JPH02114404A - Thin cu alloy wire for electric/electronic apparatus - Google Patents

Thin cu alloy wire for electric/electronic apparatus

Info

Publication number
JPH02114404A
JPH02114404A JP26840088A JP26840088A JPH02114404A JP H02114404 A JPH02114404 A JP H02114404A JP 26840088 A JP26840088 A JP 26840088A JP 26840088 A JP26840088 A JP 26840088A JP H02114404 A JPH02114404 A JP H02114404A
Authority
JP
Japan
Prior art keywords
wire
weight
thin
copper
tensile strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26840088A
Other languages
Japanese (ja)
Inventor
Yoshihiro Nakai
由弘 中井
Kazuo Sawada
澤田 和夫
Atsuhiko Fujii
藤井 淳彦
Yukifumi Chiba
幸文 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP26840088A priority Critical patent/JPH02114404A/en
Publication of JPH02114404A publication Critical patent/JPH02114404A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance electric, mechanical properties and workability in wire drawing by allowing the material to contain specified amounts of Ni, Si and Y or one or more of rare earth elements, including as residue Cu plus inevitable impurities, and specifying the weight ratio of Ni to Si. CONSTITUTION:Material according to the presenting invention contains 0.6-3.5wt.% Ni, 0.1-0.8wt.% Si, and Y or one or more of rare earth elements in 0.01-1.0wt.% by weight, while the residue consists of Cu and inevitable impurities, wherein the ratio Ni/Si shall range within 3-6. In case this ratio is below 3, Si not forming intermetallic compound is produced to cause remarkable drop in the electroconductivity of a thin Cu alloy wire, while above 6 Ni not forming intermetallic compound to produced to result in a similar drop. This invention accomplishes sufficient electroconductivity, tensile strength, and bending strength, and processing of a thin wire under 0.08mm in dia. can be carried out in good performance.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は銅合金細線に関するものであり、特に、電子
vi器、xtap+機器、医療機器、情報通12機器等
に用いられる銅合金細線に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a copper alloy thin wire, and particularly to a copper alloy thin wire used in electronic VI devices, xtap+ devices, medical devices, information communication devices, etc. It is.

L従来の技術j 電子機器、二重−1機器、医療機器、情報通信機器等に
用いられる導体として、従来、主として純銅(タフピッ
チ鋼・無酸素銅)が用いられている。
L Prior Art j Conventionally, pure copper (tough pitch steel, oxygen-free copper) has been mainly used as a conductor for electronic equipment, duplex-1 equipment, medical equipment, information communication equipment, etc.

しかし、純銅は導電率等の電気的特性は良いが、引張強
度や曲げ強度等の機械的特性は悪いという欠点をHして
いた。
However, although pure copper has good electrical properties such as conductivity, it has poor mechanical properties such as tensile strength and bending strength.

そこで、純銅よりも導電率等の電気的特性は劣るが、引
張強度や曲げ強度等の機械的特性は良い銅−ベリリウム
系合金が、導体として用いられる場合がある。
Therefore, a copper-beryllium alloy, which is inferior to pure copper in electrical properties such as electrical conductivity but has good mechanical properties such as tensile strength and bending strength, is sometimes used as a conductor.

さらに、銅−ベリリウム系合金よりも引張強度や曲げ強
度等の機械的特性は劣るが、導電率等の電気的特性は良
い銅−スズ系合金が、導体として用いられる場合もある
Further, a copper-tin alloy is sometimes used as a conductor, although it is inferior in mechanical properties such as tensile strength and bending strength to a copper-beryllium alloy, but has good electrical properties such as conductivity.

[発明が解決しようとする課題] 以上のように、従来の電子機器等に用いられる導体には
、導電率等の電気的特性は良いが、引張強度や曲げ強度
等の機械的特性が悪いものか、または、引張強度や曲げ
強度等の機械的特性は良いが、導電率等の電気的特性は
悪いものしかなかった。
[Problems to be Solved by the Invention] As described above, conductors used in conventional electronic devices have good electrical properties such as electrical conductivity, but poor mechanical properties such as tensile strength and bending strength. Alternatively, mechanical properties such as tensile strength and bending strength were good, but electrical properties such as electrical conductivity were poor.

しかし、最近の電子・電気ならびに通信産業の発展に伴
ない、導電率等の電気的特性と引張強度や曲げ強度等の
機械的特性の両方とも良い電気・71i7−機器用導体
が求められるようになった。
However, with the recent development of the electronics, electricity, and communication industries, there is a need for conductors for electrical/71i7-equipment that have both good electrical properties such as conductivity, and mechanical properties such as tensile strength and bending strength. became.

なお、導電率等の電気的特性と引張強度や曲げ強度等の
機械的特性の両刀とも良い金属として、コルソン合金(
Cu−Ni−Si合金、たとえば、朝0金属工学シリー
ズ、非鉄金属材科学、村上陽太部・亀井清352頁)が
知られているが、細線への伸線加工性(伸線性:1回断
線するまでの仲11に問題があり、電気・電子機器用の
導体としては用いることができない。
Corson alloy (
Cu-Ni-Si alloys (for example, Asa 0 Metal Engineering Series, Nonferrous Metal Materials Science, Yotabu Murakami and Kiyoshi Kamei, p. 352) are known, but they have poor wire drawability into thin wires (wire drawability: one-time wire breakage). There is a problem with the conductor 11 up to this point, and it cannot be used as a conductor for electrical or electronic equipment.

この発明は、かかる従来の課題を解決するためになされ
たもので、導電率等の電気的特性と引張強度や曲げ強度
等の機械的特性の両方とも良く、なおかつ、細線への伸
線加1ユ性が良好な電気・電子機器用銅合金細線を提供
することを1的としている。
This invention was made in order to solve such conventional problems, and has good electrical properties such as conductivity and mechanical properties such as tensile strength and bending strength, and also has good wire drawing properties. One object of the present invention is to provide a fine copper alloy wire for electrical and electronic equipment with good durability.

[課題を解決するための手段] 請求項1の発明では、Niを0.6〜3.5重量g6、
Siを0.1〜0.8重量?6、Yもしくは希土類元素
から選ばれた1種以上の元素をC1,01〜1.0重量
96含み、残部がCuおよび不i+J避不純物からなり
、Siに対するNiの重量比Ni/Siが3〜6になる
ようにする。
[Means for Solving the Problem] In the invention of claim 1, Ni is 0.6 to 3.5 weight g6,
0.1 to 0.8 weight of Si? 6. Contains one or more elements selected from Y or rare earth elements at 96% by weight of C1.01 to 1.0, the remainder consists of Cu and impurities containing Ni+J, and the weight ratio Ni/Si to Si is 3 to 1.0%. Make it 6.

請求J+!t’)に記載の発明では、線径が直径0.0
8 m m以下である。
Claim J+! In the invention described in t'), the wire diameter is 0.0
8 mm or less.

[作用・効果] 本発明の銅合金は時効硬化性銅合金である。[Action/Effect] The copper alloy of the present invention is an age hardenable copper alloy.

銅合金中に、NiとSiを含(−fさせるのは、銅合金
中に析出するNiとSiの金属間化合物によって、銅合
金細線の引張強度や曲げ強度等の機械的特性が向上する
からである。
The reason why Ni and Si are included (-f) in the copper alloy is that the intermetallic compounds of Ni and Si that precipitate in the copper alloy improve the mechanical properties such as tensile strength and bending strength of the copper alloy thin wire. It is.

Siに対するNiの重量比Ni/Siか3〜6になるよ
うにしたのは、SIとNiは、!Ii量比Ni / S
 iが3〜6で金属間化a物をつくるからである。
The weight ratio of Ni to Si was made to be Ni/Si, or 3 to 6, because SI and Ni were! Ii quantity ratio Ni/S
This is because when i is 3 to 6, an intermetallic compound a is formed.

すなわち、!Jlf量比3未満の場合は、金属間化合物
を形成できないSiが生じる。Siは、単独では銅合金
中に析出しにくいため、金属間化合物を形成できないS
iは銅合金中に固溶したままとなる。
In other words! When the Jlf amount ratio is less than 3, Si that cannot form an intermetallic compound is produced. Si alone is difficult to precipitate into copper alloys, so Si cannot form intermetallic compounds.
i remains dissolved in the copper alloy.

導電率は、固溶状態の方が析出状態よりも低くなるので
、金属間化合物を形成できないSLによって、銅合金細
線の導電率が著しく下がるのである。
Since the electrical conductivity is lower in the solid solution state than in the precipitated state, the electrical conductivity of the copper alloy thin wire is significantly lowered due to the SL that cannot form intermetallic compounds.

また、!Tf瓜比6より上の場合は、金属間化合物を形
成できないNiが生じる。
Also,! When the Tf ratio is higher than 6, Ni is produced which cannot form an intermetallic compound.

Niは、単独では銅合金中にt+7出しにくいため、金
属間化合物を形成できないNiは銅合金中に固溶したま
まとなり、銅合金細線の導電率が皆しく下がるのである
Since Ni is difficult to produce at t+7 in a copper alloy when used alone, Ni, which cannot form an intermetallic compound, remains solidly dissolved in the copper alloy, and the electrical conductivity of the copper alloy thin wire decreases.

N i 3 (−7m’xo、 6〜3.5mm”、i
;s S i含有量を0,1〜0.8重量91Jとした
のは、Ni含有量が0 、61nlit96 t、 t
: 1.t S i 含有量が0.1重量96未満にな
ると析出するNiとSiの金属間化合物が少なくなるた
め、十分な引張強度や曲げ強度を得られなくなるからで
あり、Ni含有量が3゜5重量96またはSi含有量が
088重量%より増えると、Ni、SiおよびNiとS
iの金属間化合物が過剰に固溶またはド1出し、導電率
を著しく下げることになるからである。
N i 3 (-7m'xo, 6~3.5mm", i
;s The reason why the Si content is 0.1 to 0.8 weight 91J is because the Ni content is 0, 61nlit96t, t
: 1. This is because if the tS i content is less than 0.1wt96, the amount of precipitated intermetallic compounds of Ni and Si will decrease, making it impossible to obtain sufficient tensile strength and bending strength. When the weight 96 or Si content increases more than 088% by weight, Ni, Si and Ni and S
This is because an excessive amount of the intermetallic compound i is dissolved in solid solution or released as a solid solution, resulting in a significant decrease in electrical conductivity.

Yもしくは希土類元素から選ばれた1種以上の元素を含
イ1°させるのは、導電率等の電気的特性と引張強度や
曲げ強度等の機械的特性とに悪影響を与えずに、細線へ
の仲線加]−性を向上させるためである。
The inclusion of one or more elements selected from Y or rare earth elements at 1°C makes it possible to form thin wires without adversely affecting electrical properties such as conductivity and mechanical properties such as tensile strength and bending strength. [Nakasenka] - This is to improve one's sexuality.

すなわち、Yもしくは希土類元素から選ばれた1種以上
の元素を含Rさせるごとに、tli出粒子粒子り微細か
つ均一となり、伸線加工性が向上するのである。
That is, each time R is added to one or more elements selected from Y or rare earth elements, the tli particles become finer and more uniform, and the wire drawability is improved.

Yもしくは希土類元素を0.01〜1.0重量%と限定
したのは、これらの含有量が0.01重量96未満だと
析出粒子をより微細かつ均一にする効果が少なくなるか
らであり、これらの含有量が1.0重量%より上回ると
、固溶またはfli出するYもしくは希土類元素が増加
す、るため、導電率等の電気的特性が著しく低下するか
らである。
The reason why Y or the rare earth element is limited to 0.01 to 1.0% by weight is because if the content is less than 0.01% by weight, the effect of making the precipitated particles finer and more uniform will be reduced. This is because if the content exceeds 1.0% by weight, Y or rare earth elements dissolved in solid solution or fli will increase, resulting in a significant decrease in electrical properties such as electrical conductivity.

なお、本発明の銅合金は耐熱性が優れているので、はん
だ付は性が優れ、またSn、Ag、NiおよびAu等の
メツキを施しても十分な導電性・引張強度・曲げ強度等
が得られる。なお、耐熱性が向上するのは、NiとSi
の金属間化合物によるものと思われる。メツキは伸線加
工後行なってもよいし、メツキを行なった後件線加工し
てもよい。
The copper alloy of the present invention has excellent heat resistance, so it has excellent soldering properties, and even when plated with Sn, Ag, Ni, Au, etc., it has sufficient conductivity, tensile strength, bending strength, etc. can get. Note that heat resistance is improved by Ni and Si.
This is thought to be due to intermetallic compounds. Plating may be performed after wire drawing, or wire processing may be performed after plating.

また、本発明の銅合金細線は、複数本を撚って、撚線と
して使用すれば、より一層引張強度や曲げ強瓜等の機械
的特性の向上が期待できる。
Moreover, if the copper alloy thin wire of the present invention is twisted into a plurality of wires and used as a stranded wire, further improvement in mechanical properties such as tensile strength and bending strength can be expected.

本発明の銅合金では、微細な析出粒子が均一に分布して
いるので、直径0.08mm以下の細線への加1を良好
に行なうことができる。しかも、そのような細線になっ
ても十分な機械的特性を発揮する。
In the copper alloy of the present invention, since the fine precipitated particles are uniformly distributed, it is possible to satisfactorily form a thin wire with a diameter of 0.08 mm or less. Furthermore, even such thin wires exhibit sufficient mechanical properties.

[実施例] 第1表に示す組成の合金(従来例17はタフピッチ鋼、
18は銅−スズ系合金、19は銅−ベリリウム系合金で
ある)を各々黒鉛鋳型を用いて半連続鋳造し、直径8m
mの棒材とした。これを950℃で3時間加熱保持した
後、水中で急冷した。
[Example] Alloys with compositions shown in Table 1 (Conventional Example 17 is tough pitch steel,
18 is a copper-tin alloy and 19 is a copper-beryllium alloy) were semi-continuously cast using a graphite mold, and the diameter was 8 m.
It was made into a bar of m. This was heated and held at 950° C. for 3 hours, and then rapidly cooled in water.

これらの棒材を以下に示すような冷間伸線と熱処理を繰
返し、直径0.03mmの細線を作った。
These bars were repeatedly subjected to cold wire drawing and heat treatment as shown below to produce fine wires with a diameter of 0.03 mm.

まず、直径8mmから直径0.5mmになるまで冷間伸
線を行なった。減面率は99.6%となる。
First, cold wire drawing was performed from a diameter of 8 mm to a diameter of 0.5 mm. The area reduction rate is 99.6%.

次に、450℃のもとて3時間熱処理を行なった後、徐
冷した。
Next, heat treatment was performed at 450° C. for 3 hours, and then slowly cooled.

次に、直径0.5mmから直径0.03mmになるまで
冷間伸線を行なった。減面率は9986%となる。
Next, cold wire drawing was performed from a diameter of 0.5 mm to a diameter of 0.03 mm. The area reduction rate is 9986%.

次に、280℃の温度で2時間熱処理を行なった後、徐
冷した。
Next, heat treatment was performed at a temperature of 280° C. for 2 hours, followed by slow cooling.

なお、No17 (タフピッチ銅)は、時効硬化性銅合
金ではないので、上記の方法ではなく、直接8mmから
直径0.03mmまで熱処理なしで冷間伸線により製作
した。
Note that since No. 17 (tough pitch copper) is not an age-hardenable copper alloy, it was produced by cold wire drawing directly from 8 mm to a diameter of 0.03 mm without heat treatment, instead of using the above method.

第1表に示した合金の直径0.03mrnでの引張強さ
、伸び、導電率、曲げ強度および直径0゜03mmでの
伸線性の試験を行なった。
The alloys shown in Table 1 were tested for tensile strength, elongation, electrical conductivity, bending strength at a diameter of 0.03 mrn, and wire drawability at a diameter of 0.03 mm.

その結果を第2表に示す。The results are shown in Table 2.

なお、曲げ強度の評価は細線に何回繰返し曲げ応力を加
えれば、細線が破断するかによって行なうことにした。
The bending strength was evaluated based on how many times bending stress had to be repeatedly applied to the thin wire before it would break.

第1図はこの試験を行なうための装置である。FIG. 1 shows an apparatus for carrying out this test.

第1図に示すように、この装置は定滑車1、動滑車2お
よび重り4を備える。壁4の下に定滑車lを取付け、そ
の横に動滑車2を配置する。細線3の一端を壁5に取付
け、次に定滑車1の下部に通し、次に動滑車2の上部に
通し、次に重り4に取付ける。重り4は10g、定滑車
1および動滑車2の半径は15mmである。
As shown in FIG. 1, this device includes a fixed pulley 1, a movable pulley 2, and a weight 4. A fixed pulley l is installed under the wall 4, and a movable pulley 2 is placed next to it. One end of the thin wire 3 is attached to the wall 5, then passed through the lower part of the fixed pulley 1, then passed through the upper part of the movable pulley 2, and then attached to the weight 4. The weight 4 is 10 g, and the radius of the fixed pulley 1 and movable pulley 2 is 15 mm.

次に、この装置の動作について説明する。動滑車2を第
1図の矢印に示すように、上下に動かすことにより、細
線3の定滑車1に当たる部分と動滑車2に当たる部分に
繰返しの曲げ応力を加えるのである。上下1往復で1回
とする。回数を屈曲値とする。
Next, the operation of this device will be explained. By moving the movable pulley 2 up and down as shown by the arrows in FIG. 1, repeated bending stress is applied to the portion of the thin wire 3 that corresponds to the fixed pulley 1 and the portion that corresponds to the movable pulley 2. One round trip up and down is counted as one time. The number of times is taken as the bending value.

(以下余白) 本発明であるNo、1〜No、6の銅合金細線を直径0
.03mmでSnメツキした場合と直径0.5mmから
0.03mmまで冷間伸線する過程において、直径0.
35mmでAgメツキした場合についてもそれぞれ直径
0.03mmでの引張強さ、伸び、導電率8曲げ強度お
よび直径0゜03mmでの伸線性の試験を行なった。
(Left below) Copper alloy thin wires of No. 1 to No. 6 of the present invention have a diameter of 0.
.. In the case of Sn plating with a diameter of 0.03 mm and in the process of cold drawing from a diameter of 0.5 mm to 0.03 mm, the diameter of the wire was 0.03 mm.
For the 35 mm Ag-plated wires, tensile strength, elongation, electrical conductivity 8 bending strength, and wire drawability at a diameter of 0.03 mm were tested.

結果はそれぞれ第2表のNo、1〜No、6と同じにな
った。
The results were the same as No. 1 to No. 6 in Table 2, respectively.

さらに、直径0.03mtnのNo、  1〜No。Furthermore, No. 1 to No. with a diameter of 0.03 mtn.

19の合金をそれぞれ19本撚って撚線とし、曲げ強度
の試験を行なった結果が第3表である。
Table 3 shows the results of a bending strength test using 19 strands of each of the 19 alloys twisted to form twisted wires.

(以下余白) 【実施例に対する考察1 第2表によれば、従来例17(無酸素銅)は、導電率、
伸線性はそれぞれ96%lAC3,2゜0kg/回と、
非常に高いが、引張強さ、屈曲値はそれぞれ59 k 
g/rnm2.35[ilと、かなり低い。
(Left below) [Considerations on Example 1 According to Table 2, Conventional Example 17 (oxygen-free copper) has a conductivity of
The wire drawability is 96%lAC3,2゜0kg/times, respectively.
Although very high, the tensile strength and flexural values are each 59 k
g/rnm2.35 [il, which is quite low.

一方、従来例19(銅−ベリリウム系合金)は、導電率
、伸線性はそれぞれ23%lAC3,0゜6kg/回と
、かなり低いが、引張強さ、屈曲値はそれぞれ100k
g/mm2.560回と、高い。
On the other hand, in Conventional Example 19 (copper-beryllium alloy), the electrical conductivity and wire drawability are 23%lAC3,0°6kg/times, which are quite low, but the tensile strength and bending value are 100k each.
g/mm 2.560 times, which is high.

さらに、従来例18(銅−スズ系合金)は、導電率と引
張強さは従来例17と19の中間の値をとる。しかし、
屈曲値、伸線性はそれぞれ40回。
Furthermore, Conventional Example 18 (copper-tin based alloy) has values intermediate between Conventional Examples 17 and 19 in terms of electrical conductivity and tensile strength. but,
The bending value and wire drawability are each 40 times.

0.7kg/回と、非常に低い。0.7 kg/time, which is very low.

電気・電子機器用銅合金細線は、引張強さ、導電率、届
゛曲値、伸線性のいずれか1つが良好ではだめで、上記
4つの特性がバランスよく良いのが理想である。
Copper alloy thin wires for electrical and electronic equipment must have good tensile strength, electrical conductivity, bendability, and wire drawability; ideally, they should have a good balance of the above four properties.

従来例17(無酸素銅)は、導電率と伸線性だけがよい
Conventional Example 17 (oxygen-free copper) is good only in electrical conductivity and wire drawability.

従来例19(銅−ベリリウム系合金)は、引張強さとJ
uJ曲値はよいが、導電率と伸線性は悪い。
Conventional Example 19 (copper-beryllium alloy) has tensile strength and J
Although the uJ curve value is good, the conductivity and wire drawability are poor.

本発明は、引張強さと導電率は、銅−スズ系合金なみで
、屈曲値は、銅−ベリリウム系合金なみで、伸線性は無
酸1g銅なみを1」指すものである。
In the present invention, the tensile strength and electrical conductivity are equivalent to those of copper-tin alloys, the bending value is equivalent to copper-beryllium alloys, and the wire drawability is 1" equivalent to 1 g of acid-free copper.

第2表に示すように、本発明は、引張強さ、導電率、屈
曲値、伸線性はそれぞれ67kg/口I l112.6
09i1i 1 A CS 、 400回、1.8kg
/同以上である。
As shown in Table 2, the tensile strength, electrical conductivity, bending value, and wire drawability of the present invention are 67 kg/mouth Il112.6, respectively.
09i1i 1 A CS, 400 times, 1.8kg
/The same or higher.

さらに、撚線にしても、屈曲値は、第3表に示すように
、本発明は銅−ベリリウム系合金なみであることがわか
る。
Furthermore, even in the case of stranded wires, the bending value of the present invention is comparable to that of copper-beryllium alloys, as shown in Table 3.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、曲げ強度の評価を行なうための装置である。 図において、1は定滑車、2は動滑巾、3は細線、4は
重り、5は壁を示す。
FIG. 1 shows an apparatus for evaluating bending strength. In the figure, 1 is a fixed pulley, 2 is a moving slide, 3 is a thin line, 4 is a weight, and 5 is a wall.

Claims (2)

【特許請求の範囲】[Claims] (1)Niを0.6〜3.5重量%、Siを0.1〜0
.8重量%、Yもしくは希土類元素から選ばれた1種以
上の元素を0.01〜1.0重量%含み、残部がCuお
よび不可避不純物からなり、Siに対するNiの重量比
Ni/Siが3〜6となっている電気・電子機器用銅合
金細線。
(1) Ni 0.6-3.5% by weight, Si 0.1-0
.. 8% by weight, 0.01 to 1.0% by weight of one or more elements selected from Y or rare earth elements, the remainder consisting of Cu and unavoidable impurities, and the weight ratio Ni/Si to Si is 3 to 1.0% by weight. Copper alloy thin wire for electrical and electronic equipment with a rating of 6.
(2)線径が直径0.08mm以下である、請求項1に
記載の電気・電子機器用銅合金細線。
(2) The copper alloy fine wire for electrical and electronic equipment according to claim 1, having a wire diameter of 0.08 mm or less.
JP26840088A 1988-10-25 1988-10-25 Thin cu alloy wire for electric/electronic apparatus Pending JPH02114404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26840088A JPH02114404A (en) 1988-10-25 1988-10-25 Thin cu alloy wire for electric/electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26840088A JPH02114404A (en) 1988-10-25 1988-10-25 Thin cu alloy wire for electric/electronic apparatus

Publications (1)

Publication Number Publication Date
JPH02114404A true JPH02114404A (en) 1990-04-26

Family

ID=17457950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26840088A Pending JPH02114404A (en) 1988-10-25 1988-10-25 Thin cu alloy wire for electric/electronic apparatus

Country Status (1)

Country Link
JP (1) JPH02114404A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009154239A1 (en) * 2008-06-17 2009-12-23 古河電気工業株式会社 Electric wire conductor for wiring, electric wire for wiring, and method for manufacturing electric wire conductor for wiring
CN104409136A (en) * 2014-12-22 2015-03-11 孙华桥 Compound conducting bar

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6342360A (en) * 1986-08-07 1988-02-23 Furukawa Electric Co Ltd:The Production of copper-base lead material for semiconductor apparatus
JPS63130739A (en) * 1986-11-20 1988-06-02 Nippon Mining Co Ltd High strength and high conductivity copper alloy for semiconductor device lead material or conductive spring material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6342360A (en) * 1986-08-07 1988-02-23 Furukawa Electric Co Ltd:The Production of copper-base lead material for semiconductor apparatus
JPS63130739A (en) * 1986-11-20 1988-06-02 Nippon Mining Co Ltd High strength and high conductivity copper alloy for semiconductor device lead material or conductive spring material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009154239A1 (en) * 2008-06-17 2009-12-23 古河電気工業株式会社 Electric wire conductor for wiring, electric wire for wiring, and method for manufacturing electric wire conductor for wiring
JPWO2009154239A1 (en) * 2008-06-17 2011-12-01 古河電気工業株式会社 Wire conductor for wiring, wire for wiring, and method for manufacturing wire conductor for wiring
CN104409136A (en) * 2014-12-22 2015-03-11 孙华桥 Compound conducting bar
CN104409136B (en) * 2014-12-22 2016-09-07 孙华桥 A kind of preparation method of compound conductive bar
CN106251940A (en) * 2014-12-22 2016-12-21 孙华桥 A kind of new copper Nb-Al alloy busbar
CN106251940B (en) * 2014-12-22 2019-01-15 葫芦岛华扬电力复合新材料有限公司 A kind of copper Nb-Al alloy busbar

Similar Documents

Publication Publication Date Title
KR100787269B1 (en) Method for manufacturing high-strength high-conductivity copper alloy wire rod of excellent resistance to stress relaxation characteristics
EP1973120B1 (en) Electrical wire conductor for wiring, electrical wire for wiring, and their production methods
EP2219193A1 (en) Conductor material for electronic device and electric wire for wiring using the same
JP3383615B2 (en) Copper alloy for electronic materials and manufacturing method thereof
JPS63130739A (en) High strength and high conductivity copper alloy for semiconductor device lead material or conductive spring material
JPS633936B2 (en)
JPH05311283A (en) Cu alloy extra fine wire excellent in wire drawability and repeated bendability
JP4288844B2 (en) Extra fine copper alloy wire
JP3856073B2 (en) Method for producing Cu-Ag alloy
JPS62182240A (en) Conductive high-tensile copper alloy
JPH02114404A (en) Thin cu alloy wire for electric/electronic apparatus
JPS6164834A (en) Copper alloy having high strength, heat resistance and electric conductivity
US3525605A (en) Method for decreasing the softening temperature and improving the electrical conductivity of high conductivity oxygen-free copper
JPH05302155A (en) Manufacture of high strength and high conductivity copper alloy wire rod
JPH09324230A (en) High conductivity wire
JP2737206B2 (en) Copper alloy wires for electric and electronic equipment
JPH0297632A (en) Copper alloy thin wire for electric and electronic apparatus
JP3079644B2 (en) Copper alloy wires for electric and electronic equipment
JPH02304804A (en) Manufacture of electrically conductive elastic cable conductor
JP3407527B2 (en) Copper alloy materials for electronic equipment
JPH04176849A (en) High-strength and high-conductivity copper alloy thin wire
JPS6075541A (en) Copper alloy having superior heat resistance, mechanical characteristic and electric conductivity
JPH0827531A (en) Copper alloy conductor and its production
JP2501290B2 (en) Lead material
JPS6164835A (en) Copper alloy having high strength, heat resistance and electric conductivity