JPH02115341A - Oxide dispersion reinforced alloy - Google Patents

Oxide dispersion reinforced alloy

Info

Publication number
JPH02115341A
JPH02115341A JP26890188A JP26890188A JPH02115341A JP H02115341 A JPH02115341 A JP H02115341A JP 26890188 A JP26890188 A JP 26890188A JP 26890188 A JP26890188 A JP 26890188A JP H02115341 A JPH02115341 A JP H02115341A
Authority
JP
Japan
Prior art keywords
alloy
powder
matrix
particle dispersion
intermetallic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26890188A
Other languages
Japanese (ja)
Other versions
JPH0575817B2 (en
Inventor
Hiroyuki Omura
博幸 大村
Takao Miyoshi
三好 隆雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ryobi Ltd
Original Assignee
Ryobi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ryobi Ltd filed Critical Ryobi Ltd
Priority to JP26890188A priority Critical patent/JPH02115341A/en
Publication of JPH02115341A publication Critical patent/JPH02115341A/en
Publication of JPH0575817B2 publication Critical patent/JPH0575817B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title alloy having excellent wear resistance with inexpensive reinforcing powder by dispersing Fe-Al intermetallic compounds having high hardness or alloy powder contg. the above into an Al alloy matrix having excellent castability and mechanical characteristics. CONSTITUTION:The oxide dispersion reinforced alloy is the one of which one or more kinds of reinforcing powder among the powder of intermetallic compounds of FeAl2, Fe2Al5 or FeAl3 and Al-Fe series alloy powder contg. the above intermetallic compounds are uniformly dispersed into a matrix of Al-Si-Cu-Mg series alloy e.g., it is the one of which Al-Fe series alloy powder contg., by weight, 30 to 60% Al and the balance Fe is dispersed into a matrix contg. 4 to 24% Al, 0.8 to 9% Si, 0.15 to 5% Cu and the balance Mg. As the matrix, Al-Ni-Mg-Mn series alloy may furthermore be used.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、金属間化合物粉末及び合金粉末をマトリック
ス中に分散させた粒子分散強化型合金に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a particle dispersion strengthened alloy in which intermetallic compound powder and alloy powder are dispersed in a matrix.

〔従来の技術〕[Conventional technology]

一般に、A1合金の耐摩耗性を向上させる方法として、
A1合金中に強化粉末を分散させることが知られている
Generally, as a method to improve the wear resistance of A1 alloy,
It is known to disperse reinforcing powders in A1 alloys.

前記強化粉末は、A1合金溶湯中に添加すると溶解する
為、従来、粒子分散強化型合金は焼結法によって製造し
ている。
Since the strengthening powder dissolves when added to the molten A1 alloy, particle dispersion strengthened alloys have conventionally been manufactured by a sintering method.

しかし、前記焼結・法では、A1合金粉末を合金粉末中
に均一に分散させることが困難であるばかりでなく、製
造コストは高く、又、寸法精度も劣るという問題点があ
る。
However, the sintering method has problems in that it is not only difficult to uniformly disperse the A1 alloy powder in the alloy powder, but also that the manufacturing cost is high and the dimensional accuracy is poor.

そこで、Al−Ni系合金をマトリックスとしてNi粉
末又はNi基金属間化合物粒子を直接添加後、短時間攪
伴し、ダイカスト成形することによって、マトリックス
中に均一に分散させてなる金属間化合物粒子分散強化型
合金及びその製造方法は本願人が提案し特開昭63−7
9934号となっている。
Therefore, by directly adding Ni powder or Ni-based intermetallic compound particles using an Al-Ni alloy as a matrix, stirring for a short time, and die-casting, the intermetallic compound particles are uniformly dispersed in the matrix. The strengthened alloy and its manufacturing method were proposed by the applicant and published in Japanese Patent Application Laid-open No. 63-7.
It is number 9934.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、前記特開昭63−79934号において
は、強化粉末として高価なNi粉末、又はNi基金属間
化合物を用いる為、焼結法に比べれば安価であるがなお
も高価であり実用上用途が限定されるという問題点があ
る。
However, in JP-A No. 63-79934, expensive Ni powder or Ni-based intermetallic compound is used as the reinforcing powder, so although it is cheaper than the sintering method, it is still expensive and has no practical application. The problem is that it is limited.

又、耐摩耗性においても向上はみられるものの、今だ充
分ではない為、更に優れたものが業界において望まれて
いる。
Furthermore, although there has been some improvement in wear resistance, it is still not sufficient, and there is a desire in the industry for something even better.

本発明は、安価な強化粉末を用いることで優れた耐摩耗
性を有する粒子分散強化型合金を得ることができ、かつ
該粒子分散強化型合金の用途を拡大し得る粒子分散強化
型合金を提供することを目的としている。
The present invention provides a particle dispersion strengthened alloy that can obtain a particle dispersion strengthened alloy having excellent wear resistance by using an inexpensive reinforcing powder, and that can expand the applications of the particle dispersion strengthened alloy. It is intended to.

〔課題を解決する為の手段〕[Means to solve problems]

上記目的を達成する為に、本発明の粒子分散強化型合金
においては、 Al−Si−(::u−Mg系合金をマ
トリックスとし、該マトリックスにFeA l 、、F
e、 Al 、又はFe Al 3の金属間化合物粉末
もしくは前記金属間化合物を含むAl −Fe系合金粉
末のうちから選ばれる1種又は2種以上の強化粉末を均
一に分散させたものである。
In order to achieve the above object, in the particle dispersion strengthened alloy of the present invention, an Al-Si-(::u-Mg alloy is used as a matrix, and FeAl, ,F
One or more reinforcing powders selected from intermetallic compound powders such as e, Al, or FeAl3, or Al--Fe alloy powders containing the above-mentioned intermetallic compounds are uniformly dispersed.

上記マトリックスとしてAl−Ni −Mg−Mn系合
金を使用することが可能である。
It is possible to use an Al-Ni-Mg-Mn alloy as the matrix.

〔作用〕[Effect]

上記のように、本発明に用いられるAlAl−5i−C
u−系合金、又はAl −Ni −Mg −Mn系合金
ハ、マトリックスになるものであって、Al−Si−■
−Mg系合金においては、Al−4〜24 wt% S
i −0.8〜9wt4CLI−0.15〜5wt%M
g合金が好ましく、他にFe□、5〜2、Qwt%及び
他に添加元素が入って機械的性質が改善されたものでも
良い。
As mentioned above, AlAl-5i-C used in the present invention
U-based alloy or Al-Ni-Mg-Mn-based alloy C is a matrix, and Al-Si-■
-In Mg-based alloys, Al-4 to 24 wt% S
i -0.8~9wt4CLI-0.15~5wt%M
A g-alloy is preferable, and an alloy containing Fe□, 5 to 2, Qwt%, and other additive elements may be used to improve mechanical properties.

又、Al −Ni−Mg−論系合金においては、A1−
1〜7wt%Ni−1〜8 wt俤Mg −0.5〜5
 vyt% Mn合金が好マしく、不純物としてのSi
が0.5 wt%以下が好ましい。
In addition, in the Al-Ni-Mg-based alloy, A1-
1~7 wt% Ni-1~8 wt Mg -0.5~5
vyt% Mn alloy is preferred, with Si as an impurity
is preferably 0.5 wt% or less.

マトリックスにAl−Si−■−Mg系合金を用いる理
由は、この合金が優れた鋳造性、機械的性質を有する為
である。
The reason why an Al-Si---Mg alloy is used for the matrix is that this alloy has excellent castability and mechanical properties.

一方、マトリックスにAl−Ni −Mg−Mn系合金
を用いる理由は、この合金が優れた強靭性等の機械的性
質や優れた鋳造性を有する為である。
On the other hand, the reason why an Al-Ni-Mg-Mn alloy is used for the matrix is that this alloy has excellent mechanical properties such as toughness and excellent castability.

前記マトリックスに添加し、分散させる粉末は、FeA
l2. F”e、 Alg、又はFeAl3金属間化合
物粉末もしくは前記金属間化合物を含むAl −F”e
系合金粉末のうちから選ばれる1種、又は2種以上の強
化粉末である。
The powder added to and dispersed in the matrix is FeA
l2. F"e, Alg, or FeAl3 intermetallic compound powder or Al-F"e containing the above intermetallic compound
One or more types of reinforcing powder selected from the group alloy powders.

これら強化粉末を用いる理由は、これら強化粉末が安価
であって、マトリックスに対して分散性が良く、安定性
に優れているからである。
The reason for using these reinforcing powders is that these reinforcing powders are inexpensive, have good dispersibility in the matrix, and are excellent in stability.

更には、これら強化粉末は何れも高硬度である為にマト
リックス中において、これら金属間化合物粉末、又は金
属間化合物を含む合金粉末が均一に分散されることによ
って耐摩耗性に寄与するからである。
Furthermore, since all of these reinforcing powders have high hardness, these intermetallic compound powders or alloy powders containing intermetallic compounds are uniformly dispersed in the matrix, contributing to wear resistance. .

Al−Fe系合金粉末をAl −30〜60 wt% 
Fe合金粉末としたのは、これら範囲外では合金粉末中
に金属間化合物が十分に形成されず、よってマトリック
ス中に合金粉末が均一に分散されても耐摩耗性を十分向
上させ得ない為である。
Al-Fe alloy powder with Al -30 to 60 wt%
The Fe alloy powder was used because outside these ranges, intermetallic compounds are not sufficiently formed in the alloy powder, and therefore, even if the alloy powder is uniformly dispersed in the matrix, the wear resistance cannot be sufficiently improved. be.

前記金属間化合物粉末、又は合金粉末の添加量は4〜5
0 wt*であることか好ましく、より好ましくは5〜
20wt%である。
The amount of the intermetallic compound powder or alloy powder added is 4 to 5.
It is preferable that it is 0 wt*, more preferably 5 to
It is 20wt%.

その理由は、添加量が4wt%未満では、耐摩耗性向上
の効果がな(、sowt%超では、攪伴段階でマトリッ
クスが急激に凝固する為に製造か困難であるからである
The reason for this is that if the amount added is less than 4 wt%, there is no effect of improving wear resistance (and if it exceeds sowt%, the matrix will rapidly solidify during the stirring stage, making it difficult to manufacture.

本発明の粒子分散強化型合金は1以上のように構成する
ものであり、以下にその製造方法の一例を図面を参照し
て説明する。
The particle dispersion strengthened alloy of the present invention has one or more structures, and an example of its manufacturing method will be described below with reference to the drawings.

第1図は攪伴混合装置の一例を示している。FIG. 1 shows an example of an agitation mixing device.

まず、マトリックス材となるAl −Si −Cu −
Mg系合金、又はAl −Ni −Mg−Mn系合金溶
湯を攪伴混合装置の攪伴混合槽2内に所定量注湯した後
First, Al-Si-Cu- which becomes the matrix material
After pouring a predetermined amount of Mg-based alloy or Al-Ni-Mg-Mn-based alloy molten metal into the stirring mixing tank 2 of the stirring mixing device.

該溶湯に前記強化粉末を所定量添加し、攪伴羽根3をモ
ータ4で回転させ短時間攪伴混合し、マトリックス中に
強化粉末が分散した粒子分散強化型合金溶湯1を得るこ
とができる。
A predetermined amount of the reinforcing powder is added to the molten metal, and the stirring blade 3 is rotated by the motor 4 to stir and mix for a short time, thereby obtaining a particle dispersion strengthened alloy molten metal 1 in which the reinforcing powder is dispersed in a matrix.

これを、ダイカストマシンに給湯し、成形することによ
りマトリックス中に更に均一に強化粉末が分散した粒子
分散強化型合金を製造することができる。
By feeding this into a die-casting machine and molding it, it is possible to produce a particle-dispersion-strengthened alloy in which the reinforcing powder is more uniformly dispersed in the matrix.

〔実施例〕〔Example〕

以下に、本発明の実施例につき具体的に説明する。 Examples of the present invention will be specifically described below.

(実施例1) マトリックスであるAl −Ni −Mg−MI系合金
溶湯中に粉末径が5011m以下のP’e Al 、 
、 Fe 、 Al 、 、FeAl。
(Example 1) P'e Al with a powder diameter of 5011 m or less in the molten Al-Ni-Mg-MI alloy that is the matrix,
, Fe, Al, , FeAl.

金属間化合物及びAl −Fe合金粉末を添加して第1
図に示す攪伴混合装置により攪伴混合した後。
First by adding intermetallic compound and Al-Fe alloy powder
After stirring and mixing using the stirring and mixing device shown in the figure.

ダイカストマシンに給湯し、成形することにより粒子分
散強化型合金の耐摩耗試験片を製造した。
A wear-resistant test piece of a particle dispersion-strengthened alloy was manufactured by supplying hot water to a die-casting machine and molding it.

第2図に、FeAl、金属間化合物粉末を添加して得ら
れた粒子分散強化型合金試験片の関着の顕微鏡写真を示
す。
FIG. 2 shows a microscopic photograph of the adhesion of a particle dispersion strengthened alloy test piece obtained by adding FeAl and intermetallic compound powder.

尚、他のFe、 Al @ 、 FeAl3. Al 
−Fe合金粉末を添加して得られた粒子分散強化型合金
試験片の顕微鏡写真は第2図の写真とほとんど同様であ
る為、ここでは省略する。
In addition, other Fe, Al@, FeAl3. Al
A microscopic photograph of a particle dispersion strengthened alloy specimen obtained by adding -Fe alloy powder is almost the same as the photograph in FIG. 2, so it is omitted here.

何れの先順組織も粉末が均一に分散している。Powder is uniformly dispersed in both prior structures.

(実施例2) マトリックスであるAl −Si −Cu −Mg  
系合金溶湯中に、粉末径が45μm以下のFeAl、、
)”e、 A1.、FeAl3、Fe−Al合金粉末を
添加し、上述と同様の方法により粒子分散強化型合金の
耐摩耗試験片を製造した。
(Example 2) Matrix Al-Si-Cu-Mg
FeAl with a powder diameter of 45 μm or less in the molten metal of the system alloy,
)"e, A1., FeAl3, and Fe-Al alloy powder were added, and a wear-resistant test piece of a particle dispersion strengthened alloy was manufactured in the same manner as described above.

第3図に、FeAl2金属間化合物粉末を添加して得ら
れた粒子分散強化型合金の耐摩耗試験片の関着の顕微鏡
写真を示す。
FIG. 3 shows a microscopic photograph of the adhesion of a wear-resistant test piece of a particle dispersion strengthened alloy obtained by adding FeAl2 intermetallic compound powder.

尚、他のF’e Al 2、F”e2Al、、 FeA
l、、Fe−Al合金粉末を添加して得られた粒子分散
強化型合金試験片の顕微鏡写真は、何れも第3図の写真
と同じ様な組織である為、ここでは省略する。
In addition, other F'e Al 2, F"e2Al,, FeA
Microscopic photographs of particle dispersion strengthened alloy specimens obtained by adding Fe-Al alloy powder are omitted here because they all have the same structure as the photograph in Figure 3.

(実施例3) 実施例1及び2で用いたFeAl、、Fe2Al@、F
eAl3、F”e−Al金属間化合物粉末を、マトリッ
クスとしてのAl −8wt%Si−3wt%Cu−0
.9wt%Mg及びAl−5wt%Ni−4wtチMg
−2wtチMnの溶湯に投入添加して攪伴混合後、ダイ
カストマシンに給湯し、成形することにより、粒子分散
強化型合金の摩耗試験片を製造した。
(Example 3) FeAl, , Fe2Al@, F used in Examples 1 and 2
eAl3, F”e-Al intermetallic compound powder as matrix Al-8wt%Si-3wt%Cu-0
.. 9wt%Mg and Al-5wt%Ni-4wtMg
A wear test piece of a particle dispersion-strengthened alloy was produced by adding the mixture to a -2wt-Mn molten metal and stirring and mixing, then feeding the melt into a die-casting machine and molding it.

比較例として、Al−8wtチSi−3wt%α−Q、
9wt%Mg。
As a comparative example, Al-8wt Si-3wt% α-Q,
9wt%Mg.

Al −15wt% −Si−4wt%Cu、Al −
19wt%Si−17wt%鳩合金を用いた。
Al-15wt%-Si-4wt%Cu, Al-
A 19 wt% Si-17 wt% Pigeon alloy was used.

摩耗試験は、大越式摩耗試験装置を用いて行なった。The wear test was conducted using an Okoshi type wear test device.

試験条件は。What are the test conditions?

無潤滑、最終荷重2.1#、摩耗距離100 mで滑り
速度0.94.1.96.2.86.4.36rn/s
ecの4段階の摩耗痕幅を測定し、その値から比摩耗量
を求めた。
No lubrication, final load 2.1#, wear distance 100 m, sliding speed 0.94.1.96.2.86.4.36rn/s
The width of the wear scar in four stages of ec was measured, and the specific wear amount was determined from the measured value.

試験結果を第4図、第5図及び第6図に示す。The test results are shown in FIGS. 4, 5, and 6.

第4図は、Al−8wt%Si−3wt%Cu −0.
9wt%Mgのマトリックス中にFeAl、、Fe、A
lI、 FeAl、金属間化合物粉末を分散させた粒子
分散強化型合金摩耗試験片の摩耗試験結果を示したもの
である。
FIG. 4 shows Al-8wt%Si-3wt%Cu-0.
FeAl, , Fe, A in a matrix of 9 wt% Mg
This figure shows the wear test results of a particle dispersion-strengthened alloy wear test piece in which lI, FeAl, and intermetallic compound powder are dispersed.

尚、金属間化合物粉末の添加量が10wt%の時の粒子
分散強化型合金の結果について示した。
The results for the particle dispersion strengthened alloy when the amount of intermetallic compound powder added was 10 wt% are shown.

これは、上記粉末の充填率が4wt%から15W!%ま
では何れの粒子分散強化型合金もほぼ同程度の耐摩耗性
を示し、16Wtq6から50wt%まででは耐摩耗性
は更に向上した為である。
This means that the filling rate of the above powder is 4wt% to 15W! This is because all particle dispersion strengthened alloys exhibited almost the same level of wear resistance up to 16Wtq6 to 50wt%, and the wear resistance was further improved from 16Wtq6 to 50wt%.

又、比較例としては、Al−8wt%Si−3wt%C
u −Q、9wt%Mg、 Al −15wt%Si−
4wt%Cu 、 )kl −19wt% Si −7
w1%Cu合金の耐摩耗試験結果を示す。
Also, as a comparative example, Al-8wt%Si-3wt%C
u-Q, 9wt%Mg, Al-15wt%Si-
4wt%Cu, )kl -19wt%Si-7
The results of the wear resistance test of w1% Cu alloy are shown.

FeAl、、Fe、Al、、)”e Al 、金属間化
合物粉末を前記マトリックス中に分散させることにより
、何れの粒子分散強化型合金も比較例より大幅に耐摩耗
性が向上している。
By dispersing the intermetallic compound powder in the matrix, the wear resistance of all particle dispersion strengthened alloys is significantly improved compared to the comparative example.

第5図は、Al−19wt% Si−7wt%Cts 
−0.9wt%Mgのマトリックス中に、 F’eAl
、、F6A1s 、FeAl、金属間化合物粉末を分散
させた粒子分散強化型合金の摩耗試験結果を示したもの
である。
Figure 5 shows Al-19wt%Si-7wt%Cts
- F'eAl in a matrix of 0.9 wt% Mg
, , shows the wear test results of a particle dispersion strengthened alloy in which F6A1s, FeAl, and intermetallic compound powder are dispersed.

尚、金属間化合物粉末の添加量が10 wt%の粒子分
散1化型合金のみの試験結果を示した。
The test results are shown for only the particle-dispersed type alloy in which the amount of intermetallic compound powder added is 10 wt%.

これは、上記粉末の充填率が4wt%から15 wt%
まででは何れの粒子分散強化型合金もほぼ同程度の耐摩
耗性を示し、16 wt*から5owt%まででは耐摩
耗性が更に向上した為である。
This means that the filling rate of the powder is from 4 wt% to 15 wt%.
This is because all the particle dispersion strengthened alloys exhibited almost the same level of wear resistance up to this point, and the wear resistance was further improved from 16 wt* to 5 wt%.

又、比較例として、Al −8wt%Si−3wt%C
u−0.9wt%Mg 、 Al −15wt% Si
 −4v/L%Cu、 Al −19wt%Si −7
wt%Cu合金の摩耗試験結果を示した。
Also, as a comparative example, Al-8wt%Si-3wt%C
u-0.9wt%Mg, Al-15wt%Si
-4v/L%Cu, Al -19wt%Si -7
The wear test results of wt% Cu alloy are shown.

FeAl2、Fe2Al、、F’eAl B金属間化合
物粉末を上記マトリックス中(こ分散させることにより
何れの粒子分散強化型合金も比較例より大幅に耐摩耗性
が向上している。
By dispersing FeAl2, Fe2Al, F'eAl B intermetallic compound powder in the matrix, the wear resistance of all particle dispersion strengthened alloys is significantly improved compared to the comparative example.

第6図は、Al−5wt%Ni −4wt% Mg −
2wtz r面合金マトリックス中に、FeAl、、F
 eAl hFeAl3金属間化合物粉末を分散させた
粒子分散強化型合金の摩耗試験結果を示したものである
Figure 6 shows Al-5wt%Ni-4wt%Mg-
In the 2wtz r-plane alloy matrix, FeAl, , F
This figure shows the results of a wear test of a particle dispersion strengthened alloy in which eAl hFeAl3 intermetallic compound powder is dispersed.

尚、金属間化合物粉末の添加量がl0Wtlの粒子分散
強化型合金のみの試験結果を示した。
Note that the test results are shown only for particle dispersion strengthened alloys in which the amount of intermetallic compound powder added is 10 Wtl.

これは、上記粉末の充填率がOuから15 wt%まで
は何れの粒子分散強化型合金もほぼ同程度の耐゛摩耗性
を示し、16wt%から11まででは耐摩耗性力S更に
向上した為である。
This is because all the particle dispersion strengthened alloys exhibited almost the same level of wear resistance when the powder filling rate increased from Ou to 15 wt%, and the wear resistance S further improved from 16 wt% to 11. It is.

FeAl、、Fe2A! 、 、 FeA1 、金属間
化合物粉末を上記マトリックス中に分散させることによ
り、何れの粒子分散強化型合金も比較例より大幅に耐摩
耗性が向上している。
FeAl,,Fe2A! , , FeA1, by dispersing the intermetallic compound powder in the matrix, the wear resistance of each of the particle dispersion strengthened alloys is significantly improved compared to the comparative example.

〔発明の効果〕〔Effect of the invention〕

以上説明したように1本発明に係る粒子分散強化型合金
によれば、高硬度のF”eAl 2、)”e2Als、
又はF’eAl3の金属間化合物粉末もしくは前記金属
間化合物を含む合金粉末が、優れた鋳造性及び機械的性
質を有するAl −Si −Cu −Mg系合金よりな
るマl−IJフックス中均一に分散されていることによ
って耐摩耗性を著しく向上できる効果がある。
As explained above, according to the particle dispersion strengthened alloy according to the present invention, high hardness F"eAl2,)"e2Als,
Alternatively, an intermetallic compound powder of F'eAl3 or an alloy powder containing the intermetallic compound is uniformly dispersed in a Maru-IJ hook made of an Al-Si-Cu-Mg alloy having excellent castability and mechanical properties. This has the effect of significantly improving wear resistance.

そして、 Al −Ni −Mg −Mn系合金をマト
リックスとすることによって、当該合金が有する優れた
強靭性等の機械的性質や鋳造性により有効に耐摩耗性を
向上できる。
By using an Al-Ni-Mg-Mn alloy as a matrix, the wear resistance can be effectively improved due to the excellent mechanical properties such as toughness and castability of the alloy.

又、前記強化粉末は安価であり、この強化粉末を用いる
ことから耐摩耗性が要求される製品のコストを低減でき
、もってA1合金の用途を拡大できる効果がある。
Furthermore, the reinforcing powder is inexpensive, and the use of this reinforcing powder reduces the cost of products that require wear resistance, which has the effect of expanding the uses of the A1 alloy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は1本発明に係る粒子分散強化型合金の製造に用
いられる攪伴混合装置の一例を示した一部断面図、第2
図はAl −Ni −Mg−Mn系合金のマトリックス
中に、F”e Al 2金属間化合物粉末を添加して得
られた粒子分散強化型合金の金属組織を示す図面代用顕
微鏡写真(50倍)、第3図ハA47Si−α゛、Mg
系合金のマトリックス中lこ、Fe Al 2金属間化
合物粉末を添加して得られた粒子分散強化型合金の金属
組織を示す図面代用顕微鏡写真(50倍)、第4図、第
5図、第6図は粒子分散強化型合金の各試験片の耐摩耗
実験結果における各試験片のFC25相手材に対する滑
り速度と比摩耗量との関係を夫々示した各グラフである
1 is a partial cross-sectional view showing an example of a stirring mixing device used for manufacturing a particle dispersion strengthened alloy according to the present invention;
The figure is a micrograph (50x) showing the metal structure of a particle dispersion-strengthened alloy obtained by adding F”e Al 2 intermetallic compound powder to the matrix of an Al-Ni-Mg-Mn alloy. , Fig. 3 C A47Si-α゛, Mg
Micrographs substituted for drawings (50x) showing the metallographic structure of a particle dispersion strengthened alloy obtained by adding FeAl2 intermetallic compound powder to the matrix of the alloy, Fig. 4, Fig. 5, Fig. Figure 6 is a graph showing the relationship between the sliding speed and specific wear amount of each test piece relative to the FC25 mating material in the results of the wear resistance experiment of each test piece of the particle dispersion strengthened alloy.

Claims (5)

【特許請求の範囲】[Claims] (1)、Al−Si−Cu−Mg系合金をマトリックス
とし、該マトリックスにFeAl_2、Fe_2Al_
5又はFeAl_3の金属間化合物粉末もしくは前記金
属間化合物を含むAl−Fe系合金粉末のうちから選ば
れる1種又は2種以上の強化粉末を均一に分散させたこ
とを特徴とする粒子分散強化型合金。
(1), Al-Si-Cu-Mg alloy is used as a matrix, FeAl_2, Fe_2Al_
Particle dispersion strengthening type characterized by uniformly dispersing one or more types of reinforcing powder selected from intermetallic compound powder of 5 or FeAl_3 or Al-Fe alloy powder containing the above-mentioned intermetallic compound. alloy.
(2)、Al−Ni−Mg−Mn系合金をマトリックス
としたことを特徴とする請求項1記載の粒子分散強化型
合金。
(2) The particle dispersion strengthened alloy according to claim 1, characterized in that the matrix is an Al-Ni-Mg-Mn alloy.
(3)、前記マトリックスとしてのAl−Si−Cu−
Mg系合金が、Al−4〜24wt%Si−0.8〜9
wt%Cu−0.15〜5wt%Mgであり、Al−F
e系合金粉末がAl−30〜60wt%Fe粉末である
特許請求の範囲第1項記載の粒子分散強化型合金。
(3), Al-Si-Cu- as the matrix
Mg-based alloy is Al-4~24wt%Si-0.8~9
wt%Cu-0.15-5wt%Mg, Al-F
The particle dispersion strengthened alloy according to claim 1, wherein the e-based alloy powder is Al-30 to 60 wt% Fe powder.
(4)、前記マトリックスとしてのAl−Ni−Mg−
Mn系合金がA1−1〜7wt%Ni−1〜8wt%M
g−0.5〜5wt%Mnであり、Al−Fe系合金粉
末がAl−30〜60wt%Fe粉末である特許請求の
範囲第2項記載の粒子分散強化型合金。
(4), Al-Ni-Mg- as the matrix
Mn-based alloy is A1-1~7wt%Ni-1~8wt%M
3. The particle dispersion strengthened alloy according to claim 2, wherein the Al-Fe based alloy powder is Al-30 to 60 wt% Fe powder.
(5)、強化粉末の添加量が4〜50wt%の範囲であ
る特許請求の範囲第1項、又は第2項記載の粒子分散強
化型合金。
(5) The particle dispersion strengthened alloy according to claim 1 or 2, wherein the amount of reinforcing powder added is in the range of 4 to 50 wt%.
JP26890188A 1988-10-24 1988-10-24 Oxide dispersion reinforced alloy Granted JPH02115341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26890188A JPH02115341A (en) 1988-10-24 1988-10-24 Oxide dispersion reinforced alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26890188A JPH02115341A (en) 1988-10-24 1988-10-24 Oxide dispersion reinforced alloy

Publications (2)

Publication Number Publication Date
JPH02115341A true JPH02115341A (en) 1990-04-27
JPH0575817B2 JPH0575817B2 (en) 1993-10-21

Family

ID=17464844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26890188A Granted JPH02115341A (en) 1988-10-24 1988-10-24 Oxide dispersion reinforced alloy

Country Status (1)

Country Link
JP (1) JPH02115341A (en)

Also Published As

Publication number Publication date
JPH0575817B2 (en) 1993-10-21

Similar Documents

Publication Publication Date Title
US4383970A (en) Process for preparation of graphite-containing aluminum alloys
Hu et al. Solid solution strengthening mechanism in high pressure die casting Al–Ce–Mg alloys
JPS62146201A (en) Intermetallic compound for application of mechanical alloying and production of intermetallic compound type precursor alloy
EP0567284A2 (en) Aluminium-base metal matrix composite
JPH08232029A (en) Nickel-base grain dispersed type sintered copper alloy and its production
JPS62146202A (en) Intermetallic compound for application of mechanical alloying and production of intermetallic compound type precursor alloy
US20070264149A1 (en) Reinforced aluminum alloy and its process of manufacture
JPH07224304A (en) Production of boron-containing aluminum alloy
CN104878250B (en) Including the high resiliency aluminium alloy of titanium compound and for producing its method
JPS63140059A (en) High-strength aluminum alloy
EP0171798B1 (en) High strength material produced by consolidation of rapidly solidified aluminum alloy particulates
US4906531A (en) Alloys strengthened by dispersion of particles of a metal and an intermetallic compound and a process for producing such alloys
JPH02115341A (en) Oxide dispersion reinforced alloy
JP3112452B2 (en) Method for modifying microstructure of master alloy, eutectic and hypoeutectic aluminum-silicon casting alloy, and method for manufacturing master alloy
US4432936A (en) Method for adding insoluble material to a liquid or partially liquid metal
JPH01246341A (en) Grain dispersion-type alloy and its manufacture
JP2010043297A (en) Method for producing ceramic-particle-reinforced aluminum composite material
JP2609107B2 (en) Intermetallic compound particle dispersion strengthened alloy and method for producing the same
JP2646212B2 (en) Intermetallic compound particle dispersion strengthened alloy and method for producing the same
JPH06192780A (en) High heat and wear resistance aluminum alloy and powder thereof
JPH0681068A (en) Method for casting heat resistant mg alloy
JPS60125345A (en) Aluminum alloy having high heat resistance and wear resistance and manufacture thereof
JP2554066B2 (en) Intermetallic compound particle dispersion-reinforced die-cast composite material and method for producing the same
JP2019203177A (en) Alloy member and method for producing alloy member
JPH01246340A (en) Grain dispersion-type alloy and its manufacture