JPH02116736A - Method and apparatus for determining crystal orientation - Google Patents

Method and apparatus for determining crystal orientation

Info

Publication number
JPH02116736A
JPH02116736A JP27136288A JP27136288A JPH02116736A JP H02116736 A JPH02116736 A JP H02116736A JP 27136288 A JP27136288 A JP 27136288A JP 27136288 A JP27136288 A JP 27136288A JP H02116736 A JPH02116736 A JP H02116736A
Authority
JP
Japan
Prior art keywords
crystal
plane
crystal orientation
determining
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27136288A
Other languages
Japanese (ja)
Other versions
JP2523830B2 (en
Inventor
Osamu Matsumoto
修 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP63271362A priority Critical patent/JP2523830B2/en
Publication of JPH02116736A publication Critical patent/JPH02116736A/en
Application granted granted Critical
Publication of JP2523830B2 publication Critical patent/JP2523830B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To determine a crystal orientation with a simple method by a method wherein a vibration plane of an electric vector of a laser light is turned to a crystal plane and the light comes into the crystal plane to measure a dependence of a reflection factor on angle of rotation. CONSTITUTION:A part of a beam B0 from a laser light source 1 comes into a photodetector 6 with a splitter 5 as monitor beam BM. Then, the beam transmitted through the splitter 5 is turned to a beam B1 with a vibration plane of an electric vector turning by a rotatable 1/2 wavelength plate 2 to come into a crystal 3 and reflected light BR thereof comes into a photodetector 4. Then, a reflection factor of the crystal 3 is measured from a ratio of intensities of the beams B1 and BR. A change in the intensity of the beam B1 is corrected by a beam BM, thereby enabling accurate measurement of dependence of the reflection factor on an angle of rotation of the beam B1. Thus, a crystal orientation can be determined with a simple method.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は結晶の結晶方位を光学的に決定する方法と装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for optically determining the crystal orientation of a crystal.

〔従来の技術〕[Conventional technology]

結晶方位の決定方法として、化学的に結晶をエツチング
してエッチピットを形成し、その表面状態を光学的に調
べる方法がある(例えば、共立出版「結晶光学ハンドブ
ック」)。これによれば、結晶方位に応じて特異なエッ
チピットなどが形成されるので、特別な装置を用いるこ
となく結晶方位の決定ができる。また、他の決定方法と
して、X線回折パターンを観察する方法がある。これに
よれば、原子の結合状態を回折パターンとして認識でき
るので、極めて正確な結晶方位の決定が可能になる。
As a method for determining the crystal orientation, there is a method of chemically etching the crystal to form etch pits and optically examining the surface state of the crystal (for example, Kyoritsu Shuppan "Crystal Optics Handbook"). According to this, specific etch pits and the like are formed depending on the crystal orientation, so the crystal orientation can be determined without using any special equipment. Moreover, as another determination method, there is a method of observing an X-ray diffraction pattern. According to this, the bonding state of atoms can be recognized as a diffraction pattern, making it possible to determine the crystal orientation extremely accurately.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、エツチングによる方法では経験的手段を
必要とし、また適当なエッチャントを使用しなければな
らないので、全ての種類の結晶に対して行なうことがで
きない。X線回折による方法では、高価な装置と複雑な
データ回折が必要になり、また熟練を要する。
However, the etching method requires empirical methods and requires the use of appropriate etchants, so it cannot be applied to all types of crystals. The method using X-ray diffraction requires expensive equipment and complicated data diffraction, and also requires skill.

そこで本発明は、簡単な装置により、簡便に結晶方位を
決定することのできる方法と装置を提供することを目的
とする。
Therefore, an object of the present invention is to provide a method and apparatus that can easily determine crystal orientation using a simple apparatus.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る結晶方位決定方法は、結晶方位を決定すべ
き結晶の所定の結晶面にレーザ光を照射するに際し、こ
のレーザ光の電気ベクトルの振動面を結晶面に対してレ
ーザ光の光軸のまわりに相対的に回転させ、これによっ
て生じる結晶面からの反射光の強度を測定し、レーザ光
の強度と反射光強度の関係から反射率を求める。そして
、結晶面の反射率とレーザ光の電気ベクトルの振動面の
回転角度との関係から、結晶の結晶方位を決定するよう
にしたことを特徴とする。
In the crystal orientation determination method according to the present invention, when a laser beam is irradiated onto a predetermined crystal plane of a crystal whose crystal orientation is to be determined, the optical axis of the laser beam is set so that the vibration plane of the electric vector of the laser beam is set relative to the crystal plane. The intensity of the reflected light from the crystal plane caused by this rotation is measured, and the reflectance is determined from the relationship between the intensity of the laser beam and the intensity of the reflected light. The present invention is characterized in that the crystal orientation of the crystal is determined from the relationship between the reflectance of the crystal plane and the rotation angle of the vibration plane of the electric vector of the laser beam.

また、本発明に係る結晶方位決定装置は、結晶方位を決
定すべき結晶の所定の結晶面に向けてレーザ光を出射す
るレーザ光源と、レーザ光の電気ベクトルの振動面を当
該レーザ光の光軸のまわりに回転させる振動面回転手段
と、結晶面からのレーザ光の反射光の強度を測定し、レ
ーザ光源の出射強度と反射光強度の関係から反射率を求
める測定手段と、反射率の電気ベクトルの振動面回転角
度に対する依存性から結晶の結晶方位を決定する決定手
段とを備えることを特徴とする。
Further, the crystal orientation determining device according to the present invention includes a laser light source that emits a laser beam toward a predetermined crystal plane of a crystal whose crystal orientation is to be determined, and a vibration plane of an electric vector of the laser beam that is A vibration plane rotating means for rotating around an axis, a measuring means for measuring the intensity of the laser beam reflected from the crystal surface and determining the reflectance from the relationship between the emission intensity of the laser light source and the reflected light intensity, The method is characterized by comprising determining means for determining the crystal orientation of the crystal from the dependence of the electric vector on the rotation angle of the vibration plane.

〔作用〕[Effect]

本発明によれば、レーザ光の電気ベクトルの振動面を回
転させながら結晶面に入射すると、その結晶面の反射率
は結晶方位と上記振動面の回転角度との相対関係に依存
して変化するので、その反射率の回転角度依存性を調べ
ることにより、結晶の結晶方位を光学的に決定すること
が可能になる。
According to the present invention, when the electric vector of a laser beam is incident on a crystal plane while rotating its vibration plane, the reflectance of the crystal plane changes depending on the relative relationship between the crystal orientation and the rotation angle of the vibration plane. Therefore, by examining the rotation angle dependence of the reflectance, it becomes possible to optically determine the crystal orientation of the crystal.

〔実施例〕〔Example〕

以下、添付図面を参照して、本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図は本発明の実施例に係る結晶方位決定装置の全体
構成を示す斜視図である。同図において、レーザ光源1
は直線偏光ビームB を出射するHe−Neレーザなど
で形成され、出射光B は1/2波長板2を通過して入
射ビームB、として結晶3の結晶面に照射される。結晶
3で反射された反射ビームBRはフォトダイオードなど
からなる受光索子4に入射され、電気信号に変換されて
図示しない決定装置に送られる。ここで、ビームスプリ
ッタ5はレーザ光源1からの直線偏光ビームB を入射
ビームB1とモニタビームBMに分割するもので、モニ
タビームBMはフォトダイオードのような受光素子6で
モニタされる。
FIG. 1 is a perspective view showing the overall configuration of a crystal orientation determination device according to an embodiment of the present invention. In the figure, laser light source 1
is formed by a He--Ne laser or the like that emits a linearly polarized beam B, and the emitted light B passes through a half-wave plate 2 and is irradiated onto the crystal plane of the crystal 3 as an incident beam B. The reflected beam BR reflected by the crystal 3 is incident on a light-receiving probe 4 made of a photodiode or the like, where it is converted into an electrical signal and sent to a determining device (not shown). Here, the beam splitter 5 splits the linearly polarized beam B from the laser light source 1 into an incident beam B1 and a monitor beam BM, and the monitor beam BM is monitored by a light receiving element 6 such as a photodiode.

次に、第1図に示す装置の機能を簡単に説明する。Next, the functions of the apparatus shown in FIG. 1 will be briefly explained.

まず、レーザ光源1からの直線偏光ビームB。First, a linearly polarized beam B from a laser light source 1.

の一部はビームスプリッタ5によりモニタビームBMと
して取り出され、受光素子6に入射される。
A part of the beam is taken out as a monitor beam BM by a beam splitter 5 and is incident on a light receiving element 6.

従って、レーザ光源1の出力が変動するときでも、この
変動をモニタすることができるので、結晶3に入射され
る入射ビームB、の強度を正確に把握できる。1/2波
長板2は図中の矢印方向に回転可能となっており、これ
により入射ビームBIの電気ベクトルの振動面が回転す
る。すなわち、1/2波長板2を入射ビームB、の光軸
のまわりで角度θだけ回転すれば、上記の振動面を20
だけ回転することができる。このため、結晶3に対して
電気ベクトルの振動面が回転する入射ビームB1を、結
晶3の結晶面に対して入射することができる。
Therefore, even when the output of the laser light source 1 fluctuates, this fluctuation can be monitored, so the intensity of the incident beam B incident on the crystal 3 can be accurately grasped. The half-wave plate 2 is rotatable in the direction of the arrow in the figure, thereby rotating the plane of vibration of the electric vector of the incident beam BI. That is, if the 1/2 wavelength plate 2 is rotated by an angle θ around the optical axis of the incident beam B, the above vibration plane becomes 20
can only be rotated. Therefore, the incident beam B1 whose electric vector vibration plane rotates with respect to the crystal 3 can be made incident on the crystal plane of the crystal 3.

結晶3は第1図において図面に現われている3面のみを
鏡面とし、他の3面は荒ズリ加工するのが望ましい。こ
れは、結晶3の裏面からの反射を抑えるためである。こ
のような結晶3に入射ビームB1が入射されると、反射
ビームBRが生成されて受光素子4に送られる。ここで
、結晶3の入射面に対する入射ビームB、の入射角度が
あまり大きいと、電気ベクトルの振動面による反射の依
存性か生じやすいので、入射ビームB、は結晶3の結晶
面に対してなるべく垂直となるよう入射する。また、測
定精度を上げるためには、受光素子4については反射ビ
ームBRの照射される位置により出力の変化しないもの
を用いるのが望ましいが、第1図中の2軸(光軸に直交
する2軸)のまわりに結晶3を回転させる機構を設けて
おけば、受光素子4に入射される反射ビームBRの位置
を時間−にすることができる。
It is desirable that the crystal 3 has only the three surfaces shown in FIG. 1 mirror-finished, and the other three surfaces are rough-finished. This is to suppress reflection from the back surface of the crystal 3. When the incident beam B1 is incident on such a crystal 3, a reflected beam BR is generated and sent to the light receiving element 4. Here, if the angle of incidence of the incident beam B with respect to the incident surface of the crystal 3 is too large, the dependence of reflection on the vibration plane of the electric vector is likely to occur. Inject vertically. In addition, in order to improve measurement accuracy, it is desirable to use a light receiving element 4 whose output does not change depending on the position where the reflected beam BR is irradiated. By providing a mechanism for rotating the crystal 3 around the axis), the position of the reflected beam BR incident on the light-receiving element 4 can be adjusted to -.

このような条件の下で、反射ビームBRの強度を受光素
子4の出力により求めれば、入射ビームB1の強度と反
射ビームBRの強度の比から結晶3の結晶面の反射率を
測定できる。また、レーザ光源1の出力変動による入射
ビームB、の強度変化については、受光素子6の出力に
より求まるモニタビームBHの強度変化で補正できる。
Under such conditions, if the intensity of the reflected beam BR is determined from the output of the light receiving element 4, the reflectance of the crystal plane of the crystal 3 can be measured from the ratio of the intensity of the incident beam B1 and the intensity of the reflected beam BR. Furthermore, changes in the intensity of the incident beam B due to variations in the output of the laser light source 1 can be corrected by changes in the intensity of the monitor beam BH determined by the output of the light receiving element 6.

従って、1/2波長板2の回転による入射ビームBIの
電気ベクトルの振動面の回転角度に対する反射率の依存
性を、正確に測定できることになる。
Therefore, the dependence of the reflectance on the rotation angle of the vibration plane of the electric vector of the incident beam BI due to the rotation of the half-wave plate 2 can be accurately measured.

次に、結晶方位の決定原理について、第2図ないし第7
図により説明する。
Next, we will explain the principle of determining crystal orientation in Figures 2 to 7.
This will be explained using figures.

一般に、結晶の屈折率特性は屈折率楕円体で表わされる
。屈折率の主鎖をn x 、n 、   2、n とす ると、楕円体は (x/n  )  +(y/n  )   +(z/n
  )2−1x              y   
           z・・・(1) で表わされる。ここで、二軸結晶では一般に、n  <
n  <n    yZ となっている。
Generally, the refractive index characteristics of a crystal are expressed by an index ellipsoid. If the main chain of refractive index is n x , n , 2, n , then the ellipsoid is (x/n ) + (y/n ) + (z/n
)2-1x y
z...(1) Represented by: Here, in biaxial crystals, generally n <
n < nyZ.

第2図(a)に示すように、結晶中を伝搬する光の波面
法線を了とすると、屈折率楕円体を通りaに垂直な面で
切断した楕円の主鎖n 1.  n 2(第2図(b)
図示)が、伝搬光の固有偏光の屈折率を与える。たとえ
ば、X軸方向に伝搬しX軸方向に振動している光の屈折
率はn であり、2軸方向に振動している光の屈折率は
n である。
As shown in FIG. 2(a), if the wavefront normal of light propagating in the crystal is , then the main chain n of an ellipse that passes through the index ellipsoid and is cut by a plane perpendicular to a. n 2 (Fig. 2(b)
) gives the refractive index of the characteristic polarization of the propagating light. For example, the refractive index of light propagating in the X-axis direction and vibrating in the X-axis direction is n 2 , and the refractive index of light vibrating in biaxial directions is n 2 .

今、第3図の様な結晶3を考え、a、b、c軸かx、y
、z軸のどれか同定できないものとする。
Now, consider crystal 3 as shown in Figure 3, and consider the a, b, and c axes, or the x, y axis.
, z-axis cannot be identified.

そこで、結晶面からの反射を本発明の装置で測定し、結
晶軸の同定を行う。レーザ光源1の出力ビーム(直線偏
光ビームB )はC軸方向から入射し、C軸方向に振動
しているものとすると、1/2波長板2の回転角θが0
°の時、1/2波長板2を通過した後の入射ビームB1
の振動面はC軸方向と変化しない。屈折率がnの時、結
晶面からの反射率はRは R−f (n−1) / (n+1) l    −(
2)となる。
Therefore, the reflection from the crystal plane is measured using the apparatus of the present invention to identify the crystal axis. Assuming that the output beam (linearly polarized beam B) of the laser light source 1 is incident from the C-axis direction and is vibrating in the C-axis direction, the rotation angle θ of the 1/2 wavelength plate 2 is 0.
When the incident beam B1 after passing through the 1/2 wavelength plate 2 is
The vibration plane does not change from the C-axis direction. When the refractive index is n, the reflectance from the crystal plane is R-f (n-1) / (n+1) l - (
2).

第4図に屈折率nと反射率Rの関係を示す。入射ビーム
B、の振動方向がa、b、cの時の屈折率をそれぞれn
a、nb、n  とすると、θ−O@の時 R−((n  −1)/ (n  +1)12CC ×100%          ・・・(3)である。
FIG. 4 shows the relationship between the refractive index n and the reflectance R. Let n be the refractive index when the vibration directions of the incident beam B are a, b, and c, respectively.
When a, nb, and n, when θ-O@, R-((n-1)/(n+1)12CC×100% (3).

1/2波長板2をθ−45°回転した時、入射ビームB
1の振動面は90°回転し、b軸方向となる。反射率R
の回転角θに対する依存性が第5図の様に得られたもの
とすると、n  >n。
When the 1/2 wavelength plate 2 is rotated by θ-45°, the incident beam B
The vibration surface of No. 1 is rotated by 90° and becomes in the b-axis direction. Reflectance R
Assuming that the dependence of is obtained on the rotation angle θ as shown in FIG. 5, n > n.

である事がわかる。以上の操作を他の2面についでも行
い、反射率のθ依存性を測定し、n 。
It turns out that it is. The above operation was repeated for the other two surfaces, and the θ dependence of the reflectance was measured.

nb、n  の大小関係を調べる事により、x、y。By examining the magnitude relationship of nb, n, x, y.

Z軸の同定ができる。The Z axis can be identified.

以上の説明は、それぞれの軸と結晶加工面が垂直の場合
であった。しかし、反射率Rの測定結果が第6図の様に
なった場合、第5図と比べ回転角θが22.5°だけず
れている事により、結晶軸と結晶加工面は45″傾いて
いる事が推察される。
The above explanation was for the case where each axis and the crystal processing plane were perpendicular. However, if the measurement result of the reflectance R is as shown in Figure 6, the rotation angle θ is shifted by 22.5 degrees compared to Figure 5, so the crystal axis and the crystal machined surface are tilted by 45''. It is presumed that there are.

すなわち、第7図のようになっていることがわがる。こ
の場合には、軸と結晶面が垂直になるよう結晶3の再加
工を行い、前述の方法で結晶軸を決定することができる
In other words, it can be seen that it is as shown in FIG. In this case, the crystal 3 can be reprocessed so that the axis and the crystal plane are perpendicular, and the crystal axis can be determined by the method described above.

本発明については、種々の変形が可能である。Various modifications are possible to the present invention.

例えば、屈折率の絶対値は(2)式より概略の値を求め
る事ができる。He−NeレーザのかわりにArレーザ
ー、Krレーザ等を用いれば、異なった波長(514,
5nm、488na、等)で測定を行う事ができる。こ
の時、1/2波長板としてはそれぞれの波長に対応した
ものを用いればよい。
For example, the absolute value of the refractive index can be roughly calculated from equation (2). If an Ar laser, Kr laser, etc. is used instead of a He-Ne laser, different wavelengths (514, 514,
5nm, 488na, etc.). At this time, a half-wave plate corresponding to each wavelength may be used.

屈折率は短波長の方が大きいため同様に反射率も大きく
、従って短波長のレーザ光を用いて測定精度を向上でき
る。
Since the refractive index is larger at short wavelengths, the reflectance is also larger, and therefore measurement accuracy can be improved by using short wavelength laser light.

〔発明の効果〕〔Effect of the invention〕

以上、詳細に説明した通り本発明では、レーザ光の電気
ベクトルの振動面を回転させながら結晶面に入射すると
、その反射光の反射率は結晶方位と上記振動面の回転角
度の相対関係に依存して変化するので、その反射率の回
転角度依存性を調べることにより、結晶の結晶方位を簡
単な手法で決定することが可能になる。
As explained above in detail, in the present invention, when the vibration plane of the electric vector of the laser beam is rotated and incident on the crystal plane, the reflectance of the reflected light depends on the relative relationship between the crystal orientation and the rotation angle of the vibration plane. Therefore, by examining the rotation angle dependence of the reflectance, it becomes possible to determine the crystal orientation of the crystal using a simple method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例に係る結晶方位決定装置の全
体構成を示す斜視図、第2図は、伝搬光の固有偏光の屈
折率を説明する図、第3図は、結晶方位を決定すべき結
晶の斜視図、第4図は、屈折率と反射率の関係を示す斜
視図、第5図および第6図は、反射率の回転角度依存性
を示すグラフ、第7図は、結晶方位がずれた結晶の斜視
図である。 1・・・レーザ光源、2・・・1/2波長板、3・・・
結晶、4.6・・・受光素子、5・・・ビームスプリッ
タ。 特許出願人  浜松ホトニクス株式会社代理人弁理士 
  長谷用  芳  樹第2図 第3図 1.0 1.5 2.0 2.5 屈#r9.n 第4図 第6図
FIG. 1 is a perspective view showing the overall configuration of a crystal orientation determining device according to an embodiment of the present invention, FIG. 2 is a diagram illustrating the refractive index of intrinsic polarization of propagating light, and FIG. FIG. 4 is a perspective view of the crystal to be determined; FIG. 4 is a perspective view showing the relationship between refractive index and reflectance; FIGS. 5 and 6 are graphs showing the rotation angle dependence of reflectance; FIG. FIG. 2 is a perspective view of a crystal whose crystal orientation is shifted. 1... Laser light source, 2... 1/2 wavelength plate, 3...
Crystal, 4.6... Light receiving element, 5... Beam splitter. Patent applicant Hamamatsu Photonics Co., Ltd. Representative Patent Attorney
Hase Yoshiki Figure 2 Figure 3 1.0 1.5 2.0 2.5 Ku #r9. n Figure 4 Figure 6

Claims (1)

【特許請求の範囲】 1、結晶方位を決定すべき結晶の所定の結晶面にレーザ
光を照射する第1のステップと、前記レーザ光の電気ベ
クトルの振動面を前記結晶面に対して前記レーザ光の光
軸のまわりに相対的に回転させる第2のステップと、 前記レーザ光の前記結晶面からの反射光の強度を測定し
、前記レーザ光の強度と前記反射光の強度の関係から前
記結晶面の反射率を求める第3のステップと、 前記結晶面の反射率と前記レーザ光の電気ベクトルの振
動面の回転角度との関係から、前記結晶の結晶方位を決
定する第4のステップと を備えることを特徴とする結晶方位決定方法。 2、結晶方位を決定すべき結晶の所定の結晶面に向けて
レーザ光を出射するレーザ光源と、前記レーザ光の電気
ベクトルの振動面を当該レーザ光の光軸のまわりに回転
させる振動面回転手段と、 前記結晶面からの前記レーザ光の反射光の強度を測定し
、前記レーザ光源の出射強度と前記反射光の強度の関係
から前記結晶面の反射率を求める測定手段と、 前記反射率の前記電気ベクトルの振動面回転角度に対す
る依存性から前記結晶の結晶方位を決定する決定手段と を備えることを特徴とする結晶方位決定装置。 3、前記測定手段は前記レーザ光源の出射強度をモニタ
するモニタ手段を有する請求項2記載の結晶方位決定装
置。
[Claims] 1. A first step of irradiating a predetermined crystal plane of a crystal whose crystal orientation is to be determined with a laser beam; a second step of relatively rotating the light around the optical axis; and measuring the intensity of the reflected light of the laser light from the crystal plane, and determining the above from the relationship between the intensity of the laser light and the intensity of the reflected light. a third step of determining the reflectance of the crystal plane; and a fourth step of determining the crystal orientation of the crystal from the relationship between the reflectance of the crystal plane and the rotation angle of the vibration plane of the electric vector of the laser beam. A method for determining crystal orientation, comprising: 2. A laser light source that emits a laser beam toward a predetermined crystal plane of the crystal whose crystal orientation is to be determined, and a vibration plane rotation that rotates the vibration plane of the electric vector of the laser beam around the optical axis of the laser beam. means, measuring means for measuring the intensity of the reflected light of the laser beam from the crystal plane and determining the reflectance of the crystal plane from the relationship between the emission intensity of the laser light source and the intensity of the reflected light; and the reflectance. a crystal orientation determining device, comprising determining means for determining the crystal orientation of the crystal from the dependence of the electric vector on the vibration plane rotation angle. 3. The crystal orientation determining device according to claim 2, wherein the measuring means includes a monitoring means for monitoring the emission intensity of the laser light source.
JP63271362A 1988-10-27 1988-10-27 Method and apparatus for determining crystal orientation Expired - Fee Related JP2523830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63271362A JP2523830B2 (en) 1988-10-27 1988-10-27 Method and apparatus for determining crystal orientation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63271362A JP2523830B2 (en) 1988-10-27 1988-10-27 Method and apparatus for determining crystal orientation

Publications (2)

Publication Number Publication Date
JPH02116736A true JPH02116736A (en) 1990-05-01
JP2523830B2 JP2523830B2 (en) 1996-08-14

Family

ID=17499015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63271362A Expired - Fee Related JP2523830B2 (en) 1988-10-27 1988-10-27 Method and apparatus for determining crystal orientation

Country Status (1)

Country Link
JP (1) JP2523830B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09257692A (en) * 1996-03-26 1997-10-03 Nec Corp Method and apparatus for measuring orientation of crystal
JP2007254268A (en) * 2006-02-24 2007-10-04 Hitachi Chem Co Ltd Thermal treatment method of fluoride crystal, distinction method of fluoride crystal, and processing method of fluoride crystal
CN114441454A (en) * 2021-12-31 2022-05-06 中国人民解放军国防科技大学 Polarization resolution second harmonic testing device and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57179648A (en) * 1981-04-28 1982-11-05 Kansai Coke & Chem Co Ltd Reflectivity measuring apparatus
JPS6029640A (en) * 1983-07-29 1985-02-15 Nippon Kokan Kk <Nkk> Reflection factor measuring method of optical anisotropic substance
JPS62118243A (en) * 1985-11-18 1987-05-29 Kobe Steel Ltd Surface defect inspecting instrument

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57179648A (en) * 1981-04-28 1982-11-05 Kansai Coke & Chem Co Ltd Reflectivity measuring apparatus
JPS6029640A (en) * 1983-07-29 1985-02-15 Nippon Kokan Kk <Nkk> Reflection factor measuring method of optical anisotropic substance
JPS62118243A (en) * 1985-11-18 1987-05-29 Kobe Steel Ltd Surface defect inspecting instrument

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09257692A (en) * 1996-03-26 1997-10-03 Nec Corp Method and apparatus for measuring orientation of crystal
JP2007254268A (en) * 2006-02-24 2007-10-04 Hitachi Chem Co Ltd Thermal treatment method of fluoride crystal, distinction method of fluoride crystal, and processing method of fluoride crystal
CN114441454A (en) * 2021-12-31 2022-05-06 中国人民解放军国防科技大学 Polarization resolution second harmonic testing device and method

Also Published As

Publication number Publication date
JP2523830B2 (en) 1996-08-14

Similar Documents

Publication Publication Date Title
EP0397388B1 (en) Method and apparatus for measuring thickness of thin films
JPS6134442A (en) Ellipsometry measuring method for inspecting physical characteristic of sample surface or surface film layer of sample and device thereof
EP0165722B1 (en) Film thickness measuring apparatus
US8643844B2 (en) Laser distance measuring apparatus with beam switch
US5953137A (en) Linear conoscopic holography
US5220397A (en) Method and apparatus for angle measurement based on the internal reflection effect
JPH02116736A (en) Method and apparatus for determining crystal orientation
US3620593A (en) Method of surface interference microscopy
JP3131242B2 (en) Method of measuring incident angle of light beam, measuring device and method of using the device for distance measurement
US6982791B2 (en) Scatterometry to simultaneously measure critical dimensions and film properties
EP0102470A1 (en) Ellipsometers
JPS58196416A (en) Optical fiber laser gyroscope
JP7041015B2 (en) Calibration method of electric field vector measurement
CA2320850C (en) Linear conoscopic holography
JPH04127004A (en) Ellipsometer and its using method
RU2775357C1 (en) Method for determining the &#34;fast&#34; optical axis of a quarter-wave plate
JPH01161124A (en) Light wavelength measuring method
JPS60249007A (en) Instrument for measuring film thickness
JPH0777490A (en) Measuring method for double refraction
JPH10239028A (en) Etching depth measuring method and its device
JPH10213486A (en) Polarization interferometer
JP2665917B2 (en) 4-beam splitter prism
JPS61210920A (en) Automatic birefringence meter
JP2568653B2 (en) Ellipsometer
JP3100717B2 (en) Surface shape measuring device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees