JPH0211850B2 - - Google Patents

Info

Publication number
JPH0211850B2
JPH0211850B2 JP5619882A JP5619882A JPH0211850B2 JP H0211850 B2 JPH0211850 B2 JP H0211850B2 JP 5619882 A JP5619882 A JP 5619882A JP 5619882 A JP5619882 A JP 5619882A JP H0211850 B2 JPH0211850 B2 JP H0211850B2
Authority
JP
Japan
Prior art keywords
ceramic
sensor
measuring instrument
manufacturing
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5619882A
Other languages
Japanese (ja)
Other versions
JPS58172513A (en
Inventor
Toshimi Kuma
Kinji Kanegae
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seibu Giken Co Ltd
Original Assignee
Seibu Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seibu Giken Co Ltd filed Critical Seibu Giken Co Ltd
Priority to JP5619882A priority Critical patent/JPS58172513A/en
Publication of JPS58172513A publication Critical patent/JPS58172513A/en
Publication of JPH0211850B2 publication Critical patent/JPH0211850B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/16Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【発明の詳細な説明】 本発明者はさきに実願昭56−19805において第
1図に示す如くスパイラル状抵抗細線1の両端を
リード線2,2の一端に夫々接続したものをセラ
ミツク管3内に挿通し、セラミツク管3と線1,
2,2との空隙にセラミツクパウダー4を充填し
て焼結し一体的に成形してなる計測器用センサー
を提案した。
DETAILED DESCRIPTION OF THE INVENTION The present inventor previously proposed in Utility Model Application No. 56-19805 that a ceramic tube 3 was constructed by connecting both ends of a spiral resistance thin wire 1 to one end of lead wires 2, 2, respectively, as shown in FIG. Insert the ceramic tube 3 and wire 1 into the
We have proposed a sensor for a measuring instrument in which ceramic powder 4 is filled in the gap between two parts, sintered, and integrally molded.

この計測器用センサーを製造するにはセラミツ
ク管3内にセラミツクパウダーの泥漿を充填し乾
燥した後セラミツク管3の両端に低融点セラミツ
クの泥漿を追加充填して焼結し、中央部のセラミ
ツク焼結体4と両端部のセラミツク焼結体4a,
4aとが一体的にセラミツク管3内に充填された
状態に仕上げるのであるが、測定時における応答
時間を0.1〜1秒程度の極めて短い時間にするた
め管3の外径を0.5〜1mm程度の極めて小さいセ
ンサーを製造する場合、両端部のセラミツク焼結
体4a,4aの外面を軸に対して対称に且つ平滑
な面にすることが困難で小さな凹凸を生じまたは
非対称になることがあり、また焼結後リード線
2,2にステムとなるリード線2a,2aを溶接
する際セラミツク焼結体4aの外面にクラツクが
入ることがあり、何れの場合においてもセンサー
に当る流体の流れに不均一な乱れを生じさせるた
め測定精度を低下させる欠点があつた。
To manufacture this measuring instrument sensor, the ceramic tube 3 is filled with ceramic powder slurry, dried, and then low melting point ceramic slurry is additionally filled at both ends of the ceramic tube 3 and sintered. body 4 and ceramic sintered bodies 4a at both ends,
4a is integrally filled into the ceramic tube 3, but in order to make the response time during measurement extremely short, about 0.1 to 1 second, the outer diameter of the tube 3 is set to about 0.5 to 1 mm. When manufacturing extremely small sensors, it may be difficult to make the outer surfaces of the ceramic sintered bodies 4a, 4a at both ends symmetrical with respect to the axis and smooth, resulting in small irregularities or asymmetrical surfaces. When welding the lead wires 2a, 2a, which will become the stem, to the lead wires 2, 2 after sintering, cracks may occur on the outer surface of the ceramic sintered body 4a, and in either case, the flow of fluid hitting the sensor may be uneven. This method had the disadvantage of reducing measurement accuracy due to the generation of disturbances.

本発明は上記の欠点を改良するもので、抵抗細
線1の両端をリード線2,2の一端に夫々接続し
たものをセラミツク管3内に挿通し、セラミツク
管3と線1,2,2との空隙にセラミツクパウダ
ー4を充填して該セラミツクパウダー4を焼成
し、セラミツク管3の開口端にリード線2挿通用
孔5を設けたセラミツク蓋6をセラミツク質接着
剤7により接着し、セラミツク質接着剤7を焼結
し一体的に成形することにより計測器用センサー
を得るものである。実施例を図面について説明す
れば、 実施例 1 第2図に示す如く径20ミクロンの白金細線を径
約0.35mmの螺旋状に巻いた抵抗細線1の両端に径
約0.2mmの白金リード線2,2を電気溶接等によ
つて接続し、アルミナ、アルミナ〜マグネシアま
たはシリカ〜アルミナその他適宜材質よりなる外
径0.7mm、内径0.5mmのセラミツク管3にリード線
2,2と抵抗細線1との溶着部が収まるよう該白
金抵抗細線1を挿通し、セラミツク管3と白金線
1,2,2との空隙にセラミツク泥漿たとえば直
径2ミクロン以下のアルミナの微粉末95〜60%と
直径2ミクロン以下の硬質ガラスの微粉末5〜40
%とを微粉末90〜80対水10〜20の割合で練つた均
質混合物4を密に充填して常温減圧の雰囲気で24
〜48時間乾燥し微粉末に加えた水分を殆んど蒸発
させる。ついで炉に入れ、常温より約1時間で約
400℃に昇温し、約400℃に2時間保持し、約3時
間で約1200℃に昇温し約1200℃に30分間保持して
セラミツクパウダー4を焼結または焼成した後常
温まで約10時間かけて徐冷する。次にセラミツク
管3の両端面にアルミナ〜ガラス粉末混合物を水
で練つた泥漿状接着剤7を塗布し、セラミツク管
3の端面と同一輪郭を有しリード線2挿通用孔5
を設けたアルミナその他適宜材質のセラミツク蓋
6,6をリード線2に挿通し接着剤7によつてセ
ラミツク管3の両端面に接着する。得られた成形
品を約5時間常温乾燥後再び炉に入れ、常温より
約1時間で約400℃に昇温し、約400℃に2時間維
持し、約3時間で約1200℃に昇温し、約1200℃に
30分間維持して接着剤7を焼結してセラミツク蓋
6,6をセラミツク管3に完全に接着し、常温ま
で約10時間かけて徐冷することにより白金抵抗細
線1をセラミツク管3内に焼結セラミツク4およ
びセラミツク蓋6,6によつて固定した計測器用
センサーを得る。
The present invention aims to improve the above-mentioned drawbacks, by inserting a thin resistance wire 1 with both ends connected to one end of the lead wires 2, 2 into the ceramic tube 3, and connecting the wires 1, 2, 2 with the ceramic tube 3. A ceramic powder 4 is filled into the gap, the ceramic powder 4 is fired, and a ceramic lid 6 having a hole 5 for passing the lead wire 2 is attached to the open end of the ceramic tube 3 using a ceramic adhesive 7. A sensor for a measuring instrument is obtained by sintering the adhesive 7 and molding it integrally. Examples will be described with reference to the drawings. Example 1 As shown in Fig. 2, a platinum lead wire 2 with a diameter of about 0.2 mm is attached to both ends of a thin resistance wire 1 made of a thin platinum wire with a diameter of 20 microns wound in a spiral shape with a diameter of about 0.35 mm. , 2 are connected by electric welding or the like, and the lead wires 2, 2 and the thin resistance wire 1 are connected to a ceramic tube 3 with an outer diameter of 0.7 mm and an inner diameter of 0.5 mm made of alumina, alumina-magnesia, silica-alumina, or other appropriate material. The thin platinum resistance wire 1 is inserted so as to fit the welded part, and the gap between the ceramic tube 3 and the platinum wires 1, 2, and 2 is filled with ceramic slurry, such as 95-60% alumina fine powder with a diameter of 2 microns or less, and alumina powder of 95 to 60% with a diameter of 2 microns or less. hard glass fine powder 5~40
% and kneaded in a ratio of 90 to 80 parts fine powder to 10 to 20 parts water.
Dry for ~48 hours to evaporate most of the water added to the fine powder. Then put it in the oven and heat it up from room temperature for about 1 hour.
Raise the temperature to 400℃, hold it at about 400℃ for 2 hours, raise the temperature to about 1200℃ in about 3 hours, hold it at about 1200℃ for 30 minutes, sinter or fire the ceramic powder 4, and then heat it to room temperature for about 10 minutes. Cool slowly over time. Next, a slurry-like adhesive 7 made by mixing alumina-glass powder mixture with water is applied to both end surfaces of the ceramic tube 3, and a hole 5 for inserting the lead wire 2, which has the same contour as the end surface of the ceramic tube 3, is applied.
Ceramic caps 6, 6 made of alumina or other suitable material are inserted into the lead wire 2 and bonded to both end surfaces of the ceramic tube 3 with an adhesive 7. After drying the obtained molded product at room temperature for about 5 hours, it is put into the oven again, and the temperature is raised from room temperature to about 400℃ in about 1 hour, maintained at about 400℃ for 2 hours, and then raised to about 1200℃ in about 3 hours. and to about 1200℃
The ceramic lids 6, 6 are completely bonded to the ceramic tube 3 by sintering the adhesive 7 for 30 minutes, and the thin platinum resistance wire 1 is placed inside the ceramic tube 3 by slowly cooling it to room temperature for about 10 hours. A measuring instrument sensor fixed by the sintered ceramic 4 and the ceramic lids 6, 6 is obtained.

実施例 2 第3図および第4図に示す如く2本の透孔を穿
つたセラミツク製円柱体3aを用意し、タングス
テンリード線2,2を両端に電気溶接したタング
ステン抵抗細線1を前記2本の透孔に溶着部が納
まるよう挿通し、セラミツク製円柱体3aとタン
グステン線1,2,2との空隙部を埋めるようセ
ラミツク泥漿たとえばアルミナ微粉末を10〜20%
の水で練つた泥漿状均質混合物4を充填し、泥漿
4を常温乾燥後セラミツク製円柱体3aの両端部
にセラミツク泥漿4と焼成時において相溶性のあ
る、たとえばアルミナ〜ガラス粉末混合物を水で
練つた接着剤7を塗布してタングステン抵抗細線
1の露出部を埋め、空洞部を有するセラミツク蓋
6aを抵抗細線1のあらわれていた側の円柱体3
a端面に接着剤7によつて接着し、2本のリード
線挿通用孔5を設けたセラミツク蓋6bの孔5に
リード線2を通し、セラミツク蓋6bを接着剤7
によつて円柱体3a端面に接着する。得られた成
形品を約5時間常温乾燥し、次いでアルゴンガス
95%、水素ガス5%程度の雰囲気に保つた炉に入
れ、常温より約1時間で約400℃に昇温し、約400
℃に約2時間維持し、約3時間で約1200℃に昇温
し、約1200℃に約30分間維持してセラミツク混合
物4を焼成または焼結するとともにセラミツク接
着剤7を焼結し、常温まで約10時間かけて徐冷し
てタングステン抵抗細線1をセラミツク管3a内
に焼結セラミツク4およびセラミツク蓋6a,6
bによつて固定した計測器用センサーを得る。
Example 2 As shown in FIGS. 3 and 4, a ceramic cylindrical body 3a with two through holes is prepared, and a thin tungsten resistance wire 1 with tungsten lead wires 2, 2 electrically welded to both ends is attached to the two. The welded part is inserted into the through hole, and ceramic slurry, such as alumina fine powder, is applied at a rate of 10 to 20% to fill the gap between the ceramic cylinder 3a and the tungsten wires 1, 2, and 2.
A slurry-like homogeneous mixture 4 kneaded with water is filled, and after drying the slurry 4 at room temperature, a mixture of alumina and glass powder, for example, which is compatible with the ceramic slurry 4 during firing, is added to both ends of the ceramic cylinder 3a with water. The kneaded adhesive 7 is applied to fill the exposed part of the tungsten resistance wire 1, and the ceramic lid 6a having a cavity is attached to the cylindrical body 3 on the side where the resistance wire 1 was exposed.
The lead wire 2 is pasted through the hole 5 of the ceramic lid 6b, which is bonded to the end surface a with an adhesive 7 and has two lead wire insertion holes 5, and the ceramic lid 6b is attached with the adhesive 7.
It is adhered to the end face of the cylindrical body 3a by using the cylindrical body 3a. The obtained molded product was dried at room temperature for about 5 hours, and then heated with argon gas.
95% hydrogen gas and 5% hydrogen gas, and the temperature was raised from room temperature to approximately 400℃ in approximately 1 hour.
℃ for about 2 hours, raised to about 1200℃ in about 3 hours, maintained at about 1200℃ for about 30 minutes to fire or sinter the ceramic mixture 4 and sinter the ceramic adhesive 7, and then heat it to room temperature. The thin tungsten resistance wire 1 is slowly cooled for about 10 hours until the sintered ceramic 4 and the ceramic lids 6a, 6 are placed inside the ceramic tube 3a.
A fixed measuring instrument sensor is obtained by b.

上記実施例において抵抗細線1には白金、タン
グステンを使用したが、それ以外にもニツケル、
ステンレス鋼、洋銀、燐青銅等抵抗の温度係数の
大きい任意の導線を使用することができる。但し
高温腐食性のある金属細線の場合は炉内を窒素、
アルゴン、水素等のガスで充満した雰囲気中で焼
成する。セラミツク管3の材料としてはムライ
ト、ジルコニア等のセラミツクあるいは金属を使
用することができ、セラミツクパウダー4の材料
としてはアルミナ、シリカ、マグネシア、石英ガ
ラス等またはその混和物を使用し得るが、セラミ
ツク管3と焼結セラミツク4と抵抗線1とは熱膨
脹係数が可及的等しくなるように夫々の材料を選
定し組合わせる必要がある。
In the above embodiment, platinum and tungsten were used for the resistance wire 1, but other materials such as nickel,
Any conductive wire with a high temperature coefficient of resistance, such as stainless steel, German silver, or phosphor bronze, can be used. However, in the case of thin metal wires that are corrosive at high temperatures, the inside of the furnace must be filled with nitrogen,
Firing is performed in an atmosphere filled with gases such as argon and hydrogen. Ceramics such as mullite and zirconia or metals can be used as the material for the ceramic tube 3, and alumina, silica, magnesia, quartz glass, etc. or mixtures thereof can be used as the material for the ceramic powder 4. 3, the sintered ceramic 4, and the resistance wire 1, it is necessary to select and combine their respective materials so that their coefficients of thermal expansion are as equal as possible.

本発明は上記の如くセラミツク管3の開口端に
予め成形したセラミツク蓋6を取付けセラミツク
パウダー4を封入したので、計測器用センサーを
簡易確実に正確な寸法に製造することができ、従
来の如く充填セラミツク4がセラミツク管両端部
に露出してその端面形状が歪みあるいはリード線
2にステムとなるリード線2aを溶接する際充填
セラミツク4の露出部にクラツクを生じて測定精
度を低下させるおそれなく、流速計用センサー、
測温抵抗体、温度補償用センサーとして長期に亘
つて正確に迅速に温度または流速を測定し得る計
測器用センサーを得られる効果を有するものであ
る。
In the present invention, as described above, a pre-formed ceramic lid 6 is attached to the open end of the ceramic tube 3 and the ceramic powder 4 is enclosed, so that a sensor for a measuring instrument can be simply and reliably manufactured to an accurate size, and can be filled as required in the conventional method. There is no risk that the ceramic 4 will be exposed at both ends of the ceramic tube and its end face shape will be distorted, or that cracks will occur in the exposed portion of the filled ceramic 4 when welding the lead wire 2a that will become the stem to the lead wire 2, reducing measurement accuracy. current meter sensor,
This has the effect of providing a sensor for measuring instruments that can accurately and quickly measure temperature or flow rate over a long period of time as a resistance temperature detector or temperature compensation sensor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の計測器用センサーの一例を示す
断面図、第2図および第3図は本発明により得ら
れた計測器用センサーの例を示す断面図、第4図
は第3図のA−A線断面図である。 図中1は抵抗細線、2はリード線、3はセラミ
ツク管、4は焼結セラミツク、6はセラミツク蓋
を示す。
FIG. 1 is a sectional view showing an example of a conventional sensor for measuring instruments, FIGS. 2 and 3 are sectional views showing an example of a sensor for measuring instruments obtained according to the present invention, and FIG. 4 is a cross-sectional view showing an example of a conventional sensor for measuring instruments. It is an A-line sectional view. In the figure, 1 is a resistive thin wire, 2 is a lead wire, 3 is a ceramic tube, 4 is a sintered ceramic, and 6 is a ceramic lid.

Claims (1)

【特許請求の範囲】 1 抵抗細線1の両端をリード線2,2の一端に
夫々接続したものをセラミツク管3内に挿通し、
セラミツク管3と線1,2,2との空隙にセラミ
ツクパウダー4を充填して該セラミツクパウダー
4を焼成し、セラミツク管3の開口端にリード線
2挿通用孔5を設けたセラミツク蓋6をセラミツ
ク質接着剤7により接着し、セラミツク質接着剤
7を焼結し一体的に成形することを特徴とする計
測器用センサーの製造方法。 2 セラミツクパウダー4の焼成とセラミツク質
接着剤7の焼結とを最終工程において一緒に行な
う特許請求の範囲第1項記載の計測器用センサー
の製造方法。 3 計測器が流速計である特許請求の範囲第1項
または第2項記載の計測器用センサーの製造方
法。 4 計測器用センサーが測温抵抗体である特許請
求の範囲第1項または第2項記載の計測器用セン
サーの製造方法。 5 計測器用センサーが温度補償用センサーであ
る特許請求の範囲第1項または第2項記載の計測
器用センサーの製造方法。
[Scope of Claims] 1. Both ends of a thin resistance wire 1 are connected to one end of lead wires 2, 2, respectively, and the wires are inserted into a ceramic tube 3,
A ceramic powder 4 is filled in the gap between the ceramic tube 3 and the wires 1, 2, 2, and the ceramic powder 4 is fired to form a ceramic lid 6 with a hole 5 for inserting the lead wire 2 at the open end of the ceramic tube 3. A method of manufacturing a sensor for a measuring instrument, characterized in that the sensors are bonded using a ceramic adhesive 7, and the ceramic adhesive 7 is sintered and integrally molded. 2. The method for manufacturing a sensor for a measuring instrument according to claim 1, wherein the firing of the ceramic powder 4 and the sintering of the ceramic adhesive 7 are performed together in the final step. 3. The method for manufacturing a sensor for a measuring instrument according to claim 1 or 2, wherein the measuring instrument is a current meter. 4. The method for manufacturing a sensor for a measuring instrument according to claim 1 or 2, wherein the sensor for a measuring instrument is a resistance temperature sensor. 5. The method for manufacturing a measuring instrument sensor according to claim 1 or 2, wherein the measuring instrument sensor is a temperature compensation sensor.
JP5619882A 1982-04-03 1982-04-03 Sensor for measuring instrument Granted JPS58172513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5619882A JPS58172513A (en) 1982-04-03 1982-04-03 Sensor for measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5619882A JPS58172513A (en) 1982-04-03 1982-04-03 Sensor for measuring instrument

Publications (2)

Publication Number Publication Date
JPS58172513A JPS58172513A (en) 1983-10-11
JPH0211850B2 true JPH0211850B2 (en) 1990-03-16

Family

ID=13020416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5619882A Granted JPS58172513A (en) 1982-04-03 1982-04-03 Sensor for measuring instrument

Country Status (1)

Country Link
JP (1) JPS58172513A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61154536U (en) * 1985-03-16 1986-09-25
JP2003254799A (en) * 2002-03-01 2003-09-10 Yokogawa Electric Corp Vortex flowmeter

Also Published As

Publication number Publication date
JPS58172513A (en) 1983-10-11

Similar Documents

Publication Publication Date Title
JP5719303B2 (en) Sensor element and method for manufacturing sensor element
US5228975A (en) Gas sensor having hermetic and electrically insulating seal in housing
US4912838A (en) Method of manufacturing electrode for electromagnetic flowmeter
US2703833A (en) Resistance thermometer
US4398169A (en) Resistance thermometer element
PL79234B1 (en)
JPH0211850B2 (en)
JP2830877B2 (en) Solid electrolyte material
US4229275A (en) Solid electrolyte oxygen sensor and method of making same
JPS57132051A (en) Air-fuel ratio measuring sensor and air-fuel ratio measuring method using said sensor
JP2936059B2 (en) Resistance thermometer and manufacturing method thereof
JPS5826802B2 (en) Temperature sensing element for high temperature
JPS6239306Y2 (en)
JPH01169322A (en) Manufacture of electrode part of electromagnetic flowmeter
JPS6242014A (en) Manufacture of measuring pipe for electromagnetic flow meter
JPH0119241B2 (en)
JPH01235304A (en) Manufacture of glass-sealed thermistor
JP2000019025A (en) Thermocouple for molten metal
JPS6241337B2 (en)
JPH01169320A (en) Manufacture of electrode part of electromagnetic flowmeter
JPH0628687Y2 (en) Continuous oxygen concentration measuring device
JPH0145724B2 (en)
JPH03128453A (en) Component concentration sensor for molten metal by using composite solid electrolyte
Lemos Metallic hot wire anemometer
JPH01109221A (en) Heat generating resistance body for thermal flowmeter