JPH02118405A - Fine dimension measuring device - Google Patents

Fine dimension measuring device

Info

Publication number
JPH02118405A
JPH02118405A JP27223688A JP27223688A JPH02118405A JP H02118405 A JPH02118405 A JP H02118405A JP 27223688 A JP27223688 A JP 27223688A JP 27223688 A JP27223688 A JP 27223688A JP H02118405 A JPH02118405 A JP H02118405A
Authority
JP
Japan
Prior art keywords
stage
measurement
focusing position
wafer
objective lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27223688A
Other languages
Japanese (ja)
Inventor
Kimihiro Matsuda
松田 公博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Yamagata Ltd
Original Assignee
NEC Yamagata Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Yamagata Ltd filed Critical NEC Yamagata Ltd
Priority to JP27223688A priority Critical patent/JPH02118405A/en
Publication of JPH02118405A publication Critical patent/JPH02118405A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the measuring accuracy of a pattern by providing a stage on which a semiconductor wafer is placed, a measuring part having an objective lens, an arithmetic processing part and a control part. CONSTITUTION:The dimension of the pattern on the same part of the wafer 4 is measured plural times at a focusing position whose height is H1. The measured value is processed in the arithmetic processing part 8 every time measurement is completed and the reproducing accuracy of the measurement which is repeated for the same focusing position is stored. Then, a driving signal is transmitted through a central control part 9 and a stage control part 10 and the stage 5 is moved by a stage driving part 6 to the focusing position whose height is H2, where the measurement is performed plural times and the reproducing accuracy of the repeated measurement is calculated and stored. Thereafter, the measurement is repeated n-times optionally in the same way. The arithmetic processing part 8 selects the focusing position which is the most excellent in reproducibility out of the reproducing accuracy of each focusing position. In order to get the selected focusing position, the signal is transmitted from the control part 9 to the driving part 6 and the measurement of the dimension of the respective points in the wafer 4 which is set at the optimum focusing position is started.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造工程において用いられる自動
焦点位置決め機能を有する微小寸法測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a minute dimension measuring device having an automatic focus positioning function used in the manufacturing process of semiconductor devices.

〔従来の技術〕[Conventional technology]

従来、この種の対物レンズの自動焦点位置決め機能を有
する微小寸法測定装置を用い、半導体つ工−ハ(以下単
にウェーハという)上の配線の幅を測定、しようとした
場合、最適焦点位置は、測定対象とする配線を中心とす
る視野におけるウェー八表面上の凹凸の平均的な高さの
位置に合わさるようになっていた。
Conventionally, when attempting to measure the width of wiring on a semiconductor wafer (hereinafter simply referred to as a wafer) using a micro-dimensional measuring device that has an automatic focus positioning function for this type of objective lens, the optimal focal position is: The height was set to match the average height of the unevenness on the surface of the wafer in the field of view centered on the wiring to be measured.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の自動最適焦点の決定法を用いた微小寸法
測定装置では、ウェーハ上の対象物であるパターンを測
定した場合、ウェーハの表面の高さは微細視すると第4
図に示すように、半導体基板20上には層間絶縁膜21
や配線22が形成されていて一様ではないため、微小寸
法測定装置が決定した最適焦点位置の目的とするデバイ
スパターンの測定箇所に対する最適焦点位置にはずれが
生じ、得られた測定値の精度が劣るといつな欠点があっ
た。
In the micro-dimensional measuring device using the conventional automatic optimal focus determination method described above, when measuring a pattern as an object on a wafer, the height of the wafer surface is microscopically
As shown in the figure, an interlayer insulating film 21 is formed on the semiconductor substrate 20.
Because the wires and wiring 22 are formed and are not uniform, the optimum focus position determined by the micro-dimensional measuring device may deviate from the target measurement point of the device pattern, and the accuracy of the obtained measurement value may deteriorate. There were always drawbacks when it was inferior.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の微小寸法測定装置は、半導体ウェーハを載置す
るステージと、前記半導体ウェーハ上のパターンを測定
するための対物レンズを有する測定部と、前記測定部か
らの信号を処理しパターン寸法を演算する演算処理部と
、前記演算処理部からの信号により前記ステージまたは
対物レンズを光軸方向に段階的に移動させるように制御
する制御部とを含んで構成される。
The micro-dimensional measuring device of the present invention includes a stage on which a semiconductor wafer is placed, a measuring section having an objective lens for measuring a pattern on the semiconductor wafer, and processing signals from the measuring section to calculate pattern dimensions. and a control section that controls the stage or objective lens to move stepwise in the optical axis direction based on signals from the arithmetic processing section.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は、本発明の第1の実施例のブロック図である。FIG. 1 is a block diagram of a first embodiment of the invention.

第1図において、ウェーハ4は光軸方向に段階的に移動
できるステージ5の上に載せられており、このウェーハ
4の光軸方向上部には、光センサ2と共に測定部を構成
する対物レンズ1が設けられている。ウェーハ4上の測
定対象の配線等のパターンの情報は、対物レンズ1を通
して光センサ−2へ送られて電気信号に変換される。電
気信号に変換されたパターンの情報は、演算処理部8へ
送られ、測定値の平均値およびばらつき等の統計計算が
行なわれる。その結果は中央制御部9へ転送されステー
ジの駆動の判定が行なわれる。中央制御部9で判定した
結果はステージ制御部10に転送され、そこからステー
ジ駆動部6にステージを駆動する信号が送られ、ステー
ジ駆動部6は中央制御部で判定された方向と移動量でス
テージを光軸方向に移動させる。
In FIG. 1, a wafer 4 is placed on a stage 5 that can be moved stepwise in the optical axis direction, and an objective lens 1 that constitutes a measuring section together with an optical sensor 2 is placed above the wafer 4 in the optical axis direction. is provided. Information on patterns such as wiring to be measured on the wafer 4 is sent to the optical sensor 2 through the objective lens 1 and converted into an electrical signal. The pattern information converted into an electrical signal is sent to the arithmetic processing section 8, where statistical calculations such as the average value and dispersion of the measured values are performed. The results are transferred to the central control unit 9, where stage drive is determined. The results determined by the central control unit 9 are transferred to the stage control unit 10, which sends a signal to the stage drive unit 6 to drive the stage, and the stage drive unit 6 moves in the direction and amount of movement determined by the central control unit. Move the stage in the optical axis direction.

次に測定動作について説明する。第2図はステージ5の
動作を説明するための対物レンズとウェーハの側面図で
ある。測定されるウェーハ4はステージ5の上に載せら
れている。
Next, the measurement operation will be explained. FIG. 2 is a side view of the objective lens and wafer for explaining the operation of the stage 5. A wafer 4 to be measured is placed on a stage 5.

最初に第2図に示す高さHlの焦点位置で、ウェーハ4
の同一部分のパターン寸法の測定が複数回数行なわれる
。測定値は1回の測定が終了する都度演算処理部8に転
送されて処理されたのち、同一焦点位置に対する繰り返
し測定の再現精度が記憶される。Hlの焦点位置での測
定が終了したら、中央制御部9を介してステージ制御部
10より駆動信号が送られ、ステージ駆動部6によりス
テージ5はH2の高さの焦点位置に移動する。H2にお
いてHlの焦点位置と同様にして複数回数の測定が行な
われ、H2における繰り返し測定の再現精度が算出され
記憶される。以下同様に任意のn回繰り返して各焦点位
置で測定が行なわれる。そして、各焦点位置で測定され
記憶された繰り返し測定の再現精度の中から最も再現性
の良い焦点位置が演算処理部8で選定され、焦点位置が
決定される。このようにして選びだされた焦点位置にな
るように、中央制御部9からステージ制御部10を介し
てステージ駆動部6へ信号が送られ、最適焦点位置にウ
ェーハ4はセットされ、ウェーハ内の各点に対し寸法測
定が開始される。
First, the wafer 4 is placed at the focal point at the height Hl shown in FIG.
The pattern dimensions of the same portion of the pattern are measured multiple times. The measured values are transferred to the arithmetic processing unit 8 and processed each time one measurement is completed, and then the reproducibility accuracy of repeated measurements for the same focal position is stored. When the measurement at the focal position of H1 is completed, a drive signal is sent from the stage control unit 10 via the central control unit 9, and the stage driving unit 6 moves the stage 5 to the focal position at the height of H2. In H2, measurements are performed a plurality of times in the same way as the focal position of Hl, and the repeatability of the repeated measurements in H2 is calculated and stored. Thereafter, measurements are similarly performed at each focal position by repeating an arbitrary n number of times. Then, the arithmetic processing unit 8 selects the focal position with the best reproducibility from among the reproducibility of repeated measurements measured and stored at each focal position, and the focal position is determined. A signal is sent from the central control unit 9 to the stage drive unit 6 via the stage control unit 10 so that the focus position selected in this way is set, and the wafer 4 is set at the optimum focus position. Dimension measurements are started for each point.

このように第1の実施例によれば、測定対象とするパタ
ーンの測定再現精度の最も良い焦点位置を選定すること
ができるので、測定値の精度は向上したものとなる。
As described above, according to the first embodiment, it is possible to select the focal position with the best measurement reproducibility of the pattern to be measured, so that the accuracy of the measured value is improved.

第3図は本発明の第2の実施例のブロック図であり、第
1の実施□例と異なる所は、ステージ駆動部の代りに対
物レンズ駆動部7を設け、対物レンズ1の移動により焦
点位置を定めるようにした所にある。
FIG. 3 is a block diagram of the second embodiment of the present invention. The difference from the first embodiment is that an objective lens drive section 7 is provided instead of the stage drive section, and the movement of the objective lens 1 causes the focus to be focused. It is located where the position is determined.

すなわち、対物レンズ1は対物レンズを光軸方向に移動
させる対物レンズ駆動部7に取り付けられている。第1
の実施例と同様に、中央制御部9からの指令で対物レン
ズ制御部11は対物レンズ駆動部7に制御信号を送り段
階的に対物レンズの焦点位置を移動させる。
That is, the objective lens 1 is attached to an objective lens drive section 7 that moves the objective lens in the optical axis direction. 1st
Similarly to the embodiment, the objective lens control section 11 sends a control signal to the objective lens drive section 7 in response to a command from the central control section 9 to move the focal position of the objective lens stepwise.

この第2の実施例では対物レンズ側に駆動部を設けであ
るために、ステージ側の機構を簡単にできる利点がある
In this second embodiment, since the driving section is provided on the objective lens side, there is an advantage that the mechanism on the stage side can be simplified.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、微小寸法測定装置を半導
体ウェーハを載置するステージと、半導体ウェーハ上の
パターンを測定するための対物レンズを有する測定部と
、この測定部からの信号を処理しパターン寸法を演算す
る演算処理部と、この演算処理部からの信号により前記
ステージまたは対物レンズを光軸方向に段階的に移動さ
せるように制御する制御部とにより構成することによリ
、最も再現精度の良い焦点位置を決定することができる
なめ、パターンの測定精度を著しく向上させることがで
きる。
As explained above, the present invention includes a micro-dimensional measuring device that includes a stage on which a semiconductor wafer is placed, a measuring section having an objective lens for measuring a pattern on the semiconductor wafer, and a signal from this measuring section. By comprising a calculation processing unit that calculates pattern dimensions and a control unit that controls the stage or objective lens to move stepwise in the optical axis direction based on signals from this calculation processing unit, it is possible to achieve maximum reproduction. Since the focal position can be determined with high precision, pattern measurement accuracy can be significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例のブロック図、第2図は
ステージの動作を説明するための対物レンズとウェーハ
の側面図、第3図は本発明の第2の実施例のブロック図
、第4図はウェーハの一例の断面図である。 1・・・対物レンズ、2・・・光センサ−,4・・・ウ
ェーハ、5・・・ステージ、6・・・ステージ駆動部、
7・・・対物レンズ駆動部、8・・・演算処理部、9・
・・中央制御部、10・・・ステージ制御部、11・・
・対物レンズ駆動部、20・・・半導体基板、21・・
・層間絶縁膜、22・・・配線。
Fig. 1 is a block diagram of the first embodiment of the present invention, Fig. 2 is a side view of the objective lens and wafer for explaining the operation of the stage, and Fig. 3 is a block diagram of the second embodiment of the invention. FIG. 4 is a cross-sectional view of an example of a wafer. DESCRIPTION OF SYMBOLS 1... Objective lens, 2... Optical sensor, 4... Wafer, 5... Stage, 6... Stage drive unit,
7... Objective lens drive section, 8... Arithmetic processing section, 9.
... Central control section, 10... Stage control section, 11...
- Objective lens drive unit, 20... semiconductor substrate, 21...
- Interlayer insulating film, 22... wiring.

Claims (1)

【特許請求の範囲】[Claims] 半導体ウェーハを載置するステージと、前記半導体ウェ
ーハ上のパターンを測定するための対物レンズを有する
測定部と、前記測定部からの信号を処理しパターン寸法
を演算する演算処理部と、前記演算処理部からの信号に
より前記ステージまたは対物レンズを光軸方向に段階的
に移動させるように制御する制御部とを含むことを特徴
とする微小寸法測定装置。
a stage on which a semiconductor wafer is placed; a measurement section having an objective lens for measuring a pattern on the semiconductor wafer; a calculation processing section that processes signals from the measurement section and calculates pattern dimensions; and the calculation processing. and a control section that controls the stage or objective lens to move stepwise in the optical axis direction based on signals from the micro-dimensional measuring device.
JP27223688A 1988-10-27 1988-10-27 Fine dimension measuring device Pending JPH02118405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27223688A JPH02118405A (en) 1988-10-27 1988-10-27 Fine dimension measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27223688A JPH02118405A (en) 1988-10-27 1988-10-27 Fine dimension measuring device

Publications (1)

Publication Number Publication Date
JPH02118405A true JPH02118405A (en) 1990-05-02

Family

ID=17511021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27223688A Pending JPH02118405A (en) 1988-10-27 1988-10-27 Fine dimension measuring device

Country Status (1)

Country Link
JP (1) JPH02118405A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5627215A (en) * 1993-12-27 1997-05-06 Ciba-Geigy Corporation Unsaturate amino compounds for use as anticancer and antiprotozoic agent
JP2004333584A (en) * 2003-04-30 2004-11-25 Nec Corp Method for controlling focus position in reticle inspection apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5627215A (en) * 1993-12-27 1997-05-06 Ciba-Geigy Corporation Unsaturate amino compounds for use as anticancer and antiprotozoic agent
JP2004333584A (en) * 2003-04-30 2004-11-25 Nec Corp Method for controlling focus position in reticle inspection apparatus

Similar Documents

Publication Publication Date Title
JP3181050B2 (en) Projection exposure method and apparatus
US4328553A (en) Method and apparatus for targetless wafer alignment
EP0130819B1 (en) A method of positioning a beam to a specific portion of a semiconductor wafer
US20020170887A1 (en) Optical element producing method, base material drawing method and base material drawing apparatus
JP2009071103A (en) Exposing system and method of manufacturing semiconductor apparatus
JPH02118405A (en) Fine dimension measuring device
US5825468A (en) Exposure system for lithography apparatus
JPH0636997A (en) Electron beam lithography apparatus
JPS63239181A (en) Method for measuring diameter of crystal in cz furnace
JP2886957B2 (en) Automatic focusing device
JP2002048519A (en) Method and instrument for measuring difference in level, and method of manufacturing semiconductor device
JP2000349043A (en) Precise focusing method for rectangular beam
JPH0537476Y2 (en)
JPH10253320A (en) Apparatus for measuring amount of position dislocation
JPH11183138A (en) Method and device for measuring pattern dimension
EP1397639A1 (en) Sample positioning method for surface optical diagnostics using video imaging
US11796311B2 (en) Light emitting device, optical detection system, optical detection device and optical detection method
JPH01170022A (en) Substrate position controlling device
JPH0367450A (en) Automatic focusing method when transferring wafer
JPH0982264A (en) Pattern inspection device and scanning electron microscope
JPH0731106A (en) Focal point adjusting method of position detecting light receiving function in cut position detecting method for undercut machine positioning method
JPH01232736A (en) Monitor for dimension measurement
JPH0529130B2 (en)
JP4001427B2 (en) Method for determining focus of light reduction projection exposure apparatus
JPS6244708A (en) Focusing mechanism