JPH02112886A - Production of clad titanium wire rod - Google Patents

Production of clad titanium wire rod

Info

Publication number
JPH02112886A
JPH02112886A JP15749688A JP15749688A JPH02112886A JP H02112886 A JPH02112886 A JP H02112886A JP 15749688 A JP15749688 A JP 15749688A JP 15749688 A JP15749688 A JP 15749688A JP H02112886 A JPH02112886 A JP H02112886A
Authority
JP
Japan
Prior art keywords
clad
diameter
layer material
outer layer
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15749688A
Other languages
Japanese (ja)
Inventor
Kazuyuki Nakasuji
中筋 和行
Hiroshi Nagai
永井 博司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP15749688A priority Critical patent/JPH02112886A/en
Publication of JPH02112886A publication Critical patent/JPH02112886A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To reduce the production cost of the clad titanium wire rod by coating a core material consisting of Ti with an outside layer material consisting of Ni and maintaining the inside part of the outside layer material in a specific vacuum state, then subjecting the clad stock to cross helical rolling at a specific temp., then to cold working to a specific diameter. CONSTITUTION:The core material 11 consisting of the Ti or Ti-based alloy is coated with the outside layer material 12 consisting of the Ni or Ni-based alloy and caps 13 are provided thereto. The inside of the outside layer material 12 is then maintained under 1X10<-1>Torr vacuum state and the clad stock 10 is assembled. This clad stock 10 is heated to <=850 deg.C and is elongated by the cross helical rolling mill 4 having >=3 pieces of cone type rolls 1, 2, 3. The outside layer material 12 and the core material 11 are diffusion joined in this way. The elongated stock 10 is then subjected to cold drawing to <=50mum diameter. The production cost of the clad titanium wire rod is reduced in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はチタン(Ti)又はチタン(Ti)基台金製の
芯材をニッケル(Ni)又はニッケル(Ni)5合金製
外層材で被覆してなり、しかも仕上がり直径が50um
以下の極細径のクラッドチタン線材を製造する方法に関
するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention provides a method for coating a core material made of titanium (Ti) or titanium (Ti) base metal with an outer layer material made of nickel (Ni) or nickel (Ni) 5 alloy. and the finished diameter is 50um.
The present invention relates to a method of manufacturing a clad titanium wire having an ultra-thin diameter as described below.

〔従来技術] Tiを芯材としたTi−Ni クラッド線材の加工法と
しては、従来Ti系金属製の芯材をNi系金属外層材で
被覆してなる積層棒材を所定温度で温間押出し加工した
後、焼鈍処理を施して軟化させ、次いで冷間加工を施す
方法(特公昭60−13424号)、或いはTi又はT
i基合金製の芯材にNi又はNi基合金からなる中空の
外層材を被せ、熱間押出加工、焼鈍処理、線引加工及び
焼鈍処理を順次的に施す方法等が提案されている(特開
昭61−159216号)。
[Prior art] The conventional method for processing Ti-Ni clad wire rods with a Ti core material is to warmly extrude a laminated bar material made of a Ti-based metal core material covered with a Ni-based metal outer layer material at a predetermined temperature. After processing, annealing is performed to soften the material, followed by cold working (Japanese Patent Publication No. 60-13424), or Ti or T
A method has been proposed in which a core material made of an i-based alloy is covered with a hollow outer layer material made of Ni or a Ni-based alloy, and then hot extrusion processing, annealing treatment, wire drawing processing, and annealing treatment are sequentially performed (especially (No. 159216, 1983).

しかし、これらの方法ではNi−Ti金属間化合物(T
i Ni、 T1Ni、 Ti旧)の生成が障害となっ
て、芯材と外層材との接合強度が低いという欠点があっ
た。
However, in these methods, Ni-Ti intermetallic compound (T
There was a drawback that the bonding strength between the core material and the outer layer material was low due to the formation of Ni, T1Ni, and Ti (old).

このような金属間化合物生成の問題を解決する方法とし
て、境界にNi−Ti金属間化合物が生成したNi−T
i クラッド素材に強加工を施して境界層の金属間化合
物を微細化した後、600°C以下の温度で熱処理を行
うクラツド材の製造方法が提案されている(特開昭57
−156879号)、。
As a way to solve the problem of intermetallic compound formation, we have developed
i. A method for manufacturing cladding materials has been proposed in which the cladding materials are subjected to strong processing to make the intermetallic compounds in the boundary layer finer, and then heat treated at a temperature of 600°C or less (Japanese Patent Laid-Open No. 1983-1999).
-156879),.

これはNi材とTi材とのクラツド化に際して拡散構造
を与えるための加熱により必然的に生成する脆いNi−
Ti金属間化合物を機械加工により微細化して再度比較
的低温度で熱処理する方法を採ることにより、クラツド
化時の温度制約が著しく緩和され、全体として改善され
た接合強度のNi−Ti クラツド材を得ようとする方
法である。
This is due to the brittle Ni-
By using a method to refine the Ti intermetallic compound by machining and then heat-treating it again at a relatively low temperature, the temperature constraints during cladding are significantly relaxed, resulting in a Ni-Ti clad material with improved overall bonding strength. This is the way to try to get it.

即ち、生成したNi−Ti金属間化合物の発生を制御す
るのではなく、生成した金属間化合物を比較的影響の少
ない状態でクラツド材中に存在せしめて、接合強度を改
善することを意図しており、■ Ni材とTi材を圧接
し加熱することによりクラツド化する工程 圧接し加熱する態様例としては (1)熱間圧延、熱間押出、熱間線引、爆着(圧接と加
熱が同時) (ii)’冷間圧延・冷間線引」−加熱一般に、加熱温
度は700℃以上 ■ 圧延・押出等の加工法により強加工を行い、金属間
化合物を微細化する工程 強加工は熱間でも冷間でも良い。熱間での温度は500
°C以下が望ましいが、600°C以下の温度も使用可
能である。
In other words, the intention was not to control the generation of Ni-Ti intermetallic compounds, but to allow the generated intermetallic compounds to exist in the cladding material with relatively little influence, thereby improving the bonding strength. ■ Process of forming a cladding by press-welding and heating Ni and Ti materials Examples of methods of press-welding and heating include (1) hot rolling, hot extrusion, hot drawing, explosion bonding (press welding and heating are (ii) 'Cold rolling/cold drawing' - Heating Generally, the heating temperature is 700°C or higher.■ Strong processing is a process in which intermetallic compounds are refined by performing strong processing using processing methods such as rolling and extrusion. It may be hot or cold. The temperature in the hot room is 500
Although temperatures below 600°C are preferred, temperatures below 600°C can also be used.

■ 600 ℃以下、望ましくは550〜450°Cの
温度で10分〜2時間熱処理して、Ni材とTi材の境
界に拡散を起こさせる工程 等から成る加工法である。
(2) This is a processing method that includes a step of heat-treating at a temperature of 600° C. or lower, preferably 550 to 450° C., for 10 minutes to 2 hours to cause diffusion at the boundary between Ni and Ti materials.

一方チタン又はチタン合金線を線引き加工する方法とし
ては、一般にチタン又はチタン合金線に酸化膜を付けて
線引き加工を行う方法が実施されている(特開昭62−
34605号)。この方法はクラツド材を大気中で加熱
して表面に酸化膜を形成し、この酸化膜を潤滑材として
ダイスのかじりつきを防止しつつ線引きを行う方法であ
る。ただこの方法では芯材に対する酸化膜の付着のため
に高温(650°C以上)で長時間(2〜3時間)加熱
処理する必要があり、しかも仕上げ直径は1mm程度が
限界で、これ以下の直径とするためには工程が非常に複
雑となり、実用性を欠くという難点があった。
On the other hand, as a method for drawing a titanium or titanium alloy wire, a method is generally practiced in which an oxide film is attached to the titanium or titanium alloy wire and then the wire is drawn (Japanese Unexamined Patent Application Publication No. 1983-1979-1).
No. 34605). In this method, a clad material is heated in the atmosphere to form an oxide film on its surface, and this oxide film is used as a lubricant to prevent the die from galling while drawing the wire. However, this method requires heat treatment at a high temperature (over 650°C) for a long time (2 to 3 hours) to form an oxide film on the core material, and the finished diameter is limited to about 1 mm. The problem was that the process was extremely complicated in order to achieve the desired diameter, making it impractical.

そこで近年にあっては、メツキ技術を利用してチタン又
はチタン合金線表面にNiメツキを施してこれを線引き
加工することが行われている。
Therefore, in recent years, plating technology has been used to apply Ni plating to the surface of a titanium or titanium alloy wire and then draw the wire.

[発明が解決しようとする課題] ところで上述した如き外層材と芯材との接合強度を高め
る加工工程の場合、その後に熱処理工程が必ず必要であ
って処理が複雑となり、製品コストの上昇は避けられな
い。しかもこのようにして得られるクラツド材の接合強
度も0.18kg/胴2程度にすぎない。
[Problems to be Solved by the Invention] However, in the case of the above-mentioned processing step for increasing the bonding strength between the outer layer material and the core material, a subsequent heat treatment step is always required, which complicates the processing and increases the product cost. I can't. Moreover, the bonding strength of the clad material thus obtained is only about 0.18 kg/2 shells.

接合強度が低いと次の伸線工程において、Ni材とTi
材とが剥離して不良率が高くなる不都合を生じる。不良
率を低減させるためには伸線加工工程では20kg/埴
2以上の接合強度が必要とされており、上記製造方法に
よっても接合強度は十分とはいえない。
If the bonding strength is low, the Ni material and Ti material will be separated in the next wire drawing process.
This causes the inconvenience that the material peels off and the defective rate increases. In order to reduce the defect rate, a bonding strength of 20 kg/2 or more is required in the wire drawing process, and the bonding strength cannot be said to be sufficient even with the above manufacturing method.

接合強度を高める方法としては、他に爆発圧着や熱間静
水圧プレスなどがある。ただ熱間静水圧プレスによる場
合も接合強度は17kg/mm2程度で不良率の改善は
不十分である。この点爆全圧着によると接合強度は20
kg/mm”程度となり、伸線工程においても不良率は
比較的改善されると考えられる反面、爆発圧着法では長
尺のクラツド材を得ることは困難であるうえ加工コスト
が高く、安全のための特別な場所を確保せねばならない
という問題がある。
Other methods for increasing bond strength include explosive crimping and hot isostatic pressing. However, even when hot isostatic pressing is used, the bonding strength is about 17 kg/mm2, which is insufficient to improve the defective rate. According to this point explosion full crimping, the joint strength is 20
kg/mm", and it is thought that the defect rate will be relatively improved in the wire drawing process, but on the other hand, it is difficult to obtain long clad material using the explosive crimping method, and the processing cost is high, and for safety reasons. There is the problem of having to secure a special place for

ところで、熱間加工法としては一般的に押出し法、或い
は静水圧押出し法以外にも孔型圧延法、鍛造法等が従来
実施されてはいるが、孔型圧延法や鍛造法等は拘束面と
自由面(非拘束面)が必ず存在し、自由面において芯材
と外層材とがその境界層で剥離する現象が生じることか
ら、異種金属クラツド材には適用が困難とされている。
By the way, in addition to the extrusion method or isostatic extrusion method, hole rolling method, forging method, etc. have been conventionally used as hot working methods, but hole rolling method, forging method, etc. Since there is always a free surface (unrestricted surface) and a phenomenon occurs where the core material and outer layer material separate at the boundary layer on the free surface, it is difficult to apply it to dissimilar metal clad materials.

本発明者等も孔型圧延法、或いは鍛造法による熱間加工
法を検討したが、圧延材の境界部に接合不良の個所が形
成されるのを確認した。
The present inventors have also investigated hot working methods using groove rolling or forging, but have confirmed that poor joints are formed at the boundaries of rolled materials.

また一方従来の線引き加工法のうち、表面にNiメツキ
を施して線引き加工する方法はメッキ厚を均一にするこ
とが難しいため、50μm以下まで線引きを行うとメッ
キ厚の薄い部分ではメツキ層のない部分が発生し、加工
中にダイスによるかじりつき等のトラブルが発生するこ
ととなり、直径50μm程度迄しか線引き加工すること
が出来ないという問題があった。
On the other hand, among the conventional wire drawing methods, it is difficult to make the plating thickness uniform with the method of applying Ni plating to the surface, so if the wire is drawn to a thickness of 50 μm or less, there will be no plating layer in areas with thin plating. This causes problems such as galling by the die during processing, and there is a problem in that wire can only be drawn up to a diameter of about 50 μm.

本発明はかかる事情に鑑みなされたものであって、その
目的とするところはTi又はT i >J合金製の芯材
と、Ni又はNi基合金製の外層材との接合強度を飛躍
的に向上させ得、Tiの軽量性及び耐蝕性。
The present invention was made in view of the above circumstances, and its purpose is to dramatically increase the bonding strength between the core material made of Ti or Ti>J alloy and the outer layer material made of Ni or Ni-based alloy. The light weight and corrosion resistance of Ti can be improved.

Niの加工性、プレス性、切削性、ろう付性等の表面処
理性を併せて利用し、従来方法の如く加工後熱処理をし
なくても接合強度の高いクランドチタン線材の製造方法
を提供することである。
To provide a method for manufacturing a crund titanium wire rod with high bonding strength without the need for post-processing heat treatment as in conventional methods, by making use of Ni's surface treatment properties such as workability, pressability, cuttability, and brazeability. That's true.

また本発明の別の目的は外層材と芯材とを拡散接合せし
めることによって仕上がり直径が50μm以下の極細径
のクラッドチタン線材の製造が可能な方法を提供するに
ある。
Another object of the present invention is to provide a method capable of manufacturing a clad titanium wire having an extremely fine finished diameter of 50 μm or less by diffusion bonding an outer layer material and a core material.

〔課題を解決するための手段] 本発明は、Ti又はTi5合金製の芯材にNi又はNi
基合金製の外層材を被せ、この外層材をその内部をI 
X 10− 1Torr以下の真空状態に保持して密閉
してクラッド素材を組立てる工程と、該クラッド素材を
850°C以下に加熱して3個以上のコーン型ロールを
有する傾斜圧延機にて延伸圧延して外層材と芯材とを拡
散接合する工程と、延伸圧延した素材をダイスを用いて
直径が50μm以下に冷間伸線加工する工程とを含む。
[Means for Solving the Problems] The present invention provides a core material made of Ti or Ti5 alloy containing Ni or Ni.
Cover with an outer layer material made of base alloy, and cover the inside of this outer layer material with I
A process of assembling the clad material by keeping it in a vacuum state of X 10-1 Torr or less and sealing it, and heating the clad material to 850°C or less and stretching and rolling it with an inclined rolling mill having three or more cone-shaped rolls. The method includes a step of diffusion bonding the outer layer material and a core material, and a step of cold drawing the stretched and rolled material to a diameter of 50 μm or less using a die.

〔作用〕[Effect]

本発明はこれによってNi材とTi材とを熱処理を施す
ことなく、大きな接合強度で接合出来、しかもそのまま
冷間伸線加工により直径を50μm以下とすることが可
能となる。
According to the present invention, the Ni material and the Ti material can be joined with high bonding strength without heat treatment, and the diameter can be reduced to 50 μm or less by cold wire drawing.

〔実施例〕〔Example〕

以下本発明を図面に基づき具体的に説明する。 The present invention will be specifically explained below based on the drawings.

第1図は本発明方法による主要な製造工程を示すブロッ
ク図であり、芯材と外層材とにてクラッド素材を組立て
る工程と、クラッド素材を所定温度に加熱する工程と、
組立てたクラッド素材を3〜4個のコーン型ロールを有
する傾斜圧延機にて熱間延伸圧延し、外層材と芯材とを
拡散接合する工程と、熱間延伸圧延したクランド材のス
ケールを除去する工程と、熱間圧延したクラツド材をダ
イスを用いて直径が50μm以下に冷間伸線加工する工
程とを含む。
FIG. 1 is a block diagram showing the main manufacturing steps according to the method of the present invention, including a step of assembling a cladding material with a core material and an outer layer material, a step of heating the cladding material to a predetermined temperature,
The assembled cladding material is hot-stretched and rolled in an inclined rolling mill with 3 to 4 cone-shaped rolls, and the outer layer material and core material are diffusion bonded, and the scale of the hot-stretched and rolled cladding material is removed. and a step of cold-drawing the hot-rolled clad material to a diameter of 50 μm or less using a die.

以下各工程について具体的に説明する。Each step will be specifically explained below.

■) クラッド素材の組立工程 第2図は本発明に使用するクラッド素材の製作過程を一
部断面で示す説明図である。
(2) Assembling process of cladding material FIG. 2 is an explanatory diagram showing, partially in cross section, the manufacturing process of the cladding material used in the present invention.

Ti又はTi基合金製の芯材11とNi又はNj基合金
製の筒状をなす外層材12を用意し、これら両材料をア
セトン等で脱脂、清浄後、芯材11を外層材12に挿入
し、I Xl0−1Torr以下の真空度に保持した室
内で外層材12の両端に蓋材13を、例えば電子ビーム
溶接等の手段にて気密状態に溶接して外層材12を密閉
し、外層材12の内部を1×10− 1Torr以下の
真空度に保持したクラッド素材10を得る。
A core material 11 made of Ti or Ti-based alloy and a cylindrical outer layer material 12 made of Ni or Nj-based alloy are prepared, and after degreasing and cleaning both materials with acetone etc., the core material 11 is inserted into the outer layer material 12. Then, in a room maintained at a vacuum level of less than I A cladding material 10 is obtained in which the inside of the cladding material 12 is maintained at a vacuum level of 1×10 −1 Torr or less.

真空度をI X 10− 1Torr以下としたのはこ
れを超えると後工程の傾斜圧延において、芯材11と外
層材12との接合強度が極端に低下することによる。
The reason why the degree of vacuum is set to I.times.10.sup.1 Torr or less is because if the degree of vacuum is exceeded, the bonding strength between the core material 11 and the outer layer material 12 will be extremely reduced in the later process of inclined rolling.

なおここにTi又はTi基合金にはTi単体又はこれを
主成分とし、TiとAffi、■、Mn、 Fe、 C
u、Mo、 Cr、 W等の成分の1種又は2種以上と
の合金を含むものであり、合金中のTi含有量は90%
(重量%、以下断らない限り同様とする)以上であるこ
とが好ましい。90%未満では比重が増加して軽量金属
としての特徴が川なわれるからである。
Note that Ti or Ti-based alloys include Ti alone or Ti as a main component, Ti and Affi, ■, Mn, Fe, C
Contains an alloy with one or more of the following components: u, Mo, Cr, W, etc., and the Ti content in the alloy is 90%.
(% by weight, hereinafter the same shall apply unless otherwise specified) or more is preferable. This is because if it is less than 90%, the specific gravity increases and the characteristics as a lightweight metal are lost.

またNi又はNi基合金にはNi単体又はこれを主成分
とし、NtとCr、 Cu、 re、 Ag、 Si、
 S、 Pb。
In addition, Ni or Ni-based alloys include Ni alone or Ni as a main component, Nt, Cr, Cu, re, Ag, Si,
S, Pb.

PL、Au、希土類元素、Ti、 Nb、  Affi
、 Mo、Sn。
PL, Au, rare earth elements, Ti, Nb, Affi
, Mo, Sn.

Co等の成分の1種又は2種以上との合金を包含する。It includes alloys with one or more components such as Co.

2) クラッド素材の加熱工程 得られたクラッド素材10はこれを850°C以下の温
度に加熱する。クラッド素材10の加熱温度を850°
C以下とするのは次の理由による。
2) Heating process of the cladding material The obtained cladding material 10 is heated to a temperature of 850°C or less. Heating temperature of clad material 10 is 850°
The reason for setting it below C is as follows.

通常チタンとニッケルとの金属間化合物は955°Cで
溶融し始めるが次工程の熱間延伸圧延工程で施される傾
斜圧延は加工度(減面率)を大きくすると加工熱が発生
して100°C程度材料温度が上昇するから、金属間化
合物が溶融しないよう安全を見込んで850°C以下と
しである。加熱温度の下限は熱間圧延(もしくは温間圧
延)が可能な限り、特に制限はないが、望ましくは40
0°C以上である。
Normally, the intermetallic compound of titanium and nickel starts to melt at 955°C, but in the slope rolling performed in the next hot elongation rolling process, when the working degree (area reduction rate) is increased, processing heat is generated and the temperature rises to 100°C. Since the material temperature rises by about .degree. C., the temperature is set at 850.degree. C. or less to ensure safety so that the intermetallic compound does not melt. The lower limit of the heating temperature is not particularly limited as long as hot rolling (or warm rolling) is possible, but it is preferably 40
The temperature is 0°C or higher.

これを下回る加熱温度では傾斜圧延機の必要能力が非常
に大きくなることによる。
This is because the required capacity of the inclined rolling mill becomes very large if the heating temperature is lower than this.

3) クラッド素材の熱間延伸圧延工程熱間延伸圧延工
程では外層材12の肉1!V(t)とその外径(D)と
の比(t/D)は0.02〜0.1となるように延伸圧
延を行う。比(t/D)が0.02未満では線引き過程
で外層材に破断が生じる虞れがあることによる。また比
が0.1を越えるとTiの特性である軽量性が失われる
ことによる。この熱間延伸圧延用の装置としては第3.
4.5図に示す如き3個以上のコーン型ロールを有する
傾斜圧延機を用いる。
3) Hot stretching and rolling process of cladding material In the hot stretching and rolling process, the thickness of the outer layer material 12 is 1! Stretch rolling is performed so that the ratio (t/D) between V(t) and its outer diameter (D) is 0.02 to 0.1. This is because if the ratio (t/D) is less than 0.02, there is a risk that the outer layer material will break during the wire drawing process. Furthermore, if the ratio exceeds 0.1, the light weight characteristic of Ti is lost. The equipment for this hot stretching and rolling is No. 3.
4.5 An inclined rolling mill having three or more cone-shaped rolls as shown in Figure 5 is used.

ロールを3個以上としたのは2個のロールを有する傾斜
圧延機では、所謂マンネスマン破壊現象が生じ、圧延材
中心部に割れが発生するからである。
The reason why the number of rolls is set to three or more is that in an inclined rolling mill having two rolls, a so-called Mannesmann fracture phenomenon occurs, and cracks occur in the center of the rolled material.

傾斜圧延機としては交叉型の傾斜圧延機を用いるのが望
ましい。
As the inclined rolling mill, it is desirable to use a cross-type inclined rolling mill.

第3図は本発明に使用する傾斜圧延機4による圧延状態
を示す正面図、第4図は第3図の■−■線による断面図
、第5図は第3図のV−■線方向からみた側面図である
。傾斜圧延機4はパスライン周りに臨んで3個のコーン
型ロール1.2.3を有し、3個のロール1,2.3は
クランド素材10の出側端寄りの位置にゴージ部la、
2a、3aを備え、ゴージ部1a、2a、3aを境にし
てクラッド素材10の入側は軸端に向けて漸次直径を縮
小され、また出側は拡大されて円錐台形をなす入口面1
b、2b、3b及び出口面1c、2e、3cを備えてお
り、出口面1 c + 2c + 3cはパスラインと
の距離をゴージ部1a、2a、3aとパスラインX−x
との距離に一致させである。
FIG. 3 is a front view showing the rolling state by the inclined rolling mill 4 used in the present invention, FIG. 4 is a cross-sectional view along the line ■-■ in FIG. 3, and FIG. 5 is a direction along the line V--■ in FIG. 3. FIG. The inclined rolling mill 4 has three cone-shaped rolls 1.2.3 facing around the pass line, and the three rolls 1, 2.3 form a gorge part la at a position near the exit end of the crund material 10. ,
2a and 3a, the entrance side of the cladding material 10 is gradually reduced in diameter toward the shaft end with the gorge parts 1a, 2a, and 3a as boundaries, and the exit side is expanded to form a truncated conical shape.
b, 2b, 3b and exit surfaces 1c, 2e, 3c, and the exit surface 1c + 2c + 3c has a distance from the pass line to the gorge portions 1a, 2a, 3a and the pass line X-x.
Match the distance with the distance.

このようなコーン型のロールl、2.3はいずれもその
入口面1b、2b、3bをクラッド素材10の移動方向
上流側に位置させた状態とし、また軸心線Y−Yと、ゴ
ージ部1a、2a、3aを含む平面との交点0(以下ロ
ール設定中心という)を、クラッド素材10のパスライ
ンX−Xと直交する同一平面上にてバスラインX−X周
りに略等間隔に位置せしめて配設されている。そして各
ロール1.2.3の軸心綿Y−Yはロール設定中心0回
りに、クランド素材10のパスラインX−xとの関係に
おいて第3.4図に示すように前方の軸端がパスライン
x−Xに向けて接近するよう交叉角γだけ交叉(傾斜)
せしめられ、且つ第4図、第5図に示すように前方の軸
端がクラッド素材10の周方向の同じ側に向けて傾斜角
βだけ傾斜せしめられている。
Such cone-shaped rolls 1 and 2.3 are all in a state in which their entrance surfaces 1b, 2b, and 3b are located on the upstream side in the moving direction of the clad material 10, and the axis Y-Y and the gorge part 1a, 2a, and 3a (hereinafter referred to as the roll setting center) are located at approximately equal intervals around the bus line XX on the same plane orthogonal to the pass line XX of the cladding material 10. At least it is arranged. The axial cotton Y-Y of each roll 1.2.3 is centered around the roll setting center 0, and the front axial end is located in relation to the pass line X-x of the crund material 10 as shown in Fig. 3.4. Intersect (tilt) by the intersection angle γ so as to approach the path line x-X
Further, as shown in FIGS. 4 and 5, the front shaft end is inclined toward the same side in the circumferential direction of the cladding material 10 by an inclination angle β.

交叉角T及び傾斜角βは0°くγ<15°、3゜〈β〈
20°及び5°くT+β<30°を満足するように設定
する。
Crossing angle T and inclination angle β are 0° and γ<15°, 3°<β<
20° and 5° are set to satisfy T+β<30°.

各ロール1,2.3は図示しない駆動源に連繋されてお
り、第4図に矢符で示す如く同方向に回転駆動され、こ
れらのロール間に噛み込まれた熱間のクラッド素材10
はその軸心線用りに回転駆動されつつ軸長方向に移動さ
れる、所謂螺進移動せしめられつつ延伸圧延される。
Each roll 1, 2.3 is connected to a drive source (not shown) and is driven to rotate in the same direction as shown by arrows in FIG. 4, and the hot clad material 10 caught between these rolls is
The material is elongated and rolled while being rotated about its axis and moved in the axial direction, ie, so-called spiral movement.

クラッド素材IOはロール間を螺進移動せしめられる間
に、第4図に示す如くロールバイ1一部Aにて外径を絞
られて、例えば最大減面率が80〜90%の高圧下を受
け、クラッド素材10の圧下面Bが円錐台形状に成形さ
れた後、ゴージ部1a2a、3a 、出口面1c、2c
、3cにて所定外径の断面円形をなし、外層材12と芯
材11とが拡散接合した状態のクラツド材14に加工さ
れる。
While being spirally moved between rolls, the outer diameter of the cladding material IO is reduced by part A of the roll-by 1 as shown in Fig. 4, and is subjected to high pressure with a maximum area reduction rate of 80 to 90%, for example. , After the rolled surface B of the cladding material 10 is formed into a truncated conical shape, the gorge parts 1a2a, 3a and the outlet surfaces 1c, 2c are formed.
, 3c, it is processed into a clad material 14 having a circular cross section with a predetermined outer diameter and in which the outer layer material 12 and the core material 11 are diffusion bonded.

一般に熱処理拡散による拡散接合を行った時の拡散層厚
の厚さは太き(、しかも線引き加工過程での反復的な軟
化焼鈍過程での成長によって10〜20μm程度となり
、直径50μm以下の極細径線に線引き加工を行う場合
にはクラット線材というよりも、むしろ複合線材に近い
構造となる。このため極細径線でクラッド線材としての
構造を維持するためには拡散層厚が小さいことが必要と
されるが、この傾斜圧延機により形成される拡散接合は
接合強度が大きく、しかも極めて薄いという特性を有し
ており、700°C〜600 ℃の軟化焼鈍を反復して
もその厚さは数μ程度に留まり、しかも反復的な線引き
加工にも剥離が生じることがない。
In general, when diffusion bonding is performed by heat treatment diffusion, the thickness of the diffusion layer is thick (and, moreover, due to growth during the repeated softening and annealing process during the wire drawing process, it becomes about 10 to 20 μm, and the thickness is extremely small with a diameter of 50 μm or less. When the wire is drawn, it has a structure that is more like a composite wire than a clad wire.For this reason, in order to maintain the structure of a clad wire with an ultra-thin diameter wire, the diffusion layer thickness must be small. However, the diffusion bond formed by this inclined rolling mill has a high bonding strength and is extremely thin, and even after repeated softening annealing at 700°C to 600°C, its thickness remains It remains in the order of μ, and no peeling occurs even during repeated wire drawing processes.

なお、この拡散接合工程では外層材の偏肉防止を抑える
観点から軸対称加工法である熱間静水圧押出法を採用す
ることも可能である。
In addition, in this diffusion bonding step, it is also possible to employ hot isostatic extrusion, which is an axially symmetrical processing method, from the viewpoint of suppressing the prevention of uneven thickness of the outer layer material.

4) 冷間伸線工程 一般に3個のロールを有する傾斜圧延機では圧延材の径
が小さくなれば幾何学的制約から圧延ロール径も小さく
しなければならず必然的に圧延速度が低下し、またクラ
ッド素材10の温度が低下するので、実用的には直径1
0胴程度までは傾斜圧延による熱間(温間)圧延が可能
であるが、10[ltl!1以下になると実用上熱間圧
延が困難となる。そこで直径が10mm以下の線材とす
る際には冷間伸線加工が施される。
4) Cold wire drawing process In an inclined rolling mill that generally has three rolls, as the diameter of the rolled material becomes smaller, the diameter of the rolling rolls must also be made smaller due to geometric constraints, which inevitably reduces the rolling speed. In addition, since the temperature of the cladding material 10 decreases, the diameter of
Hot rolling by inclined rolling is possible up to about 0 cylinders, but 10 [ltl! When it is less than 1, hot rolling becomes difficult in practice. Therefore, when making a wire rod with a diameter of 10 mm or less, cold wire drawing is performed.

この伸線加工法としては、ダイス伸線法、ローラダイス
伸線法、或いは孔型圧延法等による冷間伸線加工法等が
あるが、肉厚のバラツキを抑える観点から、ダイス伸線
を採用して極力クラツド材14における外層材12の肉
厚のバラツキを抑えるのがよい。なお冷間で加工するの
は熱間、若しくは温間で加熱すると接合界面に発生する
金属間化合物層が成長することによる。Ti。
This wire drawing method includes die wire drawing method, roller die wire drawing method, cold wire drawing method using groove rolling method, etc., but from the viewpoint of suppressing variation in wall thickness, die wire drawing is used. It is preferable to employ this method to suppress variations in the thickness of the outer layer material 12 in the cladding material 14 as much as possible. The reason why cold processing is used is because an intermetallic compound layer generated at the bonding interface grows when hot or warm heating is performed. Ti.

Ni+T1Ni等の金属間化合物は脆くこの金属間化合
物層での外層材と芯材との剥離を抑えるためには冷間で
加工する必要があるのである。
Intermetallic compounds such as Ni+T1Ni are brittle and must be cold-processed in order to prevent separation between the outer layer material and the core material in this intermetallic compound layer.

第6図はダイスを用いた冷間伸線加工態様を示す模式図
である。熱間圧延後のクラツド材14は表面のスケール
を除去後、潤滑剤を塗布してダイス5にて伸線し最終的
には直径50μm以下のタララドチタン線材15に加工
される。
FIG. 6 is a schematic diagram showing a cold wire drawing process using a die. After removing scale from the surface of the hot-rolled cladding material 14, a lubricant is applied to the cladding material 14, and the wire is drawn in a die 5, and finally processed into a Tararad titanium wire 15 having a diameter of 50 μm or less.

〔数値例〕[Numerical example]

芯材、外層材として表1に示す如き材料及び寸法仕様の
組合せからなるクラツド材14をダイスを用いて線引き
加工を施し、直径50μm以下のクラッドチタン線材工
5を製造した。
A cladding material 14 consisting of a combination of materials and dimensional specifications as shown in Table 1 as a core material and an outer layer material was subjected to wire drawing using a die to produce a cladding titanium wire material 5 having a diameter of 50 μm or less.

(以下余白) 表 ■ なお表1中の純Ti材、純Ni材は表2に示す如き成分
組成のものである。
(The following is a blank space) Table ■ The pure Ti material and the pure Ni material in Table 1 have the component compositions shown in Table 2.

表   2 先ずダイスによる伸線加工前のクラツド材14を次の過
程で得た。
Table 2 First, a clad material 14 before wire drawing with a die was obtained in the following process.

外周を研磨仕上げした外径54.6mm、長さ800m
mの純Ti製の芯材と、同様に内面を研磨した外径60
.3閣、厚さ2.8 @3、長さ806mmの純Ni製
の外層材とを用意し、双方の接触する面を脱脂、清浄し
た後、芯材に外層材を被せ、3 X 10− ”Tor
rの真空チャンバー内において外層材の両端面をNi板
にて電子ビーム溶接により密閉した。
Outer diameter 54.6mm with polished outer periphery, length 800m
m pure Ti core material and an outer diameter of 60 mm with the inner surface polished in the same way.
.. Prepare a pure Ni outer layer material with a thickness of 2.8 @3 and a length of 806 mm, and after degreasing and cleaning the contact surfaces of both, cover the core material with the outer layer material, and prepare a 3 x 10- ”Tor
Both end surfaces of the outer layer material were sealed with Ni plates by electron beam welding in a vacuum chamber of R.

真空チャンバー内の真空度は次の5条件に設定した。The degree of vacuum in the vacuum chamber was set to the following five conditions.

5X10−1Torr   lXl0−1Torr  
 3X10−”Torr3×10づTorr   3 
Xl0−1Torr次にこのようにして得たクラッド素
材10を800°Cに加熱した後3個のコーン型ロール
を有する交叉型の傾斜圧延機にて傾斜圧延を行った。
5X10-1Torr lXl0-1Torr
3X10-”Torr3×10zuTorr 3
Xl0-1 Torr Next, the clad material 10 thus obtained was heated to 800°C and then subjected to inclined rolling using a cross-type inclined rolling mill having three cone-shaped rolls.

傾斜圧延条件は以下のとおりである。The inclined rolling conditions are as follows.

交叉角γ:3゜ 傾斜角β:13゜ ロールゴージ部直径: 117鴎 ロール材質: SCl’1440 ロール回転数: 80rpm 減面率:88.5%(60,3mm−20,5mm)製
造したクラツド材の接合強度を調査すべく、第7図に示
す如く所定長さのクラツド材14の一端側は一定長ht
そのまま残し、他端側は芯材の外径よりも小さい外径の
円柱部を切削形成してなる試験片を真空度を異ならせた
各調査対象材について2個づつ作成し、芯材の外径より
も少し大きい直径の円形開口部の縁部25に、試験片の
一端側の外層材部分を当接し、その状態で他端側より押
圧力を付与して芯材と外層材とが破断する荷重Pを測定
し、その測定値を下式に代入し、 剪断強さ=P/(π・D−h) 但し、D=芯材の外径 剪断強さを求めた。表1には真空チャンバーの圧力を3
 X 10− ”Torrに設定したときの剪断強さは
表1に、また真空チャンバーを前述した如く5条件に夫
々設定したときの各結果を第8図に示す。
Intersection angle γ: 3° Inclination angle β: 13° Roll gorge diameter: 117 Roll material: SCl'1440 Roll rotation speed: 80 rpm Area reduction: 88.5% (60.3 mm - 20.5 mm) Manufactured clad material In order to investigate the bonding strength of
Two test pieces were prepared for each material to be investigated using different degrees of vacuum, with the other end cut into a cylindrical part with an outer diameter smaller than the outer diameter of the core material. The outer layer material on one end of the test piece is brought into contact with the edge 25 of the circular opening with a diameter slightly larger than the diameter, and in this state, a pressing force is applied from the other end to break the core material and the outer layer material. The load P to be applied was measured, and the measured value was substituted into the following formula: Shear strength=P/(π·D−h) where D=outer diameter shear strength of the core material was determined. Table 1 shows the pressure of the vacuum chamber at 3
The shear strength when set to

表1から明らかな如くクラツド材における芯材とこれを
被覆する外層材との剪断強さは20(kg、f/m1I
IZ)以上となっており、接合強度に優れたクランド材
が得られていることが解る。一方第8図は横軸に真空度
(Torr)を、また樅軸にクラツド材の剪断強さ(k
g、f/nu++” )をとって示しである。
As is clear from Table 1, the shear strength of the core material and the outer layer covering it in the clad material is 20 (kg, f/m1I).
IZ) or higher, indicating that a crund material with excellent bonding strength was obtained. On the other hand, in Figure 8, the horizontal axis represents the degree of vacuum (Torr), and the fir axis represents the shear strength of the clad material (k).
g, f/nu++”).

このグラフから明らかな如く真空度が10− ’ (T
orr)を越えると剪断強さが急激に低下することが解
る。ちなみにチタンクラッド鋼の剪断強さ基卓値(JI
S G3603)は14 kg 、 f / trrr
a ”以上である。
As is clear from this graph, the degree of vacuum is 10-' (T
It can be seen that the shear strength decreases rapidly when the shear strength exceeds (orr). By the way, the basic value of shear strength of titanium clad steel (JI
SG3603) is 14 kg, f/trrr
a” or more.

従ってクラッド素材10を製作する場合、真空チャンバ
ー内の真空度はI X 10− ITorr以下とする
のが望ましいといえる。
Therefore, when manufacturing the cladding material 10, it is desirable that the degree of vacuum in the vacuum chamber be less than or equal to I.times.10-ITorr.

次に、クラツド材14に対しショツトブラストにて脱ス
ケールを施した後、ダイスにて表3に示す如き寸法仕様
のクラツド材14に対し伸線を行った。
Next, the clad material 14 was descaled by shot blasting, and then the clad material 14 having the dimensions shown in Table 3 was drawn using a die.

(以下余白) 表  3 パススケジュールの一側を示すと次の如くである。(Margin below) Table 3 One side of the path schedule is as follows.

直径20mmのクラツド材をダイスに対する10回のパ
スによって20mm  19mm・・・−7,9mmに
まで線引きした後、洗浄、熱処理を加えてダイスに対す
る10回のパスによって直径3.1mmに線引きし、更
に2回目の洗浄、熱処理を加えてダイスに対する13回
のパスを行って直径を0.9mmとし、また3回目の洗
浄、熱処理を加えてダイスに対する15回のパスを行っ
て直径を0.2mmとし、更に4回目の洗浄、熱処理を
加えてダイスに対する43回のパスを行って直径を0.
025mmのクラッド線材に仕上げた。
A clad material with a diameter of 20 mm was drawn to a diameter of 20 mm, 19 mm...-7,9 mm by passing the die 10 times, then washed and heat treated, and drawn to a diameter of 3.1 mm by passing the die 10 times. A second wash, heat treatment, and 13 passes on the die to a diameter of 0.9 mm, and a third wash, heat treatment, and 15 passes on the die, to a diameter of 0.2 mm. Then, a fourth cleaning, heat treatment, and 43 passes were performed on the die to reduce the diameter to 0.
It was finished into a 025mm clad wire.

なお、各工程での熱処理は600°Cで(2分間〜20
分間)行った。
The heat treatment in each step was at 600°C (for 2 minutes to 20 minutes).
minutes) went.

製造した極細径クラッド線材の断面を走査型電子顕微鏡
(SEM)にて2,000倍で観察したところ、剥離、
酸化物等の欠陥は観察されなかった。第9図にSEM写
真を示す。この写真からは剥離欠陥の発生は全く認めら
れない。
When the cross section of the produced ultra-fine clad wire was observed at 2,000x magnification using a scanning electron microscope (SEM), peeling,
No defects such as oxides were observed. FIG. 9 shows a SEM photograph. This photograph shows no peeling defects at all.

〔効果〕〔effect〕

以上の如く本発明方法にあってはクラッド素材を傾斜圧
延機にて熱間延伸圧延を施した後、冷間で伸線して直径
50μ鋼以下のクラッドチタン線材を熱処理することな
(大きな接合強度が得られ、クラッドチタン線材の製造
コストの大幅な低減を図れるなど本発明は優れた効果を
奏するものである。
As described above, in the method of the present invention, the clad material is hot-stretched in an inclined rolling mill, and then cold-drawn to heat-treat the clad titanium wire rod with a diameter of 50μ or less (large joints). The present invention has excellent effects, such as being able to obtain strength and significantly reducing the manufacturing cost of clad titanium wire rods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法における主要な製造工程を示すブロ
ック図、第2図は本発明方法におけるクラッド素材の組
立態様を示す説明図、第3図は本発明方法における傾斜
圧延機による熱間延伸圧延工程を示す正面図、第4図は
第3図の■−■線による断面図、第5図は第3図のV−
V線による側面図、第6図は本発明方法における冷間伸
線工程を示す模式図、第7図は試験片の剪断強さ試験の
態様を示す模式図、第8図は外層材内の真空度と剪断強
さとの関係を示すグラフ、第9図は本発明方法により得
た極細径クラッド線材の断面のSEM写真である。 1.2.3・・・圧延ロール
Fig. 1 is a block diagram showing the main manufacturing steps in the method of the present invention, Fig. 2 is an explanatory diagram showing the assembly mode of the cladding material in the method of the present invention, and Fig. 3 is hot stretching by an inclined rolling mill in the method of the present invention. A front view showing the rolling process, FIG. 4 is a sectional view taken along the line ■-■ in FIG. 3, and FIG. 5 is a cross-sectional view taken along the line V-- in FIG.
A side view taken along the V line, FIG. 6 is a schematic diagram showing the cold wire drawing process in the method of the present invention, FIG. 7 is a schematic diagram showing the aspect of the shear strength test of the test piece, and FIG. A graph showing the relationship between the degree of vacuum and shear strength, and FIG. 9 is an SEM photograph of a cross section of an ultra-fine diameter clad wire obtained by the method of the present invention. 1.2.3...Rolling roll

Claims (1)

【特許請求の範囲】[Claims] 1、Ti又はTi基合金製の芯材にNi又はNi基合金
製の外層材を被せ、この外層材をその内部を1×10^
−^1Torr以下の真空状態に保持して密閉しクラッ
ド素材を組立てる工程と、該クラッド素材を850℃以
下に加熱して3個以上のコーン型ロールを有する傾斜圧
延機にて延伸圧延し、外層材と芯材とを拡散接合する工
程と、延伸圧延した素材を直径が50μm以下に冷間伸
線加工する工程とを含むことを特徴とするクラッドチタ
ン線材の製造方法。
1. A core material made of Ti or Ti-based alloy is covered with an outer layer material made of Ni or Ni-based alloy, and the inside of this outer layer material is 1 x 10^
- A step of assembling the cladding material by keeping it in a vacuum state of 1 Torr or less and sealing it, heating the cladding material to 850°C or less and stretching and rolling it with an inclined rolling mill having three or more cone-shaped rolls, and forming the outer layer. A method for producing a clad titanium wire comprising the steps of diffusion bonding a material and a core material, and cold drawing the stretched and rolled material to a diameter of 50 μm or less.
JP15749688A 1987-06-26 1988-06-24 Production of clad titanium wire rod Pending JPH02112886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15749688A JPH02112886A (en) 1987-06-26 1988-06-24 Production of clad titanium wire rod

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-160491 1987-06-26
JP16049187 1987-06-26
JP15749688A JPH02112886A (en) 1987-06-26 1988-06-24 Production of clad titanium wire rod

Publications (1)

Publication Number Publication Date
JPH02112886A true JPH02112886A (en) 1990-04-25

Family

ID=26484923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15749688A Pending JPH02112886A (en) 1987-06-26 1988-06-24 Production of clad titanium wire rod

Country Status (1)

Country Link
JP (1) JPH02112886A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6284883A (en) * 1985-10-08 1987-04-18 Sumitomo Metal Ind Ltd Production of clad material of ti metal and ni metal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6284883A (en) * 1985-10-08 1987-04-18 Sumitomo Metal Ind Ltd Production of clad material of ti metal and ni metal

Similar Documents

Publication Publication Date Title
JPH0436445A (en) Production of corrosion resisting seamless titanium alloy tube
CN107983793A (en) The preparation method of 2.5 tungsten alloy plate of tantalum
US3463620A (en) Cylindrical or rod-like composite article
JPH02205661A (en) Production of spring made of beta titanium alloy
JPS62149859A (en) Production of beta type titanium alloy wire
JP2001040462A (en) Production of titanium or titanium alloy fine diameter wire
JP3242521B2 (en) Manufacturing method of titanium alloy ring
JP3707799B2 (en) Zirconium alloy tube manufacturing method
JPH02112886A (en) Production of clad titanium wire rod
US5004143A (en) Method of manufacturing clad bar
JPH04111981A (en) Production of noble metal clad titanium wire
JPS6284883A (en) Production of clad material of ti metal and ni metal
JPS59110486A (en) Production of ti clad wire rod
JPH026087A (en) Production of noble metal-clad titanium wire
JP3628434B2 (en) Drawing tube excellent in corrosion resistance and method for producing the same
JPS6336903A (en) Production of composite material
JPH0246939A (en) Manufacture of conjugated wire material
JPS6054804B2 (en) Manufacturing method of titanium alloy tube
JPH0970604A (en) Manufacture of titanium-based seamless pipe excellent in prevention of occurrence of rolling flaw
JPH0530524B2 (en)
JP3109260B2 (en) Method for producing superelastic wire made of nickel / titanium alloy
JP2634789B2 (en) Method for producing titanium-clad-aluminum wire material
JPH026086A (en) Production of noble metal-clad titanium wire
JPS62189423A (en) Material for spectacle frame and its production
JPH0225216A (en) Manufacture of precious metal clad titanium wire rod