JPH02115020A - Removing agent for lower aldehyde - Google Patents

Removing agent for lower aldehyde

Info

Publication number
JPH02115020A
JPH02115020A JP63266632A JP26663288A JPH02115020A JP H02115020 A JPH02115020 A JP H02115020A JP 63266632 A JP63266632 A JP 63266632A JP 26663288 A JP26663288 A JP 26663288A JP H02115020 A JPH02115020 A JP H02115020A
Authority
JP
Japan
Prior art keywords
aromatic amino
amino acid
acetaldehyde
porous carrier
remover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63266632A
Other languages
Japanese (ja)
Other versions
JPH0439368B2 (en
Inventor
Katsuji Yamashita
勝次 山下
Kazuhiro Fukumoto
和広 福本
Masaharu Sugiura
杉浦 正治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP63266632A priority Critical patent/JPH02115020A/en
Publication of JPH02115020A publication Critical patent/JPH02115020A/en
Publication of JPH0439368B2 publication Critical patent/JPH0439368B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

PURPOSE:To remove lower aldehydes rapidly and efficiently by preparing the removing agent by mixing with at least either aromatic amino acid or its salt as an effective component or by depositing the aforesaid effective component on a porous carrier. CONSTITUTION:A removing agent for lower aldehydes is prepared by mixing at least either aromatic amino acid or its salt as an effective component. In this embodiment, although the aromatic amino acid or its salt can be used in as-powdered state, in order to enhance its effect, it may be brought into an aqueous solution of optional concentration or the solution dissolved in an organic solvent or deposited on a porous carrier. Industrially, the aromatic amino acid, its salt and the porous carrier are mixed together by a mixer and pulverized by a crusher after drying for preparation of a powdery or granular removing agent.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は低級アルデヒド類の除去剤に関する。[Detailed description of the invention] [Industrial application field 1 The present invention relates to an agent for removing lower aldehydes.

詳しくは、ホルムアルデヒド、アセトアルデヒド等の低
級アルデヒド類を主に含有する臭気性ガスの浄化に有効
な除去剤に係る。
Specifically, the present invention relates to a removing agent effective for purifying odorous gases mainly containing lower aldehydes such as formaldehyde and acetaldehyde.

ホルムアルデヒド、アセトアルデヒド等の低級?ルデヒ
ド類は、特異な刺激臭を持つ有害なガスである。特にア
セトアルデヒドは、R臭8物質の1つに挙げられており
空気中にO,o5ppmという非常に低い濃度で存在し
ていてもその臭気が感じられる。さらに5ppmPi!
度の11度になると目、喉への刺激が強く、長時間接触
すると炎症をおこし健康上からも好ましくない。
Lower grades such as formaldehyde and acetaldehyde? Rudehydes are harmful gases with a distinctive pungent odor. In particular, acetaldehyde is listed as one of the eight R odor substances, and its odor can be felt even when it is present in the air at a very low concentration of 5 ppm. Another 5ppmPi!
When the temperature reaches 11 degrees, it is highly irritating to the eyes and throat, and prolonged contact can cause inflammation, which is not good for health.

これらの低級アルデヒド類の発生源としては、低級アル
デヒド類およびその誘導体の製造工場、低級アルデヒド
類を用いたl1llff例えばポリアセタール樹脂の製
造および成型工場、低級アルデヒド類を用いた接着剤(
フェノール系接着剤)の製造および使用時、特(合板の
製造工場、さらに生活環境においては、煙草の煙、人体
、し尿、冷蔵庫内、自vJII[の排気ガスなどから発
生している。
The sources of these lower aldehydes include factories that manufacture lower aldehydes and their derivatives, factories that use lower aldehydes, such as polyacetal resin manufacturing and molding factories, and adhesives that use lower aldehydes (
During the manufacture and use of phenolic adhesives, especially in plywood manufacturing factories and in the living environment, they are emitted from cigarette smoke, the human body, human waste, refrigerators, and exhaust gases from automobiles.

前記の工場においては、比較的高濃度の低級アルデヒド
類が発生するが、生活環境では数ppm以下の比較的低
い濃度で発生している。
In the factories mentioned above, lower aldehydes are generated at relatively high concentrations, but in the living environment they are generated at relatively low concentrations of several ppm or less.

[従来の技術J 従来このような低級アルデヒド類を除去する方法として
は、1lIIlfの高い工場では白金族元素、銅族元素
、ランタノイド元素、アクチノイド元素をアルミナ等の
担体に担持した触媒を用いる方法が知られている。また
生活環境での除去は、活性炭やシリカゲルなどで吸着除
去する方法がとられている。
[Conventional Technology J] Conventionally, in factories where 1lIIlf is high, a method using a catalyst in which platinum group elements, copper group elements, lanthanide elements, or actinide elements are supported on a carrier such as alumina has been used to remove such lower aldehydes. Are known. For removal in the living environment, methods of adsorption and removal using activated carbon, silica gel, etc. are used.

しかしながら、前者の触媒を用いて除去する方法では、
触媒が高価なうえ、接触酸化の起きる温度が200℃以
−りという高温であり、取扱上でも不便である。また後
者の生活環境における活性炭やシリカゲルなどで吸着除
去する方法は、吸着剤の細孔構造内に低級アルデヒド類
を物理吸着させて除去しようとするものである。この場
合吸着剤の種類によっては低級アルデヒド類を全く吸着
できないしのもあり、また、吸着できるものでも吸着剤
の能力には限界があり、飽和吸着状態になると低級アル
デヒド類を吸着できず、逆に周囲の空気中に放出され除
去されない場合もある。さらに化学薬品でアルデヒドと
反応させて除去する方法がある。例えばフェニルヒドラ
ジン、2.4−ジニトロフェニルヒドラジン等の塩は低
級アルデヒド類の捕集および定量に広く使われる物質で
あり、特に2,4−ジニトロフェニルヒドラジンの塩酸
塩は、悪臭防止法にいうアセトアルデヒドの測定に使用
され、空気中のアセトアルデヒドを化学的に除去するの
に非常に有効であるが強酸の1酸や硫酸などに溶解する
がアルデヒドの除去剤としての使用するには、例えば塩
酸水溶液としな番)ればならず、一般の除去剤としての
使用は制約される。
However, in the former method of removal using a catalyst,
The catalyst is expensive, and the temperature at which catalytic oxidation occurs is as high as 200°C or higher, making it inconvenient to handle. The latter method of adsorption removal using activated carbon, silica gel, etc. in the living environment attempts to remove lower aldehydes by physically adsorbing them within the pore structure of the adsorbent. In this case, depending on the type of adsorbent, it may not be possible to adsorb lower aldehydes at all, and even if it can be adsorbed, there is a limit to the ability of the adsorbent, and if it reaches a saturated adsorption state, it will not be able to adsorb lower aldehydes, and vice versa. may be released into the surrounding air and not be removed. Another method is to remove it by reacting it with aldehyde using chemicals. For example, salts such as phenylhydrazine and 2,4-dinitrophenylhydrazine are substances widely used for collecting and quantifying lower aldehydes, and in particular, 2,4-dinitrophenylhydrazine hydrochloride is acetaldehyde as defined in the Offensive Odor Prevention Act. It is used to measure acetaldehyde in the air and is very effective in chemically removing acetaldehyde from the air, but it dissolves in strong acids such as 1 acid and sulfuric acid. However, its use as a general removal agent is restricted.

その他従来から低級アルデヒド類と反応する物質として
使用されてきた芳香族アミン類等は、ガン誘因物質であ
るなど人体に対する影響が懸念され、また生活空間で使
用ブるには前記物質の持つ臭気が、人体に対し嫌悪感を
与えることが考えられることから好ましくない。
Other aromatic amines, which have traditionally been used as substances that react with lower aldehydes, have concerns about their effects on the human body, such as being cancer-causing substances, and the odor of these substances makes them unsuitable for use in living spaces. , which is undesirable because it may cause a feeling of disgust to the human body.

特開昭60−129054@公報には、アミノ酸やその
塩類を有効成分とした鋭奥・消臭剤の開示がある。これ
は食品分野への応用を意図したもので、その対象として
いる臭気も、アンモニア、トリメチルアミンなどの塩基
性臭、あるいは、硫化水素、メチルメルカプタンなどの
硫化物系の臭気である。その使用形態は、食品への添加
を中心とし有機溶剤、水などで稀釈して使用する。
JP-A-60-129054@ discloses a sharp odor deodorant containing amino acids and their salts as active ingredients. This is intended for application in the food field, and the targeted odors are basic odors such as ammonia and trimethylamine, and sulfide odors such as hydrogen sulfide and methyl mercaptan. It is mainly used as an addition to food, diluting it with organic solvents, water, etc.

[発明が解決しようとする課題] 本発明は、前記の事情に鑑みてなされたもので、低級ア
ルデヒド類に対して迅速かつ優れた除去効果を有し、無
臭でしかも活性炭のように物理吸着作用により比較的少
量で飽和吸着状態に達する物でなく、しかも人体に悪形
費を与えない低級アルデヒド類の除去剤を提供すること
を目的とする。
[Problems to be Solved by the Invention] The present invention has been made in view of the above circumstances, and has a rapid and excellent removal effect on lower aldehydes, is odorless, and has a physical adsorption effect similar to activated carbon. It is an object of the present invention to provide a lower aldehyde remover which does not reach a saturated adsorption state in a relatively small amount and which does not cause adverse effects on the human body.

[課題を解決するための手段〕 本発明の低級アルデヒド類の除去剤は、芳香族アミノ酸
、および芳香族アミノ酸の塩類の少なくとも一柿を有効
成分と】る。
[Means for Solving the Problems] The lower aldehyde removing agent of the present invention contains at least one persimmon of an aromatic amino acid and a salt of an aromatic amino acid as an active ingredient.

有効成分の芳香族アミノ酸、および芳香族アミノ酸の塩
類として番よ、o−1m−p−アミノ安息香酸、p−ア
ミノ法すチル耐、m−アミノサリチル酸などの芳爵族ア
ミノ酸およびぞれらのナトリウム塩、カリウム塩などの
金属塩類、または硫M 1m、硝酸塩、塩酸塩などの無
機塩類などが挙げられる1、 ′A芳香族アミノ酸芳香族アミノ酸の塩類を低級アルデ
ヒド類の除去剤に使用するには、その粉末のままで使用
することができるが、その効果を高めるため任意の濃度
の水溶液または有機溶媒に溶かした溶液にするか、また
は多孔性担体に担持さ「て用いることができる。
Active ingredients include aromatic amino acids and salts of aromatic amino acids such as o-1m-p-aminobenzoic acid, p-aminomethane, m-aminosalicylic acid, and their respective aromatic amino acids. Examples include metal salts such as sodium salts and potassium salts, and inorganic salts such as sulfur M 1m, nitrates, and hydrochlorides. can be used as a powder, but to enhance its effectiveness, it can be dissolved in an aqueous or organic solvent of any concentration, or supported on a porous carrier.

多孔性担体としては、セピオライト、パリゴルスカイト
、活性炭、ゼオライト、活性炭素繊維、セビオライト混
合紙、シリカゲル、活性白土、アルミナ、バーミキュラ
イト、ケイソウ上等の無機質多孔性担体のほか、パルプ
、繊維、布、高分子多孔体などの有機質多孔性担体など
が使用できる。
Examples of porous carriers include inorganic porous carriers such as sepiolite, palygorskite, activated carbon, zeolite, activated carbon fiber, Seviolite mixed paper, silica gel, activated clay, alumina, vermiculite, and diatomaceous materials, as well as pulp, fibers, cloth, and polymers. Organic porous carriers such as porous bodies can be used.

その形状は、シート状、ハニカム状、粉末状、粒状、顆
粒状、根状のいずれでもよい。
Its shape may be sheet-like, honeycomb-like, powder-like, granular, granular, or root-like.

前記の多孔性担体は、それ自書低級アルデヒド類を吸着
する賽力は小さいが、前記の芳香族アミノ酸類を担持す
ると低級アルデヒド類の除去能力が向上する。特にセピ
オライ1〜、パリゴルスカイト、活性炭、ゼオライトに
芳香族アミノ酸類を担持すると低級アルデヒド類の除去
性が著しく向上する。
The porous carrier itself has a small ability to adsorb lower aldehydes, but when the aromatic amino acids are supported, the ability to remove lower aldehydes is improved. In particular, when aromatic amino acids are supported on sepiolyte 1~, palygorskite, activated carbon, or zeolite, the ability to remove lower aldehydes is significantly improved.

芳香族アミノ酸、その塩類を前記多孔性担体に担持する
方法は特に問わないが、好ましくは芳香族アミノ酸また
はその塩類を、微粉砕して多孔性り0体の微粉末に混合
して成形して担持づるか、水またはエタノール薯の可溶
性溶媒に溶解し、その溶液を多孔性担体に含浸させた後
溶媒を蒸散させて担持してもよい。
The method of supporting the aromatic amino acid or its salts on the porous carrier is not particularly limited, but preferably the aromatic amino acid or its salts are pulverized and mixed into a porous fine powder and then molded. Alternatively, it may be supported by dissolving it in a soluble solvent such as water or ethanol, impregnating the porous carrier with the solution, and then evaporating the solvent.

またこの低級アルデヒド類の除去剤を工業的に製造する
方法としては、例えば芳香族アミノ酸およびその塩類と
多孔性担体とを、ヘンシェルミキサー、ニーダ、土練機
、デイスパーミル等の混合様を用いて混合する。乾燥後
、ヘンシェルミキサ、ハンマーミルなどの粉砕機で粉砕
して、粉末もしくは、顆粒状の除去剤とすることができ
る。
In addition, as a method for industrially producing this lower aldehyde remover, for example, aromatic amino acids and their salts and a porous carrier are mixed using a Henschel mixer, kneader, kneader, disper mill, etc. do. After drying, it can be pulverized with a pulverizer such as a Henschel mixer or a hammer mill to form a powder or granular removal agent.

またこの除去剤は、用途に適した形状に成形することも
できる。例えば前記の粉末に水を加えて練りこんだ状態
のものを、押出し機で押出し、そのまま乾燥したもの、
または一定間隔に切断して円筒状の錠剤に成形したり、
またはマルメライザで球状にしたり、ハニカム形状に押
出し成形してもよい。
The remover can also be shaped into a shape suitable for the intended use. For example, the above powder is kneaded with water, extruded with an extruder, and dried as is;
Or cut it at regular intervals and form it into cylindrical tablets,
Alternatively, it may be made into spheres using a marmerizer or extruded into a honeycomb shape.

さらに前記の除去剤に強度を付与でるためにポリビニー
ルアルコール、CMCなどの有機系粘結剤、シリカゲル
、ケイソウ上等の無機系粘結剤を添加して成形してもよ
い。
Furthermore, in order to impart strength to the above-mentioned removing agent, an organic binder such as polyvinyl alcohol or CMC, or an inorganic binder such as silica gel or diatomaceous material may be added and molded.

多孔性担体へ芳香族アミノ酸およびその塩類を担持づる
n3は、例えば担体に対し1.0〜90重量%の範囲が
好ましい。担持閤が1.0重量%未満であると低級アル
デヒド類の除去効果が小さく、904′!吊%を超える
と担体への分散性が悪くなり低級アルデヒド類の除去性
も悪くなり経済的で無い、、なかでも5〜80巾吊%担
持づるのがより好ましい。
The amount of n3 that supports aromatic amino acids and their salts on the porous carrier is preferably in the range of 1.0 to 90% by weight based on the carrier. If the supported weight is less than 1.0% by weight, the effect of removing lower aldehydes will be small, and 904'! If it exceeds 50%, the dispersibility into the carrier will be poor, and the removal of lower aldehydes will also be poor, making it uneconomical.Among these, it is more preferable to support the carrier at 5 to 80%.

[発明の作用および効果] 本発明は低級アルi′ヒト類の除去剤の有効成分として
芳香族アミノ酸、およびその塩類を用いる。
[Operations and Effects of the Invention] The present invention uses an aromatic amino acid and its salts as an active ingredient of a lower al i' hominoid remover.

この芳香族アミノ酸およびその塩類は、低級アルデヒド
類を除去することができる。そして、その水溶液や多孔
性担体に担持させて除去剤とづることができる。特に、
多孔性担体に担持させると極めて効率よく低級アルデヒ
ド類を除去することができる。多孔性担体に担持させる
と芳香族アミノ酸と低級アルデヒド類との接触する面積
を広げることになり吸養能を高めることがCきると考え
られるが、その作用のみではない。
This aromatic amino acid and its salts can remove lower aldehydes. Then, it can be supported on an aqueous solution or a porous carrier to form a removing agent. especially,
When supported on a porous carrier, lower aldehydes can be removed extremely efficiently. It is thought that when supported on a porous carrier, the contact area between the aromatic amino acid and the lower aldehyde is increased, thereby increasing the adsorption capacity, but this is not the only effect.

この作用In構については、明確には分かつていないが
多孔性担体などに芳香族アミノ酸類を担持させるど分子
レベルの共役系が変化し、カルボキシル基、アミノ基の
電子が局在化してそこにアルデヒドがくるとアミノ基と
アルデヒド基との反応が促進されると考えられる。また
多孔性担体の種類にJ:っても、その除去性能を異にす
ることからして接触面積の増加に基づくものだけではな
い。
The mechanism of this action has not been clearly understood, but when aromatic amino acids are supported on a porous carrier, the conjugation system at the molecular level changes, and the electrons of the carboxyl group and amino group become localized. It is thought that the presence of aldehyde promotes the reaction between the amino group and the aldehyde group. Moreover, since the removal performance differs depending on the type of porous carrier, it is not only based on an increase in the contact area.

また、臭気性ガスの教戒分を吸着さV8場合に116い
ても芳香族アミノ酸類を担持した多孔性IH1体は、イ
の吸着性能を低下させることなくアルデヒド以外のガス
を除去することができる。例えば、活性炭では炭化水素
類、硫化物類の臭気性ガス状物質を、セビオライトの場
合では、アンモニノノ、イソ吉へTM、醋酸、トリメチ
ルアミン、ピリジン笠の臭気性ガス状物質をよく吸着す
る。
In addition, even if odorous gases are adsorbed, the porous IH1 body carrying aromatic amino acids can remove gases other than aldehydes without reducing the adsorption performance of V8. For example, activated carbon adsorbs odorous gaseous substances such as hydrocarbons and sulfides, and Seviolite adsorbs odorous gaseous substances such as ammoninono, isokichihe TM, acetic acid, trimethylamine, and pyridine.

[実施例] 以下実施例により具体的に説明する。[Example] This will be explained in detail below using Examples.

実施例1 〇−1m −p−アミノ安息香酸、およびpアミノサリ
チル酸のそれぞれ1gを各ビーカーに秤量し、これら各
ビーカーにそれぞれにセビオライト9Qを加えてよ(か
きまぜた。さらにこれら各ビーカーにエチルアルコール
を2QmJ加えて、超音波洗浄器を用いて約5分間攪拌
混合した。次に各ビーカーの口を塩化ビニリデンフィル
ムで開じ70℃で約30分間加熱した。その後、塩化ビ
ニリデンフィルムを取り除き、各々100℃で加熱乾燥
し、乳鉢で粉砕して4種類の粉末状の低級アルデヒド除
去剤No、1.2.3.4を作製した。
Example 1 〇-1m Weigh 1 g each of p-aminobenzoic acid and p-aminosalicylic acid into each beaker, and add Seviolite 9Q to each beaker (stir).Additionally, add ethyl alcohol to each beaker. 2QmJ of was added and mixed by stirring for about 5 minutes using an ultrasonic cleaner.Next, the mouth of each beaker was opened with a vinylidene chloride film and heated at 70°C for about 30 minutes.Then, the vinylidene chloride film was removed, and each The mixture was dried by heating at 100° C. and ground in a mortar to produce four types of powdered lower aldehyde removers No. 1, 2, 3, and 4.

さらに、0−アミノ安息香酸す1−リウム19をビーカ
ーに秤量し、これにセビオライト9qを加えて良くかき
まぜた。次に脱イオン水40mAを加えて、超音波洗浄
器で約5分間攪拌混合した。
Furthermore, 1-lium 0-aminobenzoate 19 was weighed into a beaker, 9q of Seviolite was added thereto, and the mixture was stirred well. Next, 40 mA of deionized water was added, and the mixture was stirred and mixed using an ultrasonic cleaner for about 5 minutes.

次いでビーカーの口を塩化ビニリデンフィルムで閉じ7
0℃で約30分間加熱した。その後、塩化ビニリデンフ
ィルムを取除き、100℃で加熱乾燥し、乳鉢で粉砕し
て粉末の低級アルデヒド除去剤N015を作製した。
Next, close the mouth of the beaker with vinylidene chloride film7.
Heated at 0°C for about 30 minutes. Thereafter, the vinylidene chloride film was removed, dried by heating at 100° C., and ground in a mortar to produce powdered lower aldehyde removing agent N015.

得られた#J記5種類の各低級アルデヒド除去剤の評価
は、5fJ容吊のガス非透過性の袋に除去剤と一定nの
アセトアルデヒドを空気とともに封入して所定時間後の
残留アルデヒド吊を測定して比較した。低級アルデヒド
除去剤(No、1〜5)をそれぞれ0.29(芳香族ア
ミノ酸の含有門は20m9である)秤量し、5p容吊の
ガス非透過性の袋に入れた。この袋に7セトアルデヒド
液1mIを水9muで希釈したアセトアルデヒド水溶液
10μmをドライ17−で気化させて5gの空気と共に
尋人して密封し、室温で4時間放置した後、袋中のアセ
トアルデヒドの濃度をガスクロマトグラフで測定した。
The evaluation of each of the five types of lower aldehyde removers obtained in #J was carried out by sealing the remover and a certain amount of acetaldehyde together with air in a gas-impermeable bag with a capacity of 5 fJ, and then removing the remaining aldehyde after a predetermined period of time. Measured and compared. Lower aldehyde removing agents (No. 1 to 5) were each weighed at 0.29 m (the content of aromatic amino acids was 20 m9) and placed in a gas-impermeable bag with a capacity of 5 p. Into this bag, 10 μm of acetaldehyde aqueous solution prepared by diluting 1 ml of 7 acetaldehyde solution with 9 μ of water was vaporized with Dry 17-, sealed with 5 g of air, and left at room temperature for 4 hours. was measured using a gas chromatograph.

ガスクロマトグラフの測定条件を第1kに示す。なお、
アセトアルデヒドの濃度は、39.91)pmのアセト
アルデヒドのボンベ標準ガスを用いてまず検量線を求め
この検量線から求めた。
Measurement conditions for the gas chromatograph are shown in section 1k. In addition,
The concentration of acetaldehyde was determined by first determining a calibration curve using a cylinder standard gas of acetaldehyde at 39.91) pm, and from this calibration curve.

アセトアルデヒドの残留′a度、除去率、低級ア第  
1 表 (以下余白) ルデヒド除去剤のアルデヒド吸着量を第2表に示す。除
去率は次の式により求めた。
Residual acetaldehyde degree, removal rate, lower acetaldehyde
Table 1 (blank below) Table 2 shows the amount of aldehyde adsorbed by the aldehyde remover. The removal rate was calculated using the following formula.

除去率−((ブランク濃度)−(除去剤を用いたものの
残留濃度))/(ブランク濃度)ブランク濃度は除去剤
を使用しないで同様の処理を(おこなった場合の残留濃
度であり146.Oppα1である。
Removal rate - ((blank concentration) - (residual concentration using a remover)) / (blank concentration) The blank concentration is the residual concentration when the same treatment is carried out without using a remover.146.Oppα1 It is.

比較例として芳香族アミノ酸を用いず多孔性担体のしビ
オライトのみの5の01.ヤシガラ活性炭のみのもの0
2としNo、1〜5と同様にアセトアルデヒドの除去試
験をおこなった。その結果を第2表に示した。
As a comparative example, 01.5 of No. 5, which uses only Shibiolite as a porous carrier without using aromatic amino acids. Only coconut shell activated carbon 0
As No. 2, an acetaldehyde removal test was conducted in the same manner as in Nos. 1 to 5. The results are shown in Table 2.

No、1〜4の芳香族アミノ酸はアセトアルデヒドの除
去率が90%以、Fあり、吸肴饋も多く6mg/g以上
あり、比較例の01〜C2の50%前後および3mq/
9m後に比べて層れている。
No. 1 to 4 aromatic amino acids have an acetaldehyde removal rate of 90% or more, F, and absorbency of 6 mg/g or more, around 50% of Comparative Examples 01 to C2 and 3 mq/g.
It is layered compared to after 9m.

N025のナトリウム塩の場合の除去率はやや低く71
.9%であるが、それでも比較例の1.5倍程麿の除去
率を示した。
The removal rate for the sodium salt of N025 is slightly lower71
.. Although the removal rate was 9%, it still showed a removal rate of 1.5 times that of the comparative example.

実施例2 この例は多孔性10体の種類を代えたもので多孔性用体
として、パリゴルスカイト、ヤシガラ活性炭、ゼオライ
ト13Xをそれぞれ9gずつビーカーに秤量し、0−ア
ミノ安息香酸を19ずつ加えて攪拌混合した。これにエ
チルアルコールを20m1加え、超音波洗浄器を用いて
約5分間攪拌混合し、次いでビーカーの口を塩化ビニリ
デンフィルムで閉じ70℃で30分間加熱した。その後
実施例1と同様に溶媒の除去および粉砕をおこなって、
除去剤N006〜8を作製した。
Example 2 In this example, the types of porous 10 bodies were changed.As the porous bodies, 9g each of palygorskite, coconut shell activated carbon, and zeolite 13X were weighed in a beaker, and 19g of 0-aminobenzoic acid was added and stirred. Mixed. 20 ml of ethyl alcohol was added thereto, stirred and mixed using an ultrasonic cleaner for about 5 minutes, and then the beaker was closed with a vinylidene chloride film and heated at 70° C. for 30 minutes. After that, the solvent was removed and pulverized in the same manner as in Example 1.
Removers N006-8 were prepared.

除去剤No、6〜8をそれぞれ0.2g(この内アミノ
酸の重量は20mっである)秤吊し、5p容fflのガ
ス非透過性の袋にいれた。以下実施例1と同様にアルデ
ヒドの除去性能試験をおこなった。結果を第3表に示す
。この場合のブランクの横磨t4255 ppmである
。比較例は本例で用いた多孔性担体のみを袋にいれ03
〜5とした。
0.2 g of each of removers No. 6 to 8 (of which the weight of amino acids is 20 m) was weighed and placed in a gas-impermeable bag of 5 p volume ffl. Thereafter, an aldehyde removal performance test was conducted in the same manner as in Example 1. The results are shown in Table 3. In this case, the horizontal polishing of the blank was 4255 ppm. In the comparative example, only the porous carrier used in this example was placed in a bag.
I gave it a rating of ~5.

この結果多孔性担体のみのC3〜5より0−アミノ安息
香酸を担持した多孔性担体(No、6〜8)は、除去性
能が優れている。特にパリゴルスカイトに0−アミノ安
j、it i aを担持したNo、6は除去率が94%
、吸着量10.9mg/gと高い値を示した。
As a result, the porous carriers carrying 0-aminobenzoic acid (Nos. 6 to 8) had better removal performance than C3 to 5, which were only porous carriers. In particular, No. 6, in which 0-aminoamine j,it i a was supported on palygorskite, had a removal rate of 94%.
, the adsorption amount was as high as 10.9 mg/g.

実施例3 予め“7し鉢で粉砕した0−アミノ安息ff1Mと35
0メツシユのふるいを通過した多孔性担体のセピオライ
(−を第4表に示す混合比ぐJ:り混合した。
Example 3 0-Aminobean ff1M and 35 milled in advance in a mortar
The porous carrier that had passed through a 0 mesh sieve was mixed with sepiolyte (- indicates the mixing ratio shown in Table 4).

これらの混合物を各々ビーカーにいれ、各々セビオライ
トの3 (1’3ωのエチルアルコールを加えた。
Each of these mixtures was placed in a beaker, and 3 (1'3ω) of Seviolite ethyl alcohol was added to each.

次に、ビーカーの口を塩化ビニリデンフィルムで開じ、
乾燥器で70℃で30分加熱した。その後、塩化ビニリ
デンフィルムをとりはずして100℃で乾燥させ、除去
NJNo、9〜21を作製した。
Next, open the beaker with vinylidene chloride film,
It was heated in a dryer at 70°C for 30 minutes. Thereafter, the vinylidene chloride film was removed and dried at 100°C to produce removed NJ Nos. 9 to 21.

なJ3この除去剤は、アルデヒドの除去試験の前に再度
粉砕して使用した。比較例としてレビAライトのみのも
のをC6とした。
J3 This removal agent was re-pulverized and used before the aldehyde removal test. As a comparative example, a product containing only Levi A light was designated as C6.

これらの各除去N1を0.2g秤り取り、5J容聞のガ
ス非透過性の袋にいれた。以下実施例1と同様のIJ法
でアセトアルデヒドと空気を袋にいれた。4115間f
iiffした後、ガスクロマトグラフを用第   4 表 第  5 表 いて袋内のアセトアルデヒドの:l:4度を測定し除去
率および吸着量を求めた。結果を第5表に示す。
0.2 g of each of these removed N1 was weighed out and placed in a gas-impermeable bag with a capacity of 5 J. Thereafter, acetaldehyde and air were placed in a bag using the same IJ method as in Example 1. 4115 f
After the iiff, the acetaldehyde content in the bag was measured using a gas chromatograph to determine the removal rate and adsorption amount. The results are shown in Table 5.

なおガスクロマトグラフの測定条件は、実施例1と同一
とした。ブランクは同様な条件で除去剤を使用しないし
ので、アセ1〜アルデヒドの濃度は1781)1.)m
であった。
Note that the measurement conditions of the gas chromatograph were the same as in Example 1. The blank was made under similar conditions without using any remover, so the concentration of ace1-aldehyde was 1781)1. ) m
Met.

この結果0−アミノ安息香酸の担持量が0.1重量%以
下のNo、9では除去率が比較例の06より低い。また
担持量が95重量%であるN0121でも除去率が比較
IAの06より低く芳香族アミノ酸の担持量は1.O・
〜90手出%の範囲が有効であることを示している。特
にNO,12〜1つの芳香族アミノ酸の11持吊が5〜
80重量%の範囲が低級アルデヒド類の除去率が90%
以上を示しより有効である。
As a result, in No. 9, in which the supported amount of 0-aminobenzoic acid was 0.1% by weight or less, the removal rate was lower than in Comparative Example 06. Furthermore, even with N0121, which has a supported amount of 95% by weight, the removal rate is lower than that of comparative IA 06, and the supported amount of aromatic amino acids is 1. O・
It shows that the range of 90% to 90% is effective. In particular, NO, 12 to 1 aromatic amino acid has 5 to 11
The removal rate of lower aldehydes is 90% in the 80% by weight range.
The above is more effective.

実施例4 0−アミノ安息香酸19をビーカーに秤吊し、セビオラ
イト9qを加えでよくかきまぜた。次にエチルアルコー
ル20mJlを加え密封して超音波洗浄器を用いて約5
分間攪拌し、さらに乾燥器で70℃で約30分間加熱し
た後開封し、100℃で乾燥して除去剤No、22を作
製した。
Example 4 0-Aminobenzoic acid 19 was weighed and suspended in a beaker, 9q of Seviolite was added, and the mixture was stirred well. Next, add 20mJl of ethyl alcohol, seal it, and use an ultrasonic cleaner to clean it for about 50 minutes.
The mixture was stirred for a minute, heated in a dryer at 70° C. for about 30 minutes, opened, and dried at 100° C. to prepare remover No. 22.

この低級アルデヒド類の除去剤を第1図に示す。This lower aldehyde remover is shown in FIG.

繰返し試験装置の脱臭カラム1に充填し、アt? I−
アルデヒドを含む空気をカラム中に通過させて低級アル
ミヒト類の除去性能の低下する状況を調べた。この試#
i!装置は、25.11容予の容器2に循環ポンプ7と
臭気物質気化器3を途中に配備した送気パイプ5と、循
環ポンプ6と流量計と脱臭カラム1とを途中に耐漏した
送気パイプ4とを備え、該容器2と脱臭カラム1とは恒
温槽内で一定温度に保たれている。そして容器2内の低
級アルデヒド類を食台空気は循環ポンプ6を介して絶え
ず脱qカラム1に送られ循環し平衡吸着状態を保ってい
る。脱臭カラム1中の除去剤は3っである。試験条件は
、ガス流Jii : 50j /m t n、 圧力’
lJ失:18mmH2O、温度=25±1℃、脱臭カラ
ム=30x30x240mm、充填長さ:8mmで容器
2内の空気を循環した。
Fill the deodorizing column 1 of the repeat test device, and test at? I-
The conditions under which the removal performance of lower aluminum hydroxides deteriorates were investigated by passing air containing aldehydes through the column. This trial #
i! The device consists of an air supply pipe 5 in which a circulation pump 7 and an odor substance vaporizer 3 are disposed in a container 2 having a capacity of 25.11 mm, and a leak-proof air supply pipe 5 in which a circulation pump 6, a flow meter, and a deodorizing column 1 are disposed in the middle. The container 2 and the deodorizing column 1 are kept at a constant temperature in a constant temperature bath. The table air is constantly sent to the deq column 1 via the circulation pump 6 to circulate the lower aldehydes in the container 2, thereby maintaining an equilibrium adsorption state. The number of removing agents in the deodorizing column 1 is 3. The test conditions were: gas flow Jii: 50j/mtn, pressure'
The air inside the container 2 was circulated under the following conditions: 1J loss: 18 mm H2O, temperature = 25 ± 1°C, deodorizing column = 30 x 30 x 240 mm, and filling length: 8 mm.

まず、アセトアルデヒドを約10倍に稀釈した水溶液を
臭気物質気化器3から入れ、20分間空気を循環したの
ち再度アセトアルデヒド水溶液を臭気物質気化器3から
注入するという繰返し試験を10回おこなった。このと
き注入量は、1〜8回目までは20μm、9.10回目
は40μmとした。また、アセトアルデヒドの濃度は注
入後、0.1.3.5.10.15.205)後にガス
クロマトグラフにより測定した。ガスクロマトグラフの
測定条件は、実施例1と同じである。結果を第6表に示
す。
First, an aqueous solution of acetaldehyde diluted approximately 10 times was poured into the odorant vaporizer 3, air was circulated for 20 minutes, and then an acetaldehyde aqueous solution was injected from the odorant vaporizer 3 again. This test was repeated 10 times. At this time, the injection amount was 20 μm for the 1st to 8th injections, and 40 μm for the 9th and 10th injections. Moreover, the concentration of acetaldehyde was measured by gas chromatography 0.1.3.5.10.15.205) after injection. The measurement conditions of the gas chromatograph were the same as in Example 1. The results are shown in Table 6.

この結果、0−アミノ安息香酸を担持したけビオライト
は、吸着性能の劣化が少なくアルデヒドを吸着し耐久性
があることを示している。
The results show that Shitakebiolite supporting 0-aminobenzoic acid adsorbs aldehydes with little deterioration in adsorption performance and is durable.

実流例5 以下に述べる方法でNo、23からNo、27の5種類
の除去剤を作製した。No、23はセビオライト99と
、0−アミノ安息香酸19をそれぞれ微粉砕して混合し
た。No、24は、0−アミン安息香Fl!1gをエチ
ルアルコール20mjに溶解し、この溶液にセビオライ
ト9gを加えてセ第  6 表 (以下余白) ビオライトに0−アミノ安患香酸−エチルアルコル溶液
を含浸させた。次に、これを乾燥器にいれ100℃で乾
燥させた。No、25は、0−アミノ安息tzM1gを
エチルアルコール15mg、水5mgの混合溶媒に溶解
し、この溶液にセビオライ[・99を加えて含浸させた
。次に100℃の乾燥器で乾燥させた。No、26は、
0−アミノ安息香酸1gとセビオライト9gを況合し、
エチルアルコール2QmNを加えた。これを超音波洗浄
器を用いて約5分間攪拌し、さらに密封して70℃で約
30分間加熱した。次いで開封し、乾燥器で100℃で
乾燥した。No、27は、0−アミノ安0香l!19と
セビオライト9gを混合し、エチルアルコール15mj
)、水15mJlの混合溶液を加えた。この混合溶液を
超音波洗浄器で約5分間攪拌し、ざらに密封して70℃
で約30分間加熱した。次いで開封し、乾燥器で100
℃で乾燥した。
Actual Flow Example 5 Five types of removing agents No. 23 to No. 27 were prepared by the method described below. In No. 23, Seviolite 99 and 0-aminobenzoic acid 19 were each finely ground and mixed. No. 24 is 0-amine benzoin Fl! 1 g was dissolved in 20 mj of ethyl alcohol, 9 g of Seviolite was added to this solution, and Biolite was impregnated with the 0-aminobenzoic acid-ethyl alcohol solution. Next, this was placed in a dryer and dried at 100°C. No. 25 was obtained by dissolving 1 g of 0-aminobenz tzM in a mixed solvent of 15 mg of ethyl alcohol and 5 mg of water, and adding Sevioly [·99] to this solution for impregnation. Next, it was dried in a dryer at 100°C. No. 26 is
1 g of 0-aminobenzoic acid and 9 g of Seviolite were combined,
2QmN of ethyl alcohol was added. This was stirred for about 5 minutes using an ultrasonic cleaner, then sealed and heated at 70° C. for about 30 minutes. The package was then opened and dried in a dryer at 100°C. No. 27 is 0-aminoan 0 incense! Mix 19 with 9g of Seviolite and add 15mj of ethyl alcohol.
), and a mixed solution of 15 mJl of water was added. This mixed solution was stirred in an ultrasonic cleaner for about 5 minutes, tightly sealed, and heated to 70°C.
It was heated for about 30 minutes. Then open it and dry it in a dryer for 100%
Dry at °C.

この除去剤について低級アルデヒドの吸収除去性能の試
験を次のようにしておこなった。試料(No、23〜2
7)をそれぞれ0.2g、比較例としでセビオライトの
みを062CI (C7)秤り取り、5g容量のガス非
透過性の袋にいれ、さらにアL l−アルデヒド(10
倍に稀釈した水溶液)10μρを気化させながら加えた
。約4時間後に除去性をUP価した。この場合のブラン
クの′a度は125ppmである。結果を第7表に示す
。この結果O−アミノ安息香醒のセビオライトへの担持
方法を変えても、除去性能には影響がないことを小して
いる。
The ability of this remover to absorb and remove lower aldehydes was tested as follows. Sample (No. 23-2
Weigh out 0.2 g of each of 7) and Seviolite (062CI (C7) as a comparative example, put it in a gas-impermeable bag with a capacity of 5 g, and add 0.2 g of Al l-aldehyde (10
10 μρ of the diluted aqueous solution was added while vaporizing. After about 4 hours, the removability was rated as UP. In this case, the blank's a degree is 125 ppm. The results are shown in Table 7. As a result, even if the method of supporting O-aminobenzoic acid on Seviolite is changed, the removal performance is not affected.

実施例に こでは多孔性相体のセビオライトとヤシガラ活性炭とを
比較した。No、28は、0−アミノ安息香酸1Qをニ
ブルアルコール2Qmjlに溶解し、この溶液にセビオ
ライト9gを加えて含浸さばた後、100℃で乾燥した
。No、29は、〇−アミノ安息香M1qをエチルアル
コール20mpに溶解し、この溶液にヤシガラ活性炭9
gを加えて含浸させた後100℃で乾燥した。この除去
剤を、それぞれ0.2aずつけり取り、51容量(以下
余白) のガス非透過性の袋にいれた。このようにして、各試料
に対してそれぞれ7袋およびブランク7袋を作製した。
In this example, the porous phase material Seviolite and coconut shell activated carbon were compared. No. 28 was obtained by dissolving 1Q of 0-aminobenzoic acid in 2Qmjl of nibble alcohol, adding 9 g of Seviolite to this solution, impregnating it, and drying at 100°C. No. 29 dissolves 〇-aminobenzoin M1q in 20mp of ethyl alcohol, and adds 99% of coconut shell activated carbon to this solution.
g was added and impregnated, and then dried at 100°C. 0.2a of each of these removers was applied and placed in a gas-impermeable bag with a capacity of 51 (hereinafter referred to as the margin). In this way, seven bags and seven blank bags were made for each sample.

次に、これらの袋に11度が異なるように約10倍に稀
釈したアセトアルデヒド水溶液を第8表に示す!6だけ
加え、約4時間放置後のアセトアルデヒド濃度をガスク
ロマトグラフで測定し、試料のアセ1〜アルデヒド吸着
吊をbとめた。
Next, Table 8 shows acetaldehyde aqueous solutions diluted approximately 10 times so that these bags differ by 11 degrees! The concentration of acetaldehyde was measured using a gas chromatograph after leaving it for about 4 hours, and the concentration of acetaldehyde adsorption in the sample was determined.

ガスクロマトグラフの測定条件は、実施例1と同じであ
る。結果を第8表に示す。またブランクの濃度についで
G、を第9表に示す。
The measurement conditions of the gas chromatograph were the same as in Example 1. The results are shown in Table 8. Further, the density of the blank, G, is shown in Table 9.

このようにして求めた吸着平衡線図から、担体としてヤ
シガラ活性炭よりもセビオライl−を用いた方が、アt
?I−アルデヒドの吸着量が大きく、除去性がにい。
From the adsorption equilibrium diagram obtained in this way, it is clear that using Sevioly l- as a carrier is better than using coconut shell activated carbon.
? The amount of I-aldehyde adsorbed is large and the removability is poor.

実施例7 0−アミノ安息香酸19をエヂルアルコール20 m 
j!に溶解し、ここヘセビオライト9qを加え含浸しさ
じた後100℃で乾燥し、乳鉢で粉砕して除去剤を得た
Example 7 0-Aminobenzoic acid 19 was mixed with 20 m
j! 9q of heseviolite was added thereto to impregnate the solution, dried at 100° C., and ground in a mortar to obtain a remover.

この除去剤を0,29秤り取り、5J容吊のガス非透過
性の袋に入れ、さらにを10倍に稀釈したホルムアルデ
ヒド水溶液50μgを入れて約4時間放置後に、ホルム
アルデヒドの残留濃度を北側式ガス検知費で測定した。
Weigh out 0.29 g of this remover, put it in a gas-impermeable bag with a capacity of 5 J, add 50 μg of formaldehyde aqueous solution diluted 10 times, and leave it for about 4 hours. Measured by gas detection fee.

この結果をNo、30として第10表に示づ。This result is shown in Table 10 as No. 30.

同様に、アセトアルデヒド、n−ブヂルアルデヒドにつ
いても検討した。なお、アセトアルデヒドは約10倍に
稀釈した水溶液を10μg、nブチルアルデヒドは約1
018に稀釈した水溶液を27μgいれ、ガスクロマト
グラフを用いて残留濃度を測定した。これらをNo、3
1.No、32として第10表に示す。
Similarly, acetaldehyde and n-butyraldehyde were also investigated. For acetaldehyde, 10 μg of an aqueous solution diluted approximately 10 times, and for n-butyraldehyde, approximately 1
018 diluted aqueous solution was added, and the residual concentration was measured using a gas chromatograph. These are No. 3
1. It is shown in Table 10 as No. 32.

比較量としてセビオライト0.29づつを5g容1Hの
ガス非透過性の袋にいれ、ホルムアルデヒド、アセトア
ルデヒド、n−ブヂルアルデヒドをそれぞれ本実施例と
同邑入れ、残留濃度をガスクロマトグラフを用いて測定
した(C8、C9、Cl0)。結果を第10表に示す。
As a comparative amount, 0.29 of Seviolite was placed in a 5 g capacity 1H gas-impermeable bag, and formaldehyde, acetaldehyde, and n-butyraldehyde were added in the same manner as in this example, and the residual concentration was measured using a gas chromatograph. (C8, C9, Cl0). The results are shown in Table 10.

なお、ブランクの濃度はホルムアルデヒドが129pp
m、アセトアルデヒドが113ppmSn−プチルアル
デヒトが”+5ippmである。ガスクロマトグラフの
測定条件は、実施例1と同じである。本実施例の除去剤
は、97%以、Fの除去率をしめしている。
The concentration of the blank is 129pp of formaldehyde.
m, acetaldehyde is 113 ppm, and Sn-butyraldehyde is +5 ippm.The gas chromatograph measurement conditions are the same as in Example 1.The removal agent of this example shows a F removal rate of 97% or more.

特にホルムアルデヒド、n−ブチルアルデヒドは100
%の除去率を示している。C10の留瀧疫9.01で除
去率94.0%吸着司10.5とあるが対応するNo、
32は、それぞれ0110096.11.1であり吸M
mがさらに向上した。
In particular, formaldehyde and n-butyraldehyde have a 100%
% removal rate is shown. It says that the removal rate is 94.0% and the adsorption capacity is 10.5 for C10 Rutaki 9.01, but the corresponding No.
32 is 0110096.11.1 and sucks M
m has further improved.

実施例E3 0−>′ミノ安息香[10gをビーカーに秤り取り、さ
らにエチルアルコール90Qを加えて、0アミノ安息香
醒のエチルアルコール溶液を作製した。次に、活性炭素
繊維シート〈大阪ガス(株)製、商品名:繊維状活性炭
ACF  A−10,23,6X23.6cmx0.3
mm) に前記のエチルアルコール溶液を均一に含浸J
るように、ビベツl〜で注意深く滴下し、次いで、含浸
した活性炭素繊組シートを乾燥器で100℃、16時間
加熱乾燥してエチルアルコールを除去し低級アルデヒド
類の除去剤を得た。O−アミノ息香酸の担持mは5重量
%であった。
Example E3 0->' 10 g of aminobenzoin was weighed into a beaker, and 90Q of ethyl alcohol was added to prepare an ethyl alcohol solution with 0 aminobenzoin content. Next, activated carbon fiber sheet <manufactured by Osaka Gas Co., Ltd., product name: fibrous activated carbon ACF A-10, 23, 6 x 23.6 cm x 0.3
mm) uniformly impregnated with the above ethyl alcohol solution.
Then, the impregnated activated carbon fiber sheet was heated and dried in a drier at 100° C. for 16 hours to remove ethyl alcohol and obtain a lower aldehyde remover. The loading m of O-aminozoic acid was 5% by weight.

アルデヒドの除去性能試験を次のようにおこなった。シ
ートを5mm角に切出し、この切片2゜5gを秤り取り
、実施例4の第1図に示す装置の脱臭カラムに充填し、
約10倍に稀釈したアセトアルデヒド水溶液80μpを
臭気物質気化器3から導入し、気化させた。つぎに第1
図に示す実験条件で装胃内の空気を循環した。このとき
の容器2内のガスを時間を追って採気口からマイクロシ
リンジで採気し、ガスクロマトグラフにより、容器中の
アセトアルデヒドの濃度を測定した。ガスクロマトグラ
フの条件は実施例1と同じである。
An aldehyde removal performance test was conducted as follows. The sheet was cut into 5 mm square pieces, 2.5 g of the cut pieces were weighed, and packed into the deodorizing column of the apparatus shown in FIG. 1 of Example 4.
80 μp of an acetaldehyde aqueous solution diluted approximately 10 times was introduced from the odorant vaporizer 3 and vaporized. Next, the first
Air in the stomach was circulated under the experimental conditions shown in the figure. At this time, the gas in the container 2 was sampled with a microsyringe from the gas sampling port over time, and the concentration of acetaldehyde in the container was measured using a gas chromatograph. The gas chromatograph conditions were the same as in Example 1.

結果を第2図の線図Aに示す。The results are shown in diagram A in FIG.

なお、比較量として0−アミノ安息香酸を全く担持しな
い活性炭素繊維のみについても前記の実施例と全く同一
のアセトアルデヒドの除去性能試験をおこなった。結果
(L第2図に併記したく線図8)。比較例に比べて本例
はアセトアルデヒドの11rg1が@間とともに減少し
ていることを示している。
As a comparative example, the same acetaldehyde removal performance test as in the above-mentioned example was also conducted using activated carbon fibers that did not support any 0-aminobenzoic acid. Results (line diagram 8 shown in conjunction with Figure 2). Compared to the comparative example, this example shows that 11rg1 of acetaldehyde decreases with increasing @.

実施例9 試験例1の活性炭素繊維の代りにセビオライトとバルブ
とからなる紙(21,8cmx21.8cmxo、13
mm)を用いることを除いては、試験例1と全く同じ方
法でO−アミノ安息香酸5重量%の試料を作製した。
Example 9 Paper (21.8 cm x 21.8 cm x o, 13
A sample containing 5% by weight of O-aminobenzoic acid was prepared in exactly the same manner as in Test Example 1, except that 5% by weight of O-aminobenzoic acid was used.

アル1ヒトの除去性能試験についても、試験例1と全く
同一の方法でおこなった。結果を第3図の線図0に示す
The Al-1 human removal performance test was conducted in exactly the same manner as in Test Example 1. The results are shown in diagram 0 of FIG.

なお、比較量として0−アミノ安息香酸を全く担持しイ
iい紙のみについても同一の試験を行った。
As a comparison, the same test was also carried out using paper that did not support any 0-aminobenzoic acid.

結果を第3図にU1記した(線図D)。この廿ビオライ
1−どパルプとからなる紙は、時間の経過とと乙にアセ
トアルデヒドの濃度が著しく減少しており除去性能が優
れている。
The results are marked U1 in FIG. 3 (diagram D). The paper made from this green bio-lyte pulp exhibits excellent removal performance, with the concentration of acetaldehyde decreasing significantly over time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例の繰返し吸着除去の試験装置の説明図、
第2図は実施例8のアセ1〜アルデヒドの時間の経過に
よる濃度変化を示す線図、第3図は実施例9のアセトア
ルデヒドの時間の経過によるa度変化を示す線図である
。 1・・・・・・1悦臭カラム 3・・・臭気物質気化jl   4. 6.7・・・循環ポンプ 2・・・・・・容器 5・・・送気バイブ 特許出願人  株式会社豊田中央研究所代理人    
弁理士 大川 宏 第2図 第1図 荘過Fff闇(min ) 第3図
FIG. 1 is an explanatory diagram of the test device for repeated adsorption and removal of the example;
FIG. 2 is a diagram showing the concentration change over time of ace1 to aldehyde in Example 8, and FIG. 3 is a diagram showing the change in a degree over time of acetaldehyde in Example 9. 1...1 Pleasure odor column 3...Odor substance vaporization jl 4. 6.7...Circulation pump 2...Container 5...Air supply vibrator Patent applicant Toyota Central Research Institute Co., Ltd. Agent
Patent Attorney Hiroshi Okawa Figure 2 Figure 1 Shogaku Fff Darkness (min) Figure 3

Claims (6)

【特許請求の範囲】[Claims] (1)芳香族アミノ酸、および芳香族アミノ酸の塩類の
少なくとも一種を有効成分とする低級アルデヒド類の除
去剤。
(1) A lower aldehyde remover containing at least one of an aromatic amino acid and a salt of an aromatic amino acid as an active ingredient.
(2)芳香族アミノ酸、および芳香族アミノ酸の塩類は
、o−、m−またはp−アミノ安息香酸、p−アミノサ
リチル酸及びその塩類から選ばれる少なくとも1種から
なる特許請求の範囲第1項記載の低級アルデヒド類の除
去剤。
(2) The aromatic amino acid and the aromatic amino acid salts include at least one selected from o-, m-, or p-aminobenzoic acid, p-aminosalicylic acid, and salts thereof. Remover for lower aldehydes.
(3)多孔性担体に芳香族アミノ酸、および芳香族アミ
ノ酸の塩類の少なくとも一種を有効成分として担持して
なる低級アルデヒド類の除去剤。
(3) A lower aldehyde remover comprising at least one of aromatic amino acids and aromatic amino acid salts supported on a porous carrier as an active ingredient.
(4)多孔性担体は、セビオライト、パリゴルスカイト
、活性炭、ゼオライトから選ばれる少なくとも1種から
なる特許請求の範囲第3項記載の低級アルデヒド類の除
去剤。
(4) The lower aldehyde remover according to claim 3, wherein the porous carrier comprises at least one selected from seviolite, palygorskite, activated carbon, and zeolite.
(5)多孔性担体は、シート状、ハニカム状、顆粒状、
粉末状、粒状、板状、繊維状から選ばれ少なくとも1種
からなる特許請求の範囲第3項記載の低級アルデヒド類
の除去剤。
(5) The porous carrier can be sheet-like, honeycomb-like, granular-like,
The lower aldehyde removing agent according to claim 3, which comprises at least one type selected from powder, granule, plate, and fibrous form.
(6)芳香族アミノ酸、および芳香族アミノ酸の塩類は
、o−、m−またはp−アミノ安息香酸、p−アミノサ
リチル酸及びその塩から選ばれる少なくとも一種からな
る特許請求の範囲第3項記載の低級アルデヒド類の除去
剤。
(6) The aromatic amino acid and the aromatic amino acid salts are at least one selected from o-, m-, or p-aminobenzoic acid, p-aminosalicylic acid, and salts thereof. Remover for lower aldehydes.
JP63266632A 1988-10-22 1988-10-22 Removing agent for lower aldehyde Granted JPH02115020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63266632A JPH02115020A (en) 1988-10-22 1988-10-22 Removing agent for lower aldehyde

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63266632A JPH02115020A (en) 1988-10-22 1988-10-22 Removing agent for lower aldehyde

Publications (2)

Publication Number Publication Date
JPH02115020A true JPH02115020A (en) 1990-04-27
JPH0439368B2 JPH0439368B2 (en) 1992-06-29

Family

ID=17433525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63266632A Granted JPH02115020A (en) 1988-10-22 1988-10-22 Removing agent for lower aldehyde

Country Status (1)

Country Link
JP (1) JPH02115020A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06225927A (en) * 1992-12-08 1994-08-16 Toyota Central Res & Dev Lab Inc Removing agent for malodorous material
JPH0780292A (en) * 1993-06-23 1995-03-28 Nippondenso Co Ltd Deodorant and production thereof
US5447701A (en) * 1990-12-28 1995-09-05 Nikki-Universal Co., Ltd. Gas purification method
JPH08280781A (en) * 1995-04-20 1996-10-29 Daiwa Kagaku Kogyo Kk Deodorant, deodorant fiber and their production as well as deodorization processed body
JPH0956800A (en) * 1995-08-24 1997-03-04 Toyota Central Res & Dev Lab Inc Deodorant and deodorizing method
US5750589A (en) * 1994-09-16 1998-05-12 Thera Patent Gmbh & Co. Kg Gesellschaft Fur Hydrophilated dental impression compounds
WO2002011777A1 (en) * 2000-08-08 2002-02-14 Bridgestone Corporation Deodorizers and deodorizing filter medium
JP2002085539A (en) * 2000-09-20 2002-03-26 Toyota Central Res & Dev Lab Inc Deodorant and method for indicating aldehyde adsorption degree
EP2504077A1 (en) * 2009-11-24 2012-10-03 Corning Incorporated Amino acid salt articles and methods of making and using them
CN104436999A (en) * 2013-09-24 2015-03-25 宁波市雨辰环保科技有限公司 Formaldehyde absorbent and using method thereof
CN109529569A (en) * 2018-12-06 2019-03-29 佛山市顺德区阿波罗环保器材有限公司 A kind of compound deodorizer and preparation method thereof
CN111971075A (en) * 2018-03-30 2020-11-20 尤尼吉可株式会社 Deodorizing material, method for producing the same, deodorizing method, and deodorizing sheet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009031248A1 (en) * 2007-09-05 2009-03-12 Daicel Chemical Industries, Ltd. Composition containing amino compound and silica gel, and tobacco filter

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5447701A (en) * 1990-12-28 1995-09-05 Nikki-Universal Co., Ltd. Gas purification method
JPH06225927A (en) * 1992-12-08 1994-08-16 Toyota Central Res & Dev Lab Inc Removing agent for malodorous material
JPH0780292A (en) * 1993-06-23 1995-03-28 Nippondenso Co Ltd Deodorant and production thereof
US5750589A (en) * 1994-09-16 1998-05-12 Thera Patent Gmbh & Co. Kg Gesellschaft Fur Hydrophilated dental impression compounds
JPH08280781A (en) * 1995-04-20 1996-10-29 Daiwa Kagaku Kogyo Kk Deodorant, deodorant fiber and their production as well as deodorization processed body
JPH0956800A (en) * 1995-08-24 1997-03-04 Toyota Central Res & Dev Lab Inc Deodorant and deodorizing method
WO2002011777A1 (en) * 2000-08-08 2002-02-14 Bridgestone Corporation Deodorizers and deodorizing filter medium
JP2002085539A (en) * 2000-09-20 2002-03-26 Toyota Central Res & Dev Lab Inc Deodorant and method for indicating aldehyde adsorption degree
EP2504077A1 (en) * 2009-11-24 2012-10-03 Corning Incorporated Amino acid salt articles and methods of making and using them
JP2013512090A (en) * 2009-11-24 2013-04-11 コーニング インコーポレイテッド Amino acid salt articles and methods of making and using the same
CN104436999A (en) * 2013-09-24 2015-03-25 宁波市雨辰环保科技有限公司 Formaldehyde absorbent and using method thereof
WO2015042902A1 (en) * 2013-09-24 2015-04-02 宁波市雨辰环保科技有限公司 Formaldehyde absorbent and use method therefor
US9517435B2 (en) 2013-09-24 2016-12-13 Ningbo Yuchen Enviroclean Tech Co., Ltd. Formaldehyde absorbent and method for using the same
CN104436999B (en) * 2013-09-24 2017-04-05 宁波市雨辰环保科技有限公司 A kind of formaldehyde absorbent and its using method
CN111971075A (en) * 2018-03-30 2020-11-20 尤尼吉可株式会社 Deodorizing material, method for producing the same, deodorizing method, and deodorizing sheet
CN111971075B (en) * 2018-03-30 2022-09-30 尤尼吉可株式会社 Deodorizing material, method for producing the same, deodorizing method, and deodorizing sheet
CN109529569A (en) * 2018-12-06 2019-03-29 佛山市顺德区阿波罗环保器材有限公司 A kind of compound deodorizer and preparation method thereof

Also Published As

Publication number Publication date
JPH0439368B2 (en) 1992-06-29

Similar Documents

Publication Publication Date Title
US4070300A (en) Pourable solid filter material, particularly for the removal of unpleasant odors from the air, and a process for its manufacture
JPH02115020A (en) Removing agent for lower aldehyde
KR100336309B1 (en) Deodorant composition, deodorizer and filter each containing the same, and method of deodorization
JPH03161050A (en) Manufacture of adsorptive sheet
JP3700909B2 (en) Deodorizing material and method for producing the same
JP2007038106A (en) Deodorization method
JP2950683B2 (en) Air purifier and air purifier
JPH11553A (en) Deodorizing material and its production
JPH042350A (en) Aldehyde removing agent
JP2701062B2 (en) Composite adsorbent
JP2000140633A (en) Gaseous aldehyde absorbing granular porous body
JPH10165490A (en) Deodorant body and its manufacture
JPH07116510A (en) Adsorbent and porous adsorbing material
JPH1199194A (en) Deodorizing composition, deodorizing device and deodorizing method with it
JP3430955B2 (en) Deodorant
JPH11285633A (en) Adsorption remover for lower aliphatic aldehydes
JPH06196B2 (en) Air purifier
JPH03146064A (en) Deodorant
JP4562838B2 (en) Gel deodorant
WO2009031248A1 (en) Composition containing amino compound and silica gel, and tobacco filter
JPH0810315A (en) Air cleaning agent and deodorizing filter using the same for air cleaner
JPH09154927A (en) Deodorizing material
JPH0417696B2 (en)
JPH03188923A (en) Production of deodorizing filter
JP4138289B2 (en) Method for removing malodorous substances generated from composting equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080629

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090629

Year of fee payment: 17

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090629

Year of fee payment: 17