JPH0211545B2 - - Google Patents

Info

Publication number
JPH0211545B2
JPH0211545B2 JP21942486A JP21942486A JPH0211545B2 JP H0211545 B2 JPH0211545 B2 JP H0211545B2 JP 21942486 A JP21942486 A JP 21942486A JP 21942486 A JP21942486 A JP 21942486A JP H0211545 B2 JPH0211545 B2 JP H0211545B2
Authority
JP
Japan
Prior art keywords
weight
plaster
gypsum
mixture
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21942486A
Other languages
Japanese (ja)
Other versions
JPS6374948A (en
Inventor
Shigeo Tano
Tetsuo Nakazono
Yoshio Makino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Industries Cement Co Ltd
Original Assignee
Mitsubishi Industries Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Industries Cement Co Ltd filed Critical Mitsubishi Industries Cement Co Ltd
Priority to JP21942486A priority Critical patent/JPS6374948A/en
Publication of JPS6374948A publication Critical patent/JPS6374948A/en
Publication of JPH0211545B2 publication Critical patent/JPH0211545B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は建築用内外装材、船舶用資材として使
用されるせつこう・スラグ硬化体の製造方法に関
するもので、特に石綿を含有せず、しかも不燃
性・耐火性・寸法安定性・柔軟性・湾曲性にも優
れた硬化体の製造方法に関するものである。 〔従来の技術〕 不燃性の内外装用建築材料はセメント・石綿製
品に代表され、石綿はセメントとの馴染が良好な
ため種々の方法で製造されてきた。 しかし、石綿は近年発癌性物質であるといわ
れ、製造工場での作業環境の規制ばかりでなく、
建築材料としての使用も規制を受け、特に船舶用
資材に至つては無石綿でなければ使用できなくな
つた。 石綿の代替繊維としてガラス繊維、カーボン繊
維、有機繊維による抄造が試みられたが未だ実用
化されていない現状にある。 また、近年開発された珪酸カルシウム板におい
ても、石綿を必須の補強繊維とし、セメント・石
綿製品と同様の欠点を有している。 本発明者らは、共に水硬性を有せず、しかも共
に産業廃棄物である二水せつこうと高炉スラグと
を主原料として活用したせつこう・スラグ硬化体
を開発し、さらに二水せつこうの一部を焼せつこ
うと置換するとともに凝結遅延剤を添加し、柔軟
性があり可撓性に富んだ硬化体を得たが、補強繊
維として石綿の使用は避けられなかつた。 〔発明が解決しようとする問題点〕 本発明は、せつこう・スラグ硬化体の製造方法
において、補強繊維として石綿を使用している問
題点を解決しようとするものである。 〔問題点を解決するための手段〕 本発明は上記問題点を解決するために、半水せ
つこう10〜90重量%と残余二水せつこうとの混合
物を20〜80重量%含有する前記半水せつこうと前
記二水せつこうと高炉スラグとよりなる混和物
と、該混和物に対するそれぞれ0.1〜1.0重量%の
凝結遅延剤と、0.1〜5重量%の硫酸アルミニウ
ム含有物質と、0.1〜5重量%の刺激剤と、2〜
10重量%の補強繊維と、2〜10重量%のマイカ
と、10〜100ppmの凝集剤と、水とからなるスラ
リーを、脱水成形することを特徴とするせつこ
う・スラグ硬化体の製造方法を提供するものであ
る。 〔作用〕 本発明は、半水せつこう、二水せつこう、高炉
スラグ、凝結遅延剤、硫酸アルミニウム含有物
質、刺激剤、補強繊維およびマイカを水に投入し
てスラリーとし、スラリーに凝集剤を加えてスラ
リーをフロツク状(凝集物が水中に浮遊している
状態)とし、このスラリーを脱水成形する方法
で、成形体を養生・乾燥することによつて得られ
る硬化体は、針状結晶の二水せつこうと、エトリ
ンガイト(3CaO・Al2O3・3CaSO4・31〜
32H2O)と、珪酸カルシウムゲルとを主とする
マトリツクスに、補強繊維が分散しているもので
ある。 半水せつこうは水により水和して針状結晶の二
水せつこうを、二水せつこうは高炉スラグと反応
してエトリンガイトを生成させるものである。 半水せつこうと二水せつこうとの混合割合は、
半水せつこうが10重量%(重量%を以下単に%と
記す)未満であると強度が出ず収縮が大きくな
り、90%を超えると生板が膨張して強度が低下す
るので、半水せつこうの混合割合は10〜90%と
し、好ましくは40〜60%である。 二水せつこうとしては、天然せつこう・副産せ
つこう・排煙脱硫せつこう等が用いられ、半水せ
つこうとしては、これ等の二水せつこうを加熱脱
水したものが使用される。 高炉スラグは、二水せつこうと反応させてエト
リンガイトを生成させると共に、水和により珪酸
カルシウムゲルを生成させるもので、半水せつこ
う・二水せつこう混合物と高炉スラグの混和割合
は、半水せつこう・二水せつこう混合物が20%未
満では強度低下と収縮が大となり、80%を超える
と強度が低下し耐水性がなくなるので、半水せつ
こう・二水せつこう混合物の混和割合は20〜80%
とし、好ましくは40〜60%である。 高炉スラグは水砕高炉スラグを粉砕して使用す
る。 凝結遅延剤は半水せつこうの針状二水せつこう
への水和凝結反応を遅延させるもので、凝結遅延
剤の添加によつて、半水せつこうの水和はスラリ
ー中にては行われず成形後に行われ、針状二水せ
つこうを生成して硬化体の強度発現に寄与するこ
とができる。 凝結遅延剤の前記混和物に対する添加量は、
0.1%未満では効果が不十分で1.0%を超えて添加
しても効果の増進は僅少なので、0.1〜1.0%と
し、好ましくは0.3〜0.6%である。 凝結遅延剤としてはクエン酸アルカリ、ペプト
ン、ゼラチン、アミノ酸誘導体等から適宣選択し
て使用される。 硫酸アルミニウム含有物質は、二水せつこうと
高炉スラグとによるエトリンガイト生成反応を促
進させるため使用されるもので、前記混和物に対
する添加量は、0.1%未満では促進作用が不十分
で5%を超えて添加しても効果の増進は僅少なの
で、0.1〜5%とし、好ましくは0.5〜2.0%であ
る。 硫酸アルミニウム含有物質としては、硫酸アル
ミニウム、ナトリウム明バン、カリ明バン等が使
用される。 高炉スラグは潜在水硬性物質であるので、水お
よび二水せつこうと反応させるために刺激剤を添
加する必要がある。 刺激剤の添加量は、上記混和物に対し、0.1%
未満では効果が不十分で、1.0%を超えても効果
の増進がないので0.1〜1.0%とし、好ましくは0.5
〜2.0%である。 刺激剤としては、硫酸ナトリウム、硫酸カリウ
ム、苛性ソーダ、苛性カリ、石灰、消石灰等が用
いられる。 補強繊維はマトリツクス中に分散させ硬化体の
強度を増加させるもので、前記混和物に対する添
加量は、2%未満では強度の発現が不十分で10%
を超えて添加しても効果の増進は僅少なので、2
〜10%とし、好ましくは4〜8%である。 補強繊維としては、ガラス繊維、カーボン繊
維、スチール繊維等の無機繊維、パルプ繊維、ア
ラミド系繊維、ビニロン繊維、アクリル繊維、ポ
リプロピレン繊維、ナイロン繊維等の有機繊維が
適宜選択して使用される。 マイカは、その周囲のマトリツクス中の針状結
晶の二水せつこうとエトリンガイトと補強繊維と
を絡み合わせ、さらにその周囲を珪酸カルシウム
ゲルで覆い、石綿を使用しなくても高強度、耐水
性、耐候性が大であるだけでなく、柔軟性、可撓
性、湾曲性、加工性に優れた特性を与え得るもの
である。 また、補強繊維と絡み合つた針状結晶の二水せ
つこうおよびエトリンガイト、並びにその周囲を
覆つた珪酸カルシウムゲルは、何れも加熱により
放出される結晶水を多量に含有しているので、硬
化体を加熱しても有機繊維は燃焼することなく無
機繊維と同様に補強効果を維持し、有機繊維を5
%以上添加しても不燃性試験(建設省告示第1828
号)に合格している。 マイカの前記混和物に対する添加割合は、2%
未満では効果が不十分で10%を超えて添加しても
効果の増進は僅少なので、2〜10%とし、好まし
くは4〜8%である。 マイカは0.1〜3mm程度に粉砕したものが使用
される。 凝集剤は、スラリー中の半水せつこう等の原料
を凝集させ、スラリーをフロツク状にして濾水性
を向上させるもので、添加量は、前記混和物に対
し、10ppm未満では効果が不十分であり、
100ppmを超えても効果の増進は僅少なので、10
〜100ppmとし、好ましくは25〜50ppmである。 凝集剤としては、例えば、ポリアクリル系高分
子重合体、アクリルアミド/アクリル酸塩高分子
重合体が使用される。 スラリーを脱水成形する方法には抄造方法、モ
ールデイング方法が用いられるが、モールデイン
グ方法は操作が不連続であるのに対し、抄造方法
は連続成形なので好ましく、抄造方法には丸網抄
造方法と長網抄造方法とがあるが、丸網抄造方法
は成形物が複数層の積層構造をなし、補強繊維が
2次元配置となり硬化体の曲げ強度が大となるの
で特に好ましい。 脱水成形された生板を、自然または湿熱養生し
た後、乾燥することにより硬化体が得られる。 実施例 二水せつこうは排煙脱硫せこうを、半水せつこ
うは市販のβ半水せつこうを、高炉スラグは水砕
高炉スラグを粉末度ブレーン値4000cm2/gに粉砕
したものを、凝結遅延剤はクエン酸ナトリウム
を、硫酸アルミニウム含有物質は硫酸バンドを、
刺激剤は石灰を、補強繊維はパルプ繊維とビニロ
ン繊維とを、マイカは0.1〜3mm程度に粉砕した
ものを使用し、上記各原料をその合計重量の5倍
の水に加えて十分混合してスラリーとし、このス
ラリーに半水せつこう・二水せつこう・高炉スラ
グの合計重量に対する30ppmのポリアクリル系高
分子体を凝集剤として添加し、フロツク状となつ
たスラリーを丸網抄造機にて抄造して脱水・成形
して厚さ6mmの原料配合割合の異なる3種類の生
板を得た。 生板は3週間自然養生した後、乾燥し物性を測
定した。 凝集剤以外の原料の配合割合を第1表に、物性
を第2表に示す。
[Industrial Field of Application] The present invention relates to a method for producing hardened plaster and slag materials used as interior and exterior materials for buildings and materials for ships. The present invention relates to a method for producing a cured product that has excellent dimensional stability, flexibility, and bendability. [Prior Art] Noncombustible interior and exterior building materials are typified by cement and asbestos products, and asbestos is well compatible with cement, so it has been manufactured using various methods. However, in recent years, asbestos has been said to be a carcinogenic substance, and not only the working environment at manufacturing plants has to be regulated.
Its use as a building material was also regulated, and marine materials in particular could no longer be used unless they were asbestos-free. Attempts have been made to make paper using glass fiber, carbon fiber, and organic fiber as alternative fibers to asbestos, but they have not yet been put to practical use. Furthermore, recently developed calcium silicate plates also use asbestos as an essential reinforcing fiber, and have the same drawbacks as cement and asbestos products. The present inventors have developed a hardened plaster/slag material that utilizes dihydrate plaster and blast furnace slag, both of which are industrial wastes, as main raw materials, and which have no hydraulic properties. By replacing a portion with sinter and adding a setting retarder, a flexible and highly flexible cured product was obtained, but the use of asbestos as reinforcing fibers was unavoidable. [Problems to be Solved by the Invention] The present invention attempts to solve the problems of using asbestos as reinforcing fibers in a method for producing a cured plaster/slag body. [Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention provides the above-mentioned hemihydrate containing 20 to 80% by weight of a mixture of 10 to 90% by weight of hemihydrated gypsum and the remaining dihydrated gypsum. A mixture consisting of plaster, the above-mentioned dihydrate plaster and blast furnace slag, a setting retarder of 0.1 to 1.0% by weight, 0.1 to 5% of an aluminum sulfate-containing substance, and 0.1 to 5% of the weight of the mixture. stimulant and 2~
A method for producing a hardened plaster/slag material, which comprises dehydrating and molding a slurry consisting of 10% by weight of reinforcing fibers, 2 to 10% by weight of mica, 10 to 100 ppm of a coagulant, and water. This is what we provide. [Function] In the present invention, half-hydrated gypsum, dihydrated gypsum, blast furnace slag, setting retardant, aluminum sulfate-containing substance, stimulant, reinforcing fibers and mica are added to water to form a slurry, and a flocculant is added to the slurry. In addition, the slurry is made into a floc (a state in which aggregates are suspended in water), and this slurry is dehydrated and molded. The hardened product obtained by curing and drying the molded product is made of needle-like crystals. Nisui Setsuko, Ettringite (3CaO・Al 2 O 3・3CaSO 4・31~
32H 2 O) and calcium silicate gel, in which reinforcing fibers are dispersed. Hemihydrate gypsum is hydrated with water to form needle-like crystals of dihydrate gypsum, and dihydrate gypsum reacts with blast furnace slag to form ettringite. The mixing ratio of half-hydrate and dihydrate is:
If the amount of semi-hydrated plaster is less than 10% by weight (hereinafter referred to simply as %), the strength will not be achieved and the shrinkage will increase, and if it exceeds 90%, the raw board will expand and its strength will decrease. The mixing ratio of plaster is 10 to 90%, preferably 40 to 60%. As dihydrate plaster, natural plaster, by-product plaster, flue gas desulfurization plaster, etc. are used, and as half-hydrate plaster, those obtained by heating and dehydrating these dihydrate plasters are used. Blast furnace slag is reacted with dihydrate gypsum to produce ettringite and hydrated to produce calcium silicate gel.The mixing ratio of the hemihydrate gypsum/dihydrate gypsum mixture and blast furnace slag If the ratio of the gypsum/dihydrate mixture is less than 20%, the strength will decrease and the shrinkage will be large; if it exceeds 80%, the strength will decrease and the water resistance will be lost. Therefore, the mixing ratio of the gypsum/gypsum dihydrate mixture should be 20% ~80%
and preferably 40 to 60%. Blast furnace slag is used by crushing granulated blast furnace slag. A setting retarder is a substance that delays the hydration and setting reaction of hemihydrated gypsum to acicular dihydrated gypsum.By adding a setting retarder, the hydration of hemihydrated gypsum is carried out in the slurry. It is carried out after molding, and produces acicular dihydrate gypsum, which can contribute to the development of strength of the cured product. The amount of the setting retarder added to the mixture is:
If it is less than 0.1%, the effect is insufficient, and if it is added in excess of 1.0%, the effect is only slightly enhanced, so the content is set at 0.1 to 1.0%, preferably 0.3 to 0.6%. The setting retarder is appropriately selected from alkali citrate, peptone, gelatin, amino acid derivatives, etc. and used. The aluminum sulfate-containing substance is used to promote the ettringite production reaction between dihydrate and blast furnace slag, and the amount added to the mixture is insufficient if the amount is less than 0.1%, and if it exceeds 5%, the promoting effect is insufficient. Even if it is added, the effect is only slightly increased, so the content is 0.1 to 5%, preferably 0.5 to 2.0%. As the aluminum sulfate-containing substance, aluminum sulfate, sodium alum, potassium alum, etc. are used. Since blast furnace slag is a latent hydraulic material, it is necessary to add a stimulant to react with water and dihydric gypsum. The amount of stimulant added is 0.1% to the above mixture.
If it is less than 1.0%, the effect is insufficient, and if it exceeds 1.0%, there is no improvement in the effect, so it should be set at 0.1 to 1.0%, preferably 0.5%.
~2.0%. As the stimulant, sodium sulfate, potassium sulfate, caustic soda, caustic potash, lime, slaked lime, etc. are used. Reinforcing fibers are dispersed in the matrix to increase the strength of the cured product, and if the amount added to the mixture is less than 2%, the strength will not be sufficiently developed, so 10%
Even if added in excess of
-10%, preferably 4-8%. As the reinforcing fibers, inorganic fibers such as glass fibers, carbon fibers, and steel fibers, and organic fibers such as pulp fibers, aramid fibers, vinylon fibers, acrylic fibers, polypropylene fibers, and nylon fibers are appropriately selected and used. Mica is made by intertwining needle-shaped dihydrate crystals in the surrounding matrix with ettringite and reinforcing fibers, and then covering the surrounding area with calcium silicate gel, resulting in high strength, water resistance, and weather resistance without the use of asbestos. It not only has great properties, but also has excellent properties such as softness, flexibility, bendability, and workability. In addition, the acicular crystals of gypsum dihydrate and ettringite intertwined with the reinforcing fibers, as well as the calcium silicate gel surrounding them, both contain a large amount of crystallization water released by heating, so the cured product Even when heated, organic fibers do not burn and maintain the same reinforcing effect as inorganic fibers.
Nonflammability test (Ministry of Construction Notification No. 1828)
No.). The proportion of mica added to the mixture is 2%.
If it is less than 10%, the effect is insufficient, and if it exceeds 10%, the effect is only slightly improved, so the content is 2 to 10%, preferably 4 to 8%. Mica is used after being crushed to about 0.1 to 3 mm. The flocculant is used to flocculate raw materials such as semi-hydrated gypsum in the slurry and turn the slurry into a flocculent form to improve freeness.If the amount added is less than 10 ppm, the effect is insufficient. can be,
Even if it exceeds 100ppm, the effect is only slightly increased, so 10
-100ppm, preferably 25-50ppm. As the flocculant, for example, a polyacrylic polymer or an acrylamide/acrylate polymer is used. A papermaking method and a molding method are used to dehydrate and mold the slurry, but while the molding method requires discontinuous operations, the papermaking method is preferable because it is continuous molding. Although there is a fourdrinier papermaking method, the circular wire papermaking method is particularly preferable because the molded product has a laminated structure of multiple layers, reinforcing fibers are arranged two-dimensionally, and the bending strength of the cured product is increased. A cured product is obtained by drying the dehydrated raw board after natural or moist heat curing. Example The dihydric gypsum is made from flue gas desulfurization gypsum, the semihydrated gypsum is made from commercially available β-hemihydrated gypsum, and the blast furnace slag is made by pulverizing granulated blast furnace slag to a Blaine fineness value of 4000 cm 2 /g. Set retardant is sodium citrate, aluminum sulfate containing substance is sulfuric acid band,
The stimulant is lime, the reinforcing fiber is pulp fiber and vinylon fiber, and the mica is crushed to about 0.1 to 3 mm. Add each of the above raw materials to 5 times the total weight of water and mix thoroughly. To this slurry, 30 ppm of polyacrylic polymer based on the total weight of semi-hydrated gypsum, dihydrated gypsum, and blast furnace slag is added as a flocculant, and the slurry that has become floc-like is processed using a round netting machine. Three types of green boards with a thickness of 6 mm with different raw material composition ratios were obtained by papermaking, dehydration, and molding. After the green boards were naturally cured for 3 weeks, they were dried and their physical properties were measured. Table 1 shows the blending ratio of raw materials other than the flocculant, and Table 2 shows the physical properties.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明の方法を用いることにより、石綿を全く
使用せずに、曲げ強度および撓みが大きく、しか
も長さ変化率の小さい、せつこう・スラグ硬化体
の製造が可能となり、本発明の工業的価値は極め
て大きい。
By using the method of the present invention, it is possible to produce a hardened plaster/slag body with high bending strength and deflection, and a small rate of change in length, without using asbestos at all, and the industrial value of the present invention is is extremely large.

Claims (1)

【特許請求の範囲】[Claims] 1 半水せつこう10〜90重量%と残余二水せつこ
うとの混合物を20〜80重量%含有する前記半水せ
つこうと前記二水せつこうと高炉スラグとよりな
る混和物と、該混和物に対するそれぞれ0.1〜1.0
重量%の凝結遅延剤と、0.1〜5重量%の硫酸ア
ルミニウム含有物質と、0.1〜5重量%の刺激剤
と、2〜10重量%の補強繊維と、2〜10重量%の
マイカと、10〜100ppmの凝集剤と、水とからな
るスラリーを、脱水成形することを特徴とするせ
つこう・スラグ硬化体の製造方法。
1. A mixture of the above half-hydrated plaster, the above-mentioned dihydrate plaster and blast furnace slag, containing 20-80% by weight of a mixture of 10 to 90% by weight of half-hydrated plaster and the remaining dihydrated plaster, and each for the mixture 0.1~1.0
10% by weight of set retarder, 0.1-5% by weight of aluminum sulfate-containing substances, 0.1-5% by weight of irritants, 2-10% by weight of reinforcing fibers, 2-10% by weight of mica. A method for producing a hardened plaster/slag product, which comprises dehydrating and molding a slurry consisting of ~100 ppm of coagulant and water.
JP21942486A 1986-09-19 1986-09-19 Manufacture of gypsum-slag hardened body Granted JPS6374948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21942486A JPS6374948A (en) 1986-09-19 1986-09-19 Manufacture of gypsum-slag hardened body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21942486A JPS6374948A (en) 1986-09-19 1986-09-19 Manufacture of gypsum-slag hardened body

Publications (2)

Publication Number Publication Date
JPS6374948A JPS6374948A (en) 1988-04-05
JPH0211545B2 true JPH0211545B2 (en) 1990-03-14

Family

ID=16735173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21942486A Granted JPS6374948A (en) 1986-09-19 1986-09-19 Manufacture of gypsum-slag hardened body

Country Status (1)

Country Link
JP (1) JPS6374948A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716678B2 (en) * 1989-03-01 1995-03-01 株式会社関西エンジニアリング Treatment material for waste liquid, slurry, sludge, etc.
JP4802255B2 (en) * 2009-03-06 2011-10-26 吉野石膏株式会社 Gypsum-based solidifying material mainly composed of a gypsum composition capable of suppressing hydrogen sulfide
JP5632768B2 (en) * 2011-02-10 2014-11-26 吉野石膏株式会社 Method for suppressing hydrogen sulfide generation

Also Published As

Publication number Publication date
JPS6374948A (en) 1988-04-05

Similar Documents

Publication Publication Date Title
Garg et al. Waste gypsum from intermediate dye industries for production of building materials
CA1228375A (en) Process for producing a hardened product of coal ash
WO2020221835A1 (en) Autoclaved cement compositions
JPH0476943B2 (en)
Singh et al. Investigation of a durable gypsum binder for building materials
EP0047158B1 (en) A process for the manufacture of fibre reinforced shaped articles
JPH0211545B2 (en)
JPH11292606A (en) Production of inorganic cured article
JPS58176159A (en) Manufacture of amorphous calcium silicate formed body
KR840001879B1 (en) Process for preparing of cemented gypsum-slag materials
JPH0231027B2 (en)
JPS62191455A (en) Anhydrous gypsum papered board and manufacture
JP2525187B2 (en) Manufacturing method of calcium silicate plate
KR900007077B1 (en) Hardening composition and method for producing thereof
CA2174185C (en) Organomineral paste and method of use as construction material
JPH08175881A (en) Production of lightweight inorganic board
JPH0242784B2 (en)
JP2758449B2 (en) Fire-resistant hardened asbestos-free gypsum body and method for producing the same
KR860007173A (en) Manufacturing Method of Building Cement Composite Plate
KR100885202B1 (en) Preparation method of slag board having no asbestos
JPH0551550B2 (en)
JPS6245190B2 (en)
JPH0520377B2 (en)
JPS6351995B2 (en)
JP2003292366A (en) Gypsum-based inorganic set object and method for producing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term