JPH0211736B2 - - Google Patents

Info

Publication number
JPH0211736B2
JPH0211736B2 JP56094370A JP9437081A JPH0211736B2 JP H0211736 B2 JPH0211736 B2 JP H0211736B2 JP 56094370 A JP56094370 A JP 56094370A JP 9437081 A JP9437081 A JP 9437081A JP H0211736 B2 JPH0211736 B2 JP H0211736B2
Authority
JP
Japan
Prior art keywords
fuel
gasified
engine
combustion chamber
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56094370A
Other languages
Japanese (ja)
Other versions
JPS57210153A (en
Inventor
Takahiro Tsuruga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP56094370A priority Critical patent/JPS57210153A/en
Publication of JPS57210153A publication Critical patent/JPS57210153A/en
Publication of JPH0211736B2 publication Critical patent/JPH0211736B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • F02M31/02Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating
    • F02M31/16Other apparatus for heating fuel
    • F02M31/18Other apparatus for heating fuel to vaporise fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Description

【発明の詳細な説明】 本発明は、排気ガスの熱を利用して燃料をガス
化し、ガス化した燃料を吸入空気とは独立の経路
によつて燃焼室に導入する、内燃機関の燃料供給
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a fuel supply system for an internal combustion engine that gasifies fuel using the heat of exhaust gas and introduces the gasified fuel into a combustion chamber through a path independent of intake air. Regarding the method.

以下、本明細書においては、「ガス化燃料」と
は、一部または全部を気化させた燃料、もしくは
その一部または全部を化学反応によつて組成の異
なる改質ガスにした燃料を言う。
Hereinafter, in this specification, "gasified fuel" refers to a fuel that is partially or completely vaporized, or a fuel that is partially or entirely converted into a reformed gas having a different composition through a chemical reaction.

内燃機関では、原理的に、燃料が燃焼して発生
する熱エネルギーの数十パーセントが排気ガスの
熱として捨てられてしまう。この排気ガスの熱を
何らかの方法で回収し、機関の出力に加えること
ができれば、機関の熱効率は向上する。
In an internal combustion engine, in principle, several tens of percent of the thermal energy generated when fuel is combusted is wasted as heat in the exhaust gas. If heat from this exhaust gas can be recovered in some way and added to the engine's output, the engine's thermal efficiency will improve.

従来から、排気ガスの熱の回収方法の1つとし
て、排気ガスの熱によつて燃料を気化させて、燃
料の気化潜熱に相当する熱量を排気ガスから回収
する方法がある。さらに改質触媒を作用させて、
たとえば燃料がメタノールの場合には、 CH4O→CO+2H2 のような吸熱反応によつて、もとの燃料より発熱
量の大きい組成の改質ガス燃料にして、排気ガス
の熱を回収する方法もある。このような方法で排
気ガスの熱を回収すれば、燃料の気化熱、あるい
は吸熱反応に伴つて吸収した熱に応じて機関の熱
効率は向上する。
2. Description of the Related Art Conventionally, one method for recovering heat from exhaust gas is to vaporize fuel using the heat of exhaust gas and recover an amount of heat corresponding to the latent heat of vaporization of the fuel from the exhaust gas. Furthermore, by applying a reforming catalyst,
For example, when the fuel is methanol, heat from the exhaust gas is recovered by converting it into reformed gas fuel with a composition that has a higher calorific value than the original fuel through an endothermic reaction such as CH 4 O → CO + 2H 2 . There is also. If the heat of the exhaust gas is recovered in this way, the thermal efficiency of the engine will improve depending on the heat of vaporization of the fuel or the heat absorbed in an endothermic reaction.

ところがこのように燃料がガス化されると、そ
の体積は液体のときよりも増加するために、これ
を従来のように吸入空気といつしよに燃焼室に吸
入しようとすると、機関の吸入できる空気量が減
少してしまい、熱効率は向上しても、機関の出力
は増加しなかつたり、ときには減少したりする。
However, when the fuel is gasified in this way, its volume increases compared to when it is liquid, so if you try to inhale it into the combustion chamber together with the intake air as in the past, the engine will not be able to intake it. Although the amount of air decreases and thermal efficiency improves, the output of the engine does not increase or sometimes decreases.

本発明は、吸気時には空気のみを吸入し、ガス
化燃料を空気の通路とは異なる経路によつて直接
に燃焼室内に導入することによつて、前述のよう
な吸入空気量の減少を防ぎ、もつて出力低下を防
止することを消極的な目的とする。
The present invention prevents the above-mentioned decrease in intake air amount by inhaling only air during intake and directly introducing gasified fuel into the combustion chamber through a path different from the air passage. The passive objective is to prevent a decrease in output.

本発明の積極的な目的は、特許請求の範囲第1
項に記載したごとく、ガス化燃料を燃焼室内に直
接導入するのに、その導入時期を、主として圧縮
行程の後半とすることによつて、機関の出力と熱
効率をともに向上させることである。
An active object of the present invention is as set forth in claim 1.
As described in section 1, by introducing gasified fuel directly into the combustion chamber, the introduction timing is mainly in the latter half of the compression stroke, thereby improving both the engine's output and thermal efficiency.

本発明の原理を図面を参照しながら説明する。 The principle of the present invention will be explained with reference to the drawings.

第1図は、燃料ガス化による吸入空気量減少
と、本発明の消極的な目的である、その防止効果
の説明図であつて、Aは機関が吸入できる気体の
体積を表している。Bは空気といつしよに液体燃
料を吸入する場合、Cは空気といつしよにガス化
燃料を吸入する場合、Dは空気のみを吸入してか
ら、ガス化燃料を直接燃焼室内に導入する場合を
示しており、白地部分は空気の占める体積を、斜
線部分は燃料の占める体積を示している。D′は
Dの場合の、ガス化燃料導入後の燃焼室内での空
気とガス化燃料が占める体積を示す。
FIG. 1 is an explanatory diagram of the reduction in the amount of intake air due to fuel gasification and its prevention effect, which is a negative objective of the present invention, and A represents the volume of gas that can be taken in by the engine. B is when liquid fuel is inhaled together with air, C is when gasified fuel is inhaled together with air, and D is when only air is inhaled, and then gasified fuel is directly introduced into the combustion chamber. The white area indicates the volume occupied by air, and the shaded area indicates the volume occupied by fuel. D' indicates the volume occupied by the air and gasified fuel in the combustion chamber after the gasified fuel is introduced in case D.

Bの場合、液体燃料の体積は空気の体積に比較
して極くわずかであるので、燃料を空気といつし
よに吸入することによる吸入空気量減少は無視し
うる程度である。Cの場合、ガス化燃料の体積は
吸入空気の体積の数パーセントから数十パーセン
トに及ぶので、空気といつしよに燃料を吸入する
ことによる吸入空気量の減少は大きく、したがつ
て機関の出力は低下することがある。とくに前述
のメタノール改質ガス化燃料の場合、燃料の分子
数が増加するので、それを空気といつしよに吸入
することによる吸入空気量の減少は激しく、した
がつて出力の低下も著しい。Dの場合、すなわち
本発明による燃料供給方法では、空気だけを吸入
するので、ガス化燃料による吸入空気量減少を生
じない。
In case B, since the volume of liquid fuel is extremely small compared to the volume of air, the reduction in intake air amount due to intake of fuel together with air is negligible. In the case of C, the volume of gasified fuel ranges from several percent to several tens of percent of the volume of intake air, so the reduction in intake air amount by sucking fuel together with air is large, and therefore the engine's Output may be reduced. In particular, in the case of the above-mentioned methanol reformed gasified fuel, since the number of fuel molecules increases, the amount of intake air is drastically reduced by inhaling it together with air, and therefore the output is also significantly reduced. In case D, that is, in the fuel supply method according to the present invention, only air is taken in, so that the amount of intake air does not decrease due to gasified fuel.

第2図は、本発明の積極的な目的を説明する、
模式化したサイクル線図で、横軸は機関の燃焼室
内容積を、縦軸は燃焼室内の空気または空気と燃
料の混合気体または燃焼ガスの圧力を示す。実線
の閉曲線EFGHEは通常のサイクルすなわち燃料
を空気といつしよに吸入するサイクルであり、
EFは圧縮行程、FGは燃焼による圧力上昇、GH
は膨張行程、HEはブローダウンによる圧力降下
を示す。破線の閉曲線EJKLMNEは本発明によ
るサイクルである。
FIG. 2 illustrates the positive objectives of the invention:
In the schematic cycle diagram, the horizontal axis represents the internal volume of the combustion chamber of the engine, and the vertical axis represents the pressure of air, air/fuel mixture, or combustion gas within the combustion chamber. The solid closed curve EFGHE is a normal cycle, that is, a cycle in which fuel is inhaled together with air.
EF is compression stroke, FG is pressure increase due to combustion, GH
indicates the expansion stroke, and HE indicates the pressure drop due to blowdown. The broken closed curve EJKLMNE is the cycle according to the invention.

本発明によるサイクルでは、空気のみを圧縮し
(E→J)、圧縮行程の途中で、ガス化燃料を燃焼
室内の空気より高い圧力で燃焼室内に直接導入す
る。そうすると燃焼室内の気体の量が増加するた
めに、その圧力は上昇する(J→K)。さらに空
気とガス化燃料の混合気を上死点まで圧縮(K→
L)したのちに燃焼させる。燃焼前の圧力(L)
が通常のサイクルの燃焼前の圧力Fより高いの
で、燃焼後の圧力Mは通常のサイクルの燃焼後の
圧力Gより高くなる。
In the cycle according to the invention, only air is compressed (E→J), and in the middle of the compression stroke, gasified fuel is introduced directly into the combustion chamber at a higher pressure than the air inside the combustion chamber. Then, since the amount of gas in the combustion chamber increases, its pressure increases (J→K). Furthermore, the mixture of air and gasified fuel is compressed to top dead center (K→
L) and then burn it. Pressure before combustion (L)
is higher than the pre-combustion pressure F in the normal cycle, so the post-combustion pressure M is higher than the post-combustion pressure G in the normal cycle.

サイクル仕事は、通常のサイクルでは閉曲線
EFGHEの面積に相当し、本発明のサイクルでは
閉曲線EJKLMNEの面積に相当する。本発明の
サイクルでは通常のサイクルに比較して、膨張仕
事の増加(閉曲線HGMNHの面積に相当)から
圧縮仕事の増加(閉曲線JFLKJの面積に相当)
を差し引いた量だけサイクル仕事が増加し、した
がつて機関の出力は増加する。また、圧縮仕事の
増加量を小さくするためには、ガス化燃料を燃焼
室内に導入する時期(第2図のJ)はできるだけ
圧縮行程の最後(同図のF)に近くするのが望ま
しい。これが特許請求の範囲第1項に記載した内
容の主旨である。
Cycle work is a closed curve in a normal cycle
It corresponds to the area of EFGHE, and in the cycle of the present invention corresponds to the area of the closed curve EJKLMNE. In the cycle of the present invention, compared to the normal cycle, there is an increase in expansion work (corresponding to the area of closed curve HGMNH) and an increase in compression work (corresponding to the area of closed curve JFLKJ).
The cycle work increases by the amount less , and therefore the output of the engine increases. Furthermore, in order to reduce the amount of increase in compression work, it is desirable to introduce the gasified fuel into the combustion chamber (J in Figure 2) as close to the end of the compression stroke (F in Figure 2) as possible. This is the gist of the content stated in claim 1.

燃料に水を加えておいてガス化すると、ガス化
燃料の全体積が増加するので、ガス化燃料を燃焼
室内に導入したときの圧力(第2図のK)が高く
なり、よつて圧縮後の圧力(同図L)および燃焼
後の圧力(同図M)が高くなる。したがつて、燃
料に水を加えてガス化することによつて、本発明
のサイクル仕事は、より大きくなる。これが特許
請求の範囲第2項または第3項に記載の内容の主
旨である。
When water is added to the fuel and gasified, the total volume of the gasified fuel increases, so the pressure (K in Figure 2) when the gasified fuel is introduced into the combustion chamber increases, and the pressure after compression increases. The pressure after combustion (L in the same figure) and the pressure after combustion (M in the same figure) increase. Therefore, by adding water to the fuel and gasifying it, the cycle work of the present invention becomes greater. This is the gist of the content stated in claim 2 or 3.

なお第2図は模式的なサイクル線図であるの
で、ガス化燃料導入に要する時間を無視している
(J→Kが垂直)が、実際の機関においては燃料
の導入に有限の時間を要するので、燃料導入の開
始時期は圧縮行程の前半もしくは圧縮行程の始ま
る前でもよく、燃料導入の完了時期は膨張行程が
始まつてからになつてもよい。
Since Figure 2 is a schematic cycle diagram, it ignores the time required to introduce gasified fuel (J → K is vertical), but in an actual engine, it takes a finite amount of time to introduce fuel. Therefore, the timing for starting fuel introduction may be in the first half of the compression stroke or before the start of the compression stroke, and the timing for completing fuel introduction may be after the start of the expansion stroke.

ガス化燃料を燃焼室内に導入するには、それよ
り先に燃焼室内に存在する空気より高い圧力でガ
ス化燃料を押し込む必要があり、ガス化燃料を高
圧にしておく必要がある。燃料をガス化してから
高圧に圧縮しようとすると多量のエネルギーを必
要とする。ところが本発明では、後出の実施例の
説明で述べるように、燃料が液体のうちにポンプ
または圧さく空気等で圧力を加えておき、圧力の
加わつた状態で排気ガスの熱によつて燃料をガス
化するので、高圧のガス化燃料を得るためのエネ
ルギーの大部分は排気ガスの熱から供給されるの
で、ポンプ等から与えなければならないエネルギ
ーは、液体燃料を圧送するに要するエネルギーだ
けであつて、本発明によるサイクル仕事の増加量
に比較すれば、無視しうる程度にわずかである。
In order to introduce gasified fuel into the combustion chamber, it is necessary to push the gasified fuel under a higher pressure than the air existing in the combustion chamber, and it is necessary to keep the gasified fuel under high pressure. Gasifying fuel and then compressing it to high pressure requires a large amount of energy. However, in the present invention, as will be described later in the explanation of the embodiments, pressure is applied to the fuel while it is in liquid form using a pump or compressed air, and the heat of the exhaust gas is used to release the fuel under pressure. Most of the energy to obtain high-pressure gasified fuel is supplied from the heat of the exhaust gas, so the energy that must be provided from pumps, etc. is only the energy required to pump the liquid fuel. However, the increase in cycle work is negligible compared to the increase in cycle work achieved by the present invention.

圧力の加わつた状態で液体燃料をガス化させる
には、その圧力よりも燃料の蒸気圧が高くなる温
度にまで加熱しなければならない。燃料がメタノ
ールの場合について、温度と蒸気圧との関係を示
すのが第3図である。たとえば圧力10Kg/cm2のも
とでメタノールを気化させてガス化燃料にするに
は、点Pで示されるように約140℃まで加熱すれ
ばよく、この温度は排気ガスの熱によつて容易に
加熱できる温度である。
In order to gasify liquid fuel under pressure, it must be heated to a temperature where the vapor pressure of the fuel is higher than the pressure. FIG. 3 shows the relationship between temperature and vapor pressure when the fuel is methanol. For example, to vaporize methanol into gasified fuel under a pressure of 10 kg/cm 2 , it is sufficient to heat it to approximately 140°C as shown at point P, and this temperature can be easily reached by the heat of the exhaust gas. This is the temperature that can be heated to .

触媒の作用と排気ガスの熱によつて燃料に吸熱
反応を生じさせると、燃料はより発熱量の大きな
組成の改質ガス燃料となり、したがつて機関の熱
効率を向上させることができる。たとえば燃料が
メタノールの場合、 CH4O→CO+2H2 なる吸熱反応により、その発熱量は反応前より約
20パーセント増加する。ところが、このような分
解反応をすると、燃料ガスの分子数が増加するた
めにその体積が増加し、ガス化燃料を空気といつ
しよに吸入するための吸入空気量減少が一層はな
はだしくなる。それゆえ、ガス化燃料を燃焼室内
に直接導入するという本発明の方法は、燃料を吸
熱分解反応によつて改質ガス化して機関の熱効率
を向上させようとする場合において、一層その効
果を発揮する。これが特許請求の範囲第4項記載
の内容の主旨である。
When an endothermic reaction is caused in the fuel by the action of the catalyst and the heat of the exhaust gas, the fuel becomes a reformed gas fuel having a composition with a higher calorific value, thereby improving the thermal efficiency of the engine. For example, when the fuel is methanol, due to the endothermic reaction CH 4 O → CO + 2H 2 , the calorific value is approximately
Increase by 20%. However, when such a decomposition reaction occurs, the number of molecules of the fuel gas increases, so its volume increases, and the amount of intake air required to inhale the gasified fuel together with air becomes even more significant. Therefore, the method of the present invention, in which gasified fuel is directly introduced into the combustion chamber, is even more effective when attempting to improve the thermal efficiency of an engine by reforming and gasifying fuel through an endothermic decomposition reaction. do. This is the gist of the content stated in claim 4.

高圧のもとで燃料を分解反応させるには高い温
度が必要になる。第4図はメタノールの98パーセ
ントが前述の分解反応によつてCOとH2に改質さ
れる温度と圧力との平衡関係を示す図であるが、
たとえば圧力が10Kg/cm2の場合で約290℃であつ
て、排気ガスの熱による加熱で十分に到達しうる
温度である。
High temperatures are required to decompose fuel under high pressure. Figure 4 is a diagram showing the equilibrium relationship between temperature and pressure in which 98% of methanol is reformed into CO and H 2 by the decomposition reaction described above.
For example, when the pressure is 10 kg/cm 2 , the temperature is approximately 290° C., which can be sufficiently reached by heating with the heat of exhaust gas.

またメタノールのように自己着火温度の高い燃
料は、圧縮点火機関に使用するのは困難である
が、 2CH4O→CH3OCH3+H2O のような反応によつて自己着火温度の低い組成の
燃料に改質することにより、メタノールを圧縮点
火機関の燃料として使用できるようになる。特許
請求の範囲第4項記載の内容は、この目的も含ん
でいる。
Furthermore, it is difficult to use a fuel with a high self-ignition temperature such as methanol in a compression ignition engine ; By reforming methanol into fuel, it becomes possible to use it as a fuel for compression ignition engines. The content of claim 4 also includes this objective.

本発明の具体的な実施方法を、4サイクル往復
動機関に実施した場合を例にして、第5図を参照
しながら説明する。
A specific implementation method of the present invention will be described with reference to FIG. 5, taking as an example the case where it is applied to a four-stroke reciprocating engine.

イ 機関1の燃焼室壁の一部に、ガス化燃料導入
孔3を設け、そのガス化燃料導入孔3の燃焼室
2への開口部に、ガス化燃料導入弁4を設け
る。
A gasified fuel introduction hole 3 is provided in a part of the wall of the combustion chamber of the engine 1, and a gasified fuel introduction valve 4 is provided at the opening of the gasified fuel introduction hole 3 to the combustion chamber 2.

ロ 排気ガス通路6の途中に、排気ガスと燃料と
が熱交換壁7で隔てられ、かつ熱交換壁7を介
して排気ガスの熱が燃料に伝えられる、燃料ガ
ス化装置8を設ける。
(b) A fuel gasification device 8 is provided in the middle of the exhaust gas passage 6, in which the exhaust gas and the fuel are separated by a heat exchange wall 7, and the heat of the exhaust gas is transferred to the fuel via the heat exchange wall 7.

ハ 燃料ガス化装置8の燃料入口に、燃料ポンプ
9によつて液体燃料を圧送し、ガス化された燃
料をガス化燃料導管5によつてガス化燃料導入
孔3に導く。
(c) Liquid fuel is force-fed to the fuel inlet of the fuel gasifier 8 by the fuel pump 9, and the gasified fuel is guided to the gasified fuel introduction hole 3 through the gasified fuel conduit 5.

ニ ガス化燃料導入弁4を、カム、油圧、電磁力
等によつて、機関1の回転速度、負荷、ガス化
燃料の圧力等に応じた適当な時期に適当な時間
だけ開くように駆動する。
(d) Drive the gasified fuel inlet valve 4 using a cam, hydraulic pressure, electromagnetic force, etc. to open it at an appropriate time and for an appropriate amount of time depending on the rotational speed of the engine 1, the load, the pressure of the gasified fuel, etc. .

特許請求の範囲第3項の場合は、液体燃料を燃
料ガス化装置8に供給する経路の途中で水を燃料
に混入させる。
In the case of claim 3, water is mixed into the fuel in the middle of the route for supplying the liquid fuel to the fuel gasifier 8.

特許請求の範囲第4項の場合は、燃料ガス化装
置8の燃料通路中に触媒を充てんするか、または
熱交換壁7の燃料通路側の面に触媒を担持させる
か、もしくは熱交換壁7自体を触媒で作る。ある
いはそのような燃料改質装置と、それとは別の単
に燃料を気化させるだけの装置を直列に接続して
もよい。
In the case of claim 4, the fuel passage of the fuel gasifier 8 is filled with a catalyst, or the catalyst is supported on the surface of the heat exchange wall 7 on the fuel passage side, or the heat exchange wall 7 is Makes itself a catalyst. Alternatively, such a fuel reformer and another device that merely vaporizes fuel may be connected in series.

燃焼ガスから燃焼室壁に伝達される熱を、燃料
の予熱に利用し、あるいはガス化の補助熱源とし
て利用することも可能である。
It is also possible to use the heat transferred from the combustion gases to the combustion chamber walls for preheating the fuel or as an auxiliary heat source for gasification.

第5図の実施例では、機関1が往復動4サイク
ル機関の場合について示したが、2サイクル機関
にも、ロータリー機関にも、本発明は全く同様に
実施できる。
In the embodiment shown in FIG. 5, the case where the engine 1 is a reciprocating four-stroke engine is shown, but the present invention can be implemented in exactly the same way with a two-stroke engine or a rotary engine.

ガス化燃料導入弁4は、第5図ではきのこ弁の
場合を示したが、ロータリー弁、スリーブ弁等、
他の形式の弁でも全く同様の作用を果たす。
Although the gasified fuel introduction valve 4 is a mushroom valve in FIG. 5, it may also be a rotary valve, a sleeve valve, etc.
Other types of valves perform exactly the same function.

副室式燃焼室を持つ機関の場合には、ガス化燃
料導入孔3の燃焼室2への開口部は、主室として
も副室としてもよい。
In the case of an engine having an auxiliary combustion chamber, the opening of the gasified fuel introduction hole 3 to the combustion chamber 2 may be either the main chamber or the auxiliary chamber.

ガス化燃料導入孔3の開口部と点火プラグとを
近接して設けることによつて、成層燃焼を具現す
ることも可能である。
It is also possible to realize stratified combustion by providing the opening of the gasified fuel introduction hole 3 and the ignition plug close to each other.

ガス化燃料導管5の途中に、リザーバタンクを
設ければ、ガス化燃料の燃焼室への導入を安定化
することができる。特許請求の範囲第4項の場
合、このリザーバタンクと燃料ガス化装置8との
中間、またはリザーバタンクの入口、もしくは燃
料ガス化装置8のガス化燃料出口に逆止弁を設け
て、リザーバタンク内に改質ガス化燃料を貯留し
ておけば、機関の始動時にも改質ガス化燃料によ
る運転が可能である。
If a reservoir tank is provided in the middle of the gasified fuel conduit 5, the introduction of the gasified fuel into the combustion chamber can be stabilized. In the case of claim 4, a check valve is provided between the reservoir tank and the fuel gasifier 8, or at the inlet of the reservoir tank, or at the gasified fuel outlet of the fuel gasifier 8, and the reservoir tank If the reformed gasified fuel is stored inside the engine, operation using the reformed gasified fuel is possible even when the engine is started.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の吸入空気量減少防止効果を示
す説明図。第2図は本発明による出力と熱効率の
向上の原理を示す模式的なサイクル線図。第3図
はメタノールの温度―蒸気圧線図。第4図はメタ
ノールの98パーセント分解温度―圧力平衡線図。
第5図は本発明の往復動4サイクル機関における
実施例。 閉曲線EFGHE:通常のサイクル、閉曲線
EJKLMNE:本発明によるサイクル、1:機関、
2:燃焼室、3:ガス化燃料導入孔、4:ガス化
燃料導入弁、5:ガス化燃料導管、6:排気ガス
通路、7:熱交換壁、8:燃料ガス化装置、9:
燃料ポンプ。
FIG. 1 is an explanatory diagram showing the effect of the present invention on preventing a decrease in intake air amount. FIG. 2 is a schematic cycle diagram showing the principle of improving output and thermal efficiency according to the present invention. Figure 3 is a temperature-vapor pressure diagram of methanol. Figure 4 is a 98% decomposition temperature-pressure equilibrium diagram of methanol.
FIG. 5 shows an embodiment of a reciprocating four-stroke engine according to the present invention. Closed curve EFGHE: normal cycle, closed curve
EJKLMNE: Cycle according to the invention, 1: Engine,
2: Combustion chamber, 3: Gasified fuel introduction hole, 4: Gasified fuel introduction valve, 5: Gasified fuel conduit, 6: Exhaust gas passage, 7: Heat exchange wall, 8: Fuel gasifier, 9:
Fuel pump.

Claims (1)

【特許請求の範囲】 1 液体燃料の全部または一部を排気ガスの熱に
よつてガス化する燃料ガス化装置を有し、全部ま
たは一部がガス化された燃料を吸入空気通路とは
独立した経路によつて直接に燃焼室内に導入する
内燃機関のガス化燃料供給方法において、前記燃
料ガス化装置に液体燃料を圧送する手段を備え、
該手段により全部または一部がガス化された燃料
が前記燃焼室内に導入される時期を圧縮行程の後
半としたことを特徴とする内燃機関のガス化燃料
供給方法。 2 前記液体燃料はあらかじめ加水したことを特
徴とする、特許請求の範囲第1項記載の内燃機関
のガス化燃料供給方法。 3 前記液体燃料はガス化する前に加水したこと
を特徴とする、特許請求の範囲第1項記載の内燃
機関のガス化燃料供給方法。 4 前記液体燃料もしくは前記全部または一部が
ガス化された燃料に触媒を作用させて、その一部
または全部に化学反応を生ぜしめてその組成をも
との燃料の組成とは異なつたものとすることを特
徴とする、特許請求の範囲第1項ないし第3項の
いずれかの項記載の内燃機関のガス化燃料供給方
法。
[Claims] 1. A fuel gasification device that gasifies all or part of liquid fuel using the heat of exhaust gas, and the fuel that has been gasified in whole or in part is independent of the intake air passage. A method for supplying gasified fuel to an internal combustion engine in which the fuel is directly introduced into a combustion chamber through a route in which liquid fuel is supplied under pressure to the fuel gasification device,
A method for supplying gasified fuel to an internal combustion engine, characterized in that the fuel gasified in whole or in part by the means is introduced into the combustion chamber in the latter half of the compression stroke. 2. The method for supplying gasified fuel to an internal combustion engine according to claim 1, wherein the liquid fuel is added with water in advance. 3. The method for supplying gasified fuel to an internal combustion engine according to claim 1, wherein water is added to the liquid fuel before it is gasified. 4. Applying a catalyst to the liquid fuel or the fuel that has been gasified in whole or in part to cause a chemical reaction in part or all of the fuel so that its composition differs from that of the original fuel. A method for supplying gasified fuel to an internal combustion engine according to any one of claims 1 to 3, characterized in that:
JP56094370A 1981-06-17 1981-06-17 Supplying method of gasified fuel to internal combustion engine Granted JPS57210153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56094370A JPS57210153A (en) 1981-06-17 1981-06-17 Supplying method of gasified fuel to internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56094370A JPS57210153A (en) 1981-06-17 1981-06-17 Supplying method of gasified fuel to internal combustion engine

Publications (2)

Publication Number Publication Date
JPS57210153A JPS57210153A (en) 1982-12-23
JPH0211736B2 true JPH0211736B2 (en) 1990-03-15

Family

ID=14108423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56094370A Granted JPS57210153A (en) 1981-06-17 1981-06-17 Supplying method of gasified fuel to internal combustion engine

Country Status (1)

Country Link
JP (1) JPS57210153A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3523855A1 (en) * 1985-07-04 1987-01-08 Bosch Gmbh Robert METHOD FOR OPERATING AN INTERNAL COMBUSTION ENGINE
BRPI0819562A2 (en) * 2007-12-21 2015-05-05 Seok-Ju Song "diesel engine fuel heating equipment"
US8516997B2 (en) * 2010-05-28 2013-08-27 Ford Global Technologies, Llc Approach for controlling fuel flow with alternative fuels
JP5400844B2 (en) * 2011-09-12 2014-01-29 本田技研工業株式会社 Fuel supply system for gas engine
CN104074641B (en) * 2014-06-25 2016-08-24 邹鑫 A kind of liquid organic fuel instant gasification device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5124044A (en) * 1974-08-21 1976-02-26 Eidai Co Ltd SHUGOJUTAKU

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5124044A (en) * 1974-08-21 1976-02-26 Eidai Co Ltd SHUGOJUTAKU

Also Published As

Publication number Publication date
JPS57210153A (en) 1982-12-23

Similar Documents

Publication Publication Date Title
US6079373A (en) Gas engine with a gas fuel reforming device
US6817182B2 (en) High-efficiency Otto cycle engine with power generating expander
US4722303A (en) Method for operating an internal combustion engine
JP4739906B2 (en) Gas engine with improved fuel ignitability
EP2690280B1 (en) Injection device
JP2007332891A (en) Internal combustion engine
JPH0579822B2 (en)
GB1522407A (en) Fuel reformer for generating gaseous fuel containing hydrogen and/or carbon monoxide
JP2003505635A (en) Phase change heat engine
US4429534A (en) Methanol fueled spark ignition engine
CN102933524A (en) Low specific emission decomposition
US4651703A (en) Method and apparatus for achieving hypergolic combustion by partial catalytic combustion
JPH0211736B2 (en)
WO2007057720A1 (en) System for the production of fuel
US2376479A (en) Internal-combustion engine and combustion mixture therefor
JP2003239809A (en) Gas engine provided with fuel reforming device
JPS59103951A (en) Gasified fuel engine
JPS5831452B2 (en) Nenshiyoukikan
JP2007113463A (en) Gas engine having auxiliary chamber
JP2005105909A (en) Engine system
US4112878A (en) Internal combustion engine with a main combustion chamber and an auxiliary combustion chamber
JP2002155810A (en) Internal combustion engine
JPS6217646B2 (en)
JPH1113547A (en) Gas engine having natural gas reforming device
JPS6158662B2 (en)