
JPH05306849A (en) Multi-room cooler/heater
JPH0420764A (en) Air conditioner
JPH02122134A (en) Multi chamber cooling and heating device
JPS62238951A (en) Air conditioner
KR100225634B1 (en) Coolant flow control apparatus for air conditioner
JPS62272040A (en) Multiroom heating and cooling device
KR100682718B1 (en) Air conditioner having refrigerants distributor for branch
JPH0297847A (en) Separate type air conditioner designed for multi chambers
KR102366587B1 (en) Air conditioner
JP2653749B2 (en) Heat pump package
JPH0674589A (en) Multichamber room cooler/heater
JP2705044B2 (en) Air conditioner
JPH02133729A (en) Multi-room cooling and heating device
JPH02133728A (en) Multi-room cooling and heating device
JPH10141815A (en) Air conditioner
JP3108933B2 (en) Multi-room air conditioner
JPH02217758A (en) Control device for refrigeratin machine
JP3249238B2 (en) Air conditioner
JPH02171530A (en) Multi-chamber cooling and heating device