JPH06147837A - Method and equipment for measuring film thickness optically - Google Patents

Method and equipment for measuring film thickness optically

Info

Publication number
JPH06147837A
JPH06147837A JP4323801A JP32380192A JPH06147837A JP H06147837 A JPH06147837 A JP H06147837A JP 4323801 A JP4323801 A JP 4323801A JP 32380192 A JP32380192 A JP 32380192A JP H06147837 A JPH06147837 A JP H06147837A
Authority
JP
Japan
Prior art keywords
film thickness
thin film
component
phase difference
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4323801A
Other languages
Japanese (ja)
Inventor
Nobuhito Ishii
信人 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP4323801A priority Critical patent/JPH06147837A/en
Publication of JPH06147837A publication Critical patent/JPH06147837A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To eliminate measurement error of film thickness due to incident angle by storing a table of phase difference and amplitude reflectance ratio calculated from specific complex indexes of thin film and substrate for combinations of arbitrary film thickness and incident angles. CONSTITUTION:Light emitted from a semiconductor laser light source 1 transmits through a polarizing plate 2 and impinges, as a linearly polarized light, on a thin film formed on a substrate 3. Light reflected on the thin film transmits through a polarizing plate 4 and impinges on a light receiving element 5 where the intensity of light is converted into an electric signal. Rotational angle of the polarizing plate 4 is read out by means of an encoder 4a and converted into an electric angle. Output waveform being obtained through independent rotation of the polarizing plate 4 is delivered, in the form of an optical intensity signal from the light receiving element 5 and a rotational angle signal from an encoder 4a, to a signal processor 6 where the signals are subjected to Fourier transform thus determining phase difference and amplitude reflectance ratio. A retrieval unit 8 then retrieves a film thickness corresponding to the phase difference and amplitude reflectance ratio obtained from a table stored in a memory 7 and displays the film thickness thus retrieved at a display section 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は基板表面に形成された薄
膜の膜厚を光学的に測定するための光学的膜厚測定装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical film thickness measuring device for optically measuring the film thickness of a thin film formed on the surface of a substrate.

【0002】[0002]

【従来の技術】LSI等の半導体デバイスは著しく高集
積化されてきており、製造過程の各プロセスにおける膜
厚管理が歩留りの向上のために大変重要となっている。
また、ゲート酸化膜は、高集積化に伴いより一層の薄膜
化の方向にある。そして近時は1〜100nm台の波長
に比して極めて薄い膜の膜厚を正確に測定することが求
められている。このような薄膜の膜厚の測定に使用され
る方法に偏光解析法がある。
2. Description of the Related Art Semiconductor devices such as LSI have been highly integrated, and film thickness control in each process of the manufacturing process is very important for improving the yield.
Further, the gate oxide film tends to be further thinned as the integration becomes higher. Recently, it is required to accurately measure the film thickness of an extremely thin film as compared with a wavelength on the order of 1 to 100 nm. Ellipsometry is a method used to measure the thickness of such a thin film.

【0003】波長λの光が基板表面に形成された薄膜に
入射すると、薄膜の上下の境界面で反射が繰返される。
図1に示すように、基板3の上に薄膜Mが形成されてい
るとき、空気と薄膜の境界面G1と薄膜と基板の境界面
G2でのp成分(入射面に平行)及びs成分(入射面に
垂直)の振幅反射率をそれぞれr1p、r1s、r2p、r2s
とし、光が薄膜M内を1往復する時の位相差をδとする
と、公知のように膜全体のp成分及びs成分の振幅反射
率Rp 、Rs は式(1)で与えられ、位相差δは式
(2)で与えられる。なお、入射角と屈折角の関係は式
(3)で与えられる。 但し、n、dはそれぞれ薄膜の屈折率及び膜厚、φ、
φ′はそれぞれ入射角及び屈折角である。ここでΔp
Δs はそれぞれ反射による位相の飛び量である。
When light of wavelength λ is incident on the thin film formed on the surface of the substrate, reflection is repeated at the upper and lower boundary surfaces of the thin film.
As shown in FIG. 1, when the thin film M is formed on the substrate 3, the p component (parallel to the incident surface) and the s component (parallel to the incident surface) at the boundary surface G1 between the air and the thin film and the boundary surface G2 between the thin film and the substrate ( Amplitude reflectances (perpendicular to the plane of incidence) are r 1p , r 1s , r 2p , r 2s
Assuming that the phase difference when light makes one round trip in the thin film M is δ, the amplitude reflectances R p and R s of the p component and the s component of the entire film are given by the equation (1), as is well known. The phase difference δ is given by the equation (2). The relationship between the incident angle and the refraction angle is given by equation (3). However, n and d are the refractive index and film thickness of the thin film, φ,
φ'is the angle of incidence and the angle of refraction, respectively. Where Δ p ,
Δ s is the amount of phase jump due to reflection.

【0004】この薄膜M表面にp成分及びs成分がそれ
ぞれEp i 、Es i の複素振幅の偏光した光が入射する
と、反射光のp成分及びs成分Ep r 、Es r は、 Ep r =Rp ・Ep is r =Rs ・Es i となり、入射光と反射光のp成分及びs成分の複素振幅
比をそれぞれXi 、Xrとすると、 Xr =〔Rp /Rs 〕・Xi となる。
When polarized light having a complex amplitude of E p i and E s i respectively enters the surface of the thin film M, the p component and the s component E p r , E s r of the reflected light are If E p r = R p · E p i E s r = R s · E s i and the complex amplitude ratios of the p component and s component of the incident light and the reflected light are X i and X r , respectively, then X r = [R p / R s ] .X i .

【0005】偏光解析法は、入射偏光の状態Xi と反射
偏光の状態Xr を知って、振幅反射率比Rp /Rs を求
め、数値解析によって薄膜Mの屈折率nや膜厚dを求め
る方法である。振幅反射率比は(1)式から Rp /Rs =rp /rs ・exp [i( Δp − Δs )] =tan Ψ・exp (iΔ) ・・・(4) ( tan Ψ=rp /rs ,Δ=Δp − Δs とおく)で
表される。従来公知の各種方法により上記ΨとΔとを測
定することにより、薄膜Mの屈折率nや膜厚dを求めて
いた。
In the polarization analysis method, the amplitude reflectance ratio R p / R s is obtained by knowing the incident polarized light state X i and the reflected polarized light state X r, and the refractive index n and the film thickness d of the thin film M are numerically analyzed. Is a method of asking for. From the formula (1), the amplitude reflectance ratio is R p / R s = r p / r s · exp [i ( Δp −Δ s )] = tan Ψ · exp (iΔ) ・ ・ ・ (4) (tan Ψ = R p / r s , Δ = Δ p −Δ s )). The refractive index n and the film thickness d of the thin film M have been obtained by measuring Ψ and Δ by various conventionally known methods.

【0006】(2)式のδが薄膜Mの屈折率に依存して
いるのは明らかであるが、(1)式で使用した境界面の
振幅反射率も膜の屈折率と吸収係数に依存している。一
般に膜の屈折率等は膜厚と同様に未知であるために屈折
率も測定しなければならないが、偏光解析ではΨとΔと
の二つの測定値を得られるから膜厚と屈折率を求めるこ
とができる。
Although it is clear that δ in the equation (2) depends on the refractive index of the thin film M, the amplitude reflectance of the boundary surface used in the equation (1) also depends on the refractive index and the absorption coefficient of the film. is doing. Generally, the refractive index of a film is unknown as well as the film thickness, so the refractive index must be measured. However, in polarization analysis, two measured values, Ψ and Δ, can be obtained, so the film thickness and refractive index are obtained. be able to.

【0007】[0007]

【発明が解決しようとする課題】ここで、半導体製造プ
ロセスにおける膜構成、例えばSi基板上のSiO2
Si基板上のSi3 4 ・・・等では、Si基板や膜の
屈折率、吸収係数は一般に既知である。したがって所定
の波長では、膜構成がわかれば、振幅反射率は一意的に
決まり、振幅反射率Rp 、Rs を決めるパラメーターは
膜厚だけである。又(2)式より位相差δは屈折率と入
射角から(3)式により計算される屈折角により決まる
ことが明らかである。
Here, a film structure in a semiconductor manufacturing process, for example, SiO 2 on a Si substrate,
For Si 3 N 4 ... On a Si substrate, the refractive index and absorption coefficient of the Si substrate and the film are generally known. Therefore, at a given wavelength, if the film structure is known, the amplitude reflectance is uniquely determined, and the parameter that determines the amplitude reflectances R p and R s is only the film thickness. It is apparent from the equation (2) that the phase difference δ is determined by the refraction angle calculated from the refractive index and the incident angle by the equation (3).

【0008】従来の膜厚測定においては、入射角を一定
の角度に設定し、変動しないものとして膜厚及び屈折率
を求めていた。このために入射角の設定の誤差及び測定
中に生ずる変動により測定値が大きく変化してしまうと
いう問題があった。とくに1〜100nmの波長に比し
て極めて薄い膜の膜厚測定には、この変動が測定の精度
を大きく低下させる原因となっている。
In the conventional film thickness measurement, the incident angle is set to a constant angle, and the film thickness and the refractive index are determined without changing. For this reason, there has been a problem that the measurement value largely changes due to an error in the setting of the incident angle and a fluctuation occurring during the measurement. Especially, in the film thickness measurement of a film extremely thin as compared with a wavelength of 1 to 100 nm, this variation causes a great decrease in measurement accuracy.

【0009】本発明は上記の課題に鑑み、入射角に起因
する膜厚測定誤差をなくすことを目的とする。
In view of the above problems, it is an object of the present invention to eliminate a film thickness measurement error caused by an incident angle.

【0010】[0010]

【課題を解決するための手段】本発明は、薄膜の任意の
膜厚及び任意の入射角の組合せに対して、薄膜及び基板
の複素屈折率を既知のものとして、反射光のp成分とs
成分の反射による位相差及びp成分とs成分の振幅反射
率比を算出して一覧表を作成し、これを記憶手段に記憶
する。その後、公知の偏光解析方法により前記位相差及
び振幅反射率比を測定し、この測定値に対応する膜厚及
び入射角を記憶手段に記憶された一覧表の中で検索して
求めるように構成した。所定の複素屈折率を有する基板
表面に形成された薄膜に斜入射し、反射する所定波長の
光に関し、更に、前記位相差及び振幅反射率比を、検光
子の回転角及び光強度の測定により求める膜厚測定装置
を好ましいものとして構成した。更に、前記位相差及び
振幅反射率比を、補償器の回転角及び光強度の測定によ
り求める膜厚測定装置を好ましいものとして構成した。
According to the present invention, the p-component of reflected light and the s component are defined by assuming that the complex refractive index of the thin film and the substrate is known for any combination of the arbitrary thickness of the thin film and the arbitrary incident angle.
The phase difference due to the reflection of the component and the amplitude reflectance ratio of the p component and the s component are calculated to create a list, which is stored in the storage means. After that, the phase difference and the amplitude reflectance ratio are measured by a known polarization analysis method, and the film thickness and the incident angle corresponding to the measured values are searched and obtained in the list stored in the storage means. did. Regarding light of a predetermined wavelength that is obliquely incident on and reflected by a thin film formed on the surface of a substrate having a predetermined complex refractive index, the phase difference and the amplitude reflectance ratio are further determined by measuring the rotation angle and the light intensity of the analyzer. The required film thickness measuring device was constructed as a preferable one. Further, the film thickness measuring device for obtaining the phase difference and the amplitude reflectance ratio by measuring the rotation angle of the compensator and the light intensity is preferably constructed.

【0011】[0011]

【作用】膜厚及び入射角が予め算出された一覧表の中
で、偏光解析方法による測定値に基づき検索して求めら
れる。好ましい装置によれば、検光子又は補償器の回転
角及び光強度の測定により、前記位相差及び振幅反射率
比を求め、膜厚を求めることができる。
[Function] The film thickness and the incident angle are obtained by searching based on the measured values by the ellipsometry method in the list calculated in advance. According to a preferred apparatus, the film thickness can be obtained by obtaining the phase difference and the amplitude reflectance ratio by measuring the rotation angle and light intensity of the analyzer or compensator.

【0012】[0012]

【実施例】本発明の第1の実施例を図1、図2及び図3
により説明する。図1は基板上の薄膜に入射した光束の
状況を説明する図、図2は本実施例の構成図、図3は本
実施例のブロック図である。波長670nmの半導体レ
ーザーの光源1から射出した光は偏光板2を透過して直
線偏光となり、基板3上の薄膜Mに入射角φで入射す
る。入射角φは厳密に調整する必要はないく、後述の一
覧表に記載された角度範囲に設定すればよい。反射光は
回転する偏光板4を透過して、受光素子5に入射し、光
の強度は電気信号に変換される。偏光板4の回転角度は
偏光板4の支持環に設けられたエンコーダ4aにより読
み取られ、電気信号に変換される。偏光板4を単独で回
転して得られる出力波形を、受光素子5からの光強度信
号とエンコーダ4aからの回転角度信号として信号処理
装置6に入力し、ここでフーリェ変換して位相差及び振
幅反射率比を求める。その後に、記憶装置7に記憶され
ている一覧表より求めた位相差Δ及び振幅反射率比Ψに
対応する膜厚dを検索装置8で検索し、表示部9に膜厚
を表示する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention is shown in FIGS. 1, 2 and 3
Will be described. FIG. 1 is a diagram for explaining the situation of a light beam incident on a thin film on a substrate, FIG. 2 is a configuration diagram of this embodiment, and FIG. 3 is a block diagram of this embodiment. Light emitted from a semiconductor laser light source 1 having a wavelength of 670 nm passes through the polarizing plate 2 to become linearly polarized light, and is incident on the thin film M on the substrate 3 at an incident angle φ. The incident angle φ does not need to be strictly adjusted, and may be set within the angle range described in the table below. The reflected light passes through the rotating polarizing plate 4 and enters the light receiving element 5, and the intensity of the light is converted into an electric signal. The rotation angle of the polarizing plate 4 is read by the encoder 4a provided on the support ring of the polarizing plate 4 and converted into an electric signal. An output waveform obtained by rotating the polarizing plate 4 independently is input to the signal processing device 6 as a light intensity signal from the light receiving element 5 and a rotation angle signal from the encoder 4a, and Fourier transform is performed here to perform phase difference and amplitude. Calculate the reflectance ratio. After that, the retrieval device 8 retrieves the film thickness d corresponding to the phase difference Δ and the amplitude reflectance ratio Ψ obtained from the list stored in the storage device 7, and displays the film thickness on the display unit 9.

【0013】一覧表は、基板と薄膜の屈折率及び吸収係
数を所定の数値として与え、膜厚dを0〜400nmの
範囲で、10nm刻みとし、入射角φを10〜45°の
範囲で、10″刻みとして上記した式からΨとΔとを計
算して予め作成しておく。Si基板上のSiO2 膜を例
にとると、屈折率及び吸収係数をそれぞれ、 としてΨとΔとを計算すると次にその一部を示すような
表が作成される。
The table gives the refractive index and the absorption coefficient of the substrate and the thin film as predetermined numerical values, the film thickness d is in the range of 0 to 400 nm in steps of 10 nm, and the incident angle φ is in the range of 10 to 45 °. Ψ and Δ are calculated in advance from the above equation in steps of 10 ″ and prepared in advance. Taking a SiO 2 film on a Si substrate as an example, the refractive index and the absorption coefficient are Then, Ψ and Δ are calculated, and then a table showing a part of them is created.

【0013】[0013]

【表1】[Table 1]

【0014】 d(nm) θ(度) Ψ(度) Δ(度) ・・・・ ・・・・ ・・・・ ・・・・ 0 15°30′00″ 10 15°30′00″ 20 15°30′00″ 30 15°30′00″ ・・・・ ・・・・ ・・・・ ・・・・ 100 15°30′00″ ・・・・ ・・・・ ・・・・ ・・・・ 0 15°30′10″ 10 15°30′10″ 20 15°30′10″ 30 15°30′10″ ・・・・ ・・・・ ・・・・ ・・・・ 100 15°30′10″ ・・・・ ・・・・ ・・・・ ・・・・ 基板と薄膜の他の組合せについても、同様に表を作成す
ることができる。
D (nm) θ (degree) Ψ (degree) Δ (degree) ············ 0 15 ° 30′00 ″ 10 15 ° 30′00 ″ 20 15 ° 30′00 ″ 30 15 ° 30′00 ″ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ 100 15 ° 30'00 ″ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・・ ・ 0 15 ° 30'10 ″ 10 15 ° 30′10 ″ 20 15 ° 30′10 ″ 30 15 ° 30′10 ″ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ 100 15 ° 30 '10 "·························· For the other combinations of the substrate and the thin film, a table can be similarly created.

【0015】本発明の第2の実施例を図4により説明す
る。図4は第2の実施例の構成図である。光源1から射
出した光は偏光板2を透過して直線偏光となり、その後
補償器として4分の1波長板2aを透過してから、薄膜
Mに入射する。反射光は回転する偏光板4を透過して、
受光素子5に入射し、光の強度は電気信号に変換され
る。4分の1波長板2aを回転し消光方位を求める。本
実施例は偏光板4を回転する代わりに、4分の1波長板
2aを回転し位相差及び振幅反射率比を求めるものであ
り、説明の詳述は省略する。
A second embodiment of the present invention will be described with reference to FIG. FIG. 4 is a block diagram of the second embodiment. The light emitted from the light source 1 passes through the polarizing plate 2 to become linearly polarized light, and then passes through the quarter-wave plate 2a as a compensator and then enters the thin film M. The reflected light passes through the rotating polarizing plate 4,
Upon entering the light receiving element 5, the intensity of light is converted into an electric signal. The extinction direction is obtained by rotating the quarter-wave plate 2a. In the present embodiment, instead of rotating the polarizing plate 4, the quarter wavelength plate 2a is rotated to obtain the phase difference and the amplitude reflectance ratio, and detailed description thereof will be omitted.

【0016】実施例によれば、入射角に依存しないで膜
厚を測定できるから、装置の調整が容易にでき、不安定
な試料台を用いることもできるため、廉価に膜厚測定装
置を製作できる。
According to the embodiment, since the film thickness can be measured without depending on the incident angle, the device can be easily adjusted and an unstable sample stage can be used. Therefore, the film thickness measuring device can be manufactured at low cost. it can.

【0017】又、水面上の油のように薄膜の法線方向が
定まらない状況での測定も可能である。
It is also possible to measure in a situation where the normal direction of the thin film is not fixed like oil on the water surface.

【0018】実施例においては、薄膜の任意の膜厚及び
任意の入射角の組合せに対して一覧表を作成したが、記
憶手段の容量等の制限で任意の組合せについて記憶でき
ない場合は、基板及び薄膜の組合わせごとに限定した範
囲で記憶し、あるいは薄膜の膜厚及び入射角の組合せの
一部を記憶してもよい。記憶していない部分は補間、若
しくは線型又は非線型計画法により求めてもよい。更に
制約が大きいときは解析的方法によって求めてもよい。
In the embodiment, a table is prepared for a combination of an arbitrary film thickness of the thin film and an arbitrary incident angle. However, if the arbitrary combination cannot be stored due to the limitation of the capacity of the storage means, the substrate and It may be stored in a limited range for each combination of thin films, or a part of the combination of the thickness of the thin film and the incident angle may be stored. The unstored portion may be obtained by interpolation or linear or nonlinear programming. When the constraint is large, it may be obtained by an analytical method.

【0019】[0019]

【発明の効果】以上説明したように本発明により、膜厚
及び入射角が予め算出された一覧表の中で、偏光解析方
法による測定値に基づき検索して求められるから、入射
角による膜厚測定誤差がなくなる。
As described above, according to the present invention, the film thickness and the incident angle are preliminarily calculated, and the film thickness and the incident angle are obtained by searching based on the measurement value by the ellipsometry method. There is no measurement error.

【図面の簡単な説明】[Brief description of drawings]

【図1】基板上の薄膜に入射した光束の状況を説明する
図である。
FIG. 1 is a diagram illustrating a situation of a light beam incident on a thin film on a substrate.

【図2】第1の実施例の構成図である。FIG. 2 is a configuration diagram of a first embodiment.

【図3】第1の実施例のブロック図である。FIG. 3 is a block diagram of a first embodiment.

【図4】第2の実施例の構成図である。FIG. 4 is a configuration diagram of a second embodiment.

【符号の説明】[Explanation of symbols]

M 薄膜 1 光源 2 偏光板 2a 4分の1波長板 3 基板 4 偏光板 4a エンコーダ 5 受光素子 6 信号処理装置 7 記憶装置 8 検索装置 9 表示部 M thin film 1 light source 2 polarizing plate 2a quarter wave plate 3 substrate 4 polarizing plate 4a encoder 5 light receiving element 6 signal processing device 7 storage device 8 search device 9 display unit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 所定の複素屈折率を有する基板表面に
形成された薄膜に斜入射し、反射する所定波長の光に基
づいて前記薄膜の膜厚を測定する方法ににおいて、 前記薄膜の任意の膜厚及び任意の入射角の組合せに対し
て、前記薄膜及び前記基板の所定複素屈折率により算出
した、反射光のp成分とs成分の反射による位相差及び
p成分とs成分の振幅反射率比の計算値とからなる一覧
表を記憶し、偏光解析法により得られた情報を用いて演
算された前記位相差及び前記振幅反射率比に対応する膜
厚及び入射角を前記一覧表より検索して前記薄膜の膜厚
を測定することを特徴とする膜厚測定方法。
1. A method for measuring the film thickness of a thin film based on light having a predetermined wavelength that is obliquely incident on and reflected by a thin film formed on a surface of a substrate having a predetermined complex refractive index. Phase difference due to reflection of p component and s component of reflected light and amplitude reflectance of p component and s component calculated by a predetermined complex refractive index of the thin film and the substrate with respect to a combination of film thickness and arbitrary incident angle. A table consisting of calculated values of the ratio is stored, and the film thickness and the incident angle corresponding to the phase difference and the amplitude reflectance ratio calculated using the information obtained by the ellipsometry are searched from the table. And then measuring the film thickness of the thin film.
【請求項2】所定の複素屈折率を有する基板表面に形成
された薄膜に斜入射する所定波長の入射光束の光路中に
挿入された偏光子と、前記薄膜からの反射光束の光路中
に挿入された回転可能な検光子と、前記検光子を透過し
た光束を受光し、光強度信号を出力する受光素子とを有
する膜厚測定装置において、 前記薄膜の任意の膜厚及び任意の入射角の組合せに対し
て、前記薄膜及び前記基板の所定複素屈折率により算出
した、反射光のp成分とs成分の反射による位相差及び
p成分とs成分の振幅反射率比の計算値とからなる一覧
表を記憶する記憶手段と、前記検光子の回転角情報及び
前記光強度信号の値を用いて前記位相差及び前記振幅反
射率比を演算する演算手段と、前記演算値に対応する膜
厚及び入射角を前記一覧表より検索する検索手段と、前
記検索値を表示する表示手段とを有することを特徴とす
る膜厚測定装置。
2. A polarizer inserted in an optical path of an incident light beam of a predetermined wavelength obliquely incident on a thin film formed on a substrate surface having a predetermined complex refractive index, and a polarizer inserted in an optical path of a reflected light beam from the thin film. In a film thickness measuring device having a rotatable analyzer and a light receiving element that receives a light beam that has passed through the analyzer and outputs a light intensity signal, an arbitrary film thickness of the thin film and an arbitrary incident angle A list of the phase difference due to the reflection of the p component and s component of the reflected light and the calculated value of the amplitude reflectance ratio of the p component and the s component calculated by the predetermined complex refractive index of the thin film and the substrate for the combination. A storage unit that stores a table, a calculation unit that calculates the phase difference and the amplitude reflectance ratio by using the rotation angle information of the analyzer and the value of the light intensity signal, and a film thickness corresponding to the calculation value. Search for the incident angle from the list above A film thickness measuring device comprising means and display means for displaying the retrieved value.
【請求項3】所定の複素屈折率を有する基板表面に形成
された薄膜に斜入射する所定波長の入射光束の光路中に
挿入された偏光子と、前記薄膜からの反射光束の光路中
に挿入された回転可能な検光子と、前記検光子を透過し
た光束を受光し、光強度信号を出力する受光素子と、入
射光束又は反射光束の何れかの光路中に挿入された回転
可能な4分の一波長板とを有する膜厚測定装置におい
て、 前記薄膜の任意の膜厚及び任意の入射角の組合せに対し
て、前記薄膜及び前記基板の所定複素屈折率により算出
した、反射光のp成分とs成分の反射による位相差及び
p成分とs成分の振幅反射率比の計算値とからなる一覧
表を記憶する記憶手段と、前記4分の一波長板の回転角
情報及び前記光強度信号の値を用いて前記位相差及び前
記振幅反射率比を演算する演算手段と、前記演算値に対
応する膜厚及び入射角を前記一覧表より検索する検索手
段と、前記検索値を表示する表示手段とを有することを
特徴とする膜厚測定装置。
3. A polarizer inserted in the optical path of an incident light beam of a predetermined wavelength obliquely incident on a thin film formed on a substrate surface having a predetermined complex refractive index, and a polarizer inserted in the optical path of a reflected light beam from the thin film. Rotatable analyzer, a light receiving element that receives a light beam that has passed through the analyzer and outputs a light intensity signal, and a rotatable quadrant that is inserted in the optical path of either the incident light beam or the reflected light beam. In a film thickness measuring device having a one-wave plate, a p component of reflected light calculated by a predetermined complex refractive index of the thin film and the substrate for a combination of an arbitrary film thickness of the thin film and an arbitrary incident angle. And a storage means for storing a list consisting of a phase difference due to reflection of the s component and a calculated value of the amplitude reflectance ratio of the p component and the s component, rotation angle information of the quarter wavelength plate, and the light intensity signal. Value of the phase difference and the amplitude reflectance ratio A film thickness measuring apparatus, comprising: a calculating unit that calculates a value, a searching unit that searches the list for a film thickness and an incident angle corresponding to the calculated value, and a display unit that displays the searched value.
JP4323801A 1992-11-10 1992-11-10 Method and equipment for measuring film thickness optically Pending JPH06147837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4323801A JPH06147837A (en) 1992-11-10 1992-11-10 Method and equipment for measuring film thickness optically

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4323801A JPH06147837A (en) 1992-11-10 1992-11-10 Method and equipment for measuring film thickness optically

Publications (1)

Publication Number Publication Date
JPH06147837A true JPH06147837A (en) 1994-05-27

Family

ID=18158766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4323801A Pending JPH06147837A (en) 1992-11-10 1992-11-10 Method and equipment for measuring film thickness optically

Country Status (1)

Country Link
JP (1) JPH06147837A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000030206A (en) * 2000-02-02 2000-06-05 문철홍 Developement of Plane-Styrofoam Thickness Measure System
CN115218796A (en) * 2022-08-29 2022-10-21 重庆市计量质量检测研究院 DEABC method for detecting parameters of multilayer film based on in-situ common-angle SPR

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000030206A (en) * 2000-02-02 2000-06-05 문철홍 Developement of Plane-Styrofoam Thickness Measure System
CN115218796A (en) * 2022-08-29 2022-10-21 重庆市计量质量检测研究院 DEABC method for detecting parameters of multilayer film based on in-situ common-angle SPR

Similar Documents

Publication Publication Date Title
US4999014A (en) Method and apparatus for measuring thickness of thin films
US5120966A (en) Method of and apparatus for measuring film thickness
US5963327A (en) Total internal reflection electromagnetic radiation beam entry to, and exit from, ellipsometer, polarimeter, reflectometer and the like systems
US6856384B1 (en) Optical metrology system with combined interferometer and ellipsometer
US6583875B1 (en) Monitoring temperature and sample characteristics using a rotating compensator ellipsometer
US5526117A (en) Method for the determination of characteristic values of transparent layers with the aid of ellipsometry
JPH02503115A (en) differential ellipsometer
WO2013138066A1 (en) Dual angles of incidence and azimuth angles optical metrology
JP2001272308A (en) Anisotropy multilayer thin film structure evaluation method and evaluation device thereof
US7508511B2 (en) Method and apparatus for improved ellipsometric measurement of ultrathin films
JP3520379B2 (en) Optical constant measuring method and device
US6731386B2 (en) Measurement technique for ultra-thin oxides
JPH06147837A (en) Method and equipment for measuring film thickness optically
Smith An automated scanning ellipsometer
JPH055699A (en) Refractive index and film thickness measuring method for anisotropic thin film
Leonard et al. Design and construction of three infrared ellipsometers for thin film research
JP3181655B2 (en) Optical system and sample support in ellipsometer
JP3537732B2 (en) Ellipsometer using voltage controlled liquid crystal retarder
SU1141315A1 (en) Method of measuring polymeric material double refraction value
Nee et al. Ellipsometric characterization of optical constants for transparent materials
JPS60249007A (en) Instrument for measuring film thickness
JPH04357405A (en) Polarization analyzing apparatus
JPH01178851A (en) Analyzing method of polarization
Leonard et al. Design and construction of three infrared ellipsometers for thin-film research
RU2270437C2 (en) Method for measuring height of step in any random multi-layer structures