JPH02111813A - Method for controlling circulating flow condition of molten metal - Google Patents

Method for controlling circulating flow condition of molten metal

Info

Publication number
JPH02111813A
JPH02111813A JP63263685A JP26368588A JPH02111813A JP H02111813 A JPH02111813 A JP H02111813A JP 63263685 A JP63263685 A JP 63263685A JP 26368588 A JP26368588 A JP 26368588A JP H02111813 A JPH02111813 A JP H02111813A
Authority
JP
Japan
Prior art keywords
vibration
circulating flow
molten metal
gas
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63263685A
Other languages
Japanese (ja)
Inventor
Tooru Akemiya
朱宮 徹
Hiroshi Tomono
友野 宏
Kiyoshi Ichihara
清 市原
Koji Nakayama
中山 孝司
Muneaki Yamada
統明 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP63263685A priority Critical patent/JPH02111813A/en
Publication of JPH02111813A publication Critical patent/JPH02111813A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To eliminate mal-circulating flow condition of molten metal and to easily recover this to the normal condition by measuring vibration of a vacuum vessel in RH vacuum degassing apparatus, grasping the circulating flow condition of the molten metal and executing increase of circulating flow gas quantity and charge of flux. CONSTITUTION:Inert gas 6 is blown into an uptake tube 3a from gas blowing pipe 4, and the molten steel 1 is ascended through the uptake tube 3 and passed through the vacuum vessel 3 to execute the degassing treatment, etc., and returned to a molten steel ladle 2 through a downtake tube 3b to continuously circulate the molten steel 1. Then, the vibration of the vacuum vessel 3 is measured with a vibration sensor 7 arranged at the vacuum vessel 3 and the electric charge output is converted to the voltage with a converter 8 and the circulating flow quantity is calculated based on the pre-made vibration quantity with a computing element 9. By this method, at the time of judging to the mal-circulating flow, the increase of circulating flow gas from the gas pipe 4 for circulation and/or the charge of flux 10 into the vacuum vessel 3 are executed. By this method, the circulating flow of the molten steel 1 is easily recovered to the normal condition.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、環流式真空脱ガス設備における溶融金属の環
流状態を制御する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for controlling the reflux state of molten metal in a reflux vacuum degassing facility.

〔従来の技術〕[Conventional technology]

一般に、転炉、電気炉、平炉などの大気中で溶解精錬を
行う製銅炉で7容製した溶鋼には、酸素、水素、窒素な
どのガス成分が多量に含有されており、これらのガス成
分が溶鋼の凝固時あるいは凝固後に析出し、そのために
製品に種々の欠陥が発生することがある。したがって、
かかる溶鋼中のガス成分を減少させ、これらの欠陥を解
消するとともに、非金属介在物を低減させ、濃度および
成分を均一化し、内質および機械的性質を向上するため
、真空脱ガス設備が用いられている。このような真空脱
ガス設備の一つに、真空槽の下部に吸上用(上昇管)と
排出用(下降管)の2本の管を設け、上昇管にアルゴン
などの不活性ガスを吹込み、ガスリフトポンプの原理に
よって溶鋼を連続的に吸上げ、脱ガスする環流式真空脱
ガス設備(いわゆるRH真空脱ガス設備)がある。
In general, 7 volumes of molten steel produced in coppermaking furnaces that melt and refine in the atmosphere, such as converters, electric furnaces, and open hearths, contain large amounts of gas components such as oxygen, hydrogen, and nitrogen. Components precipitate during or after solidification of molten steel, which can cause various defects in products. therefore,
Vacuum degassing equipment is used to reduce the gas components in the molten steel, eliminate these defects, reduce nonmetallic inclusions, equalize the concentration and components, and improve the internal quality and mechanical properties. It is being One type of vacuum degassing equipment is to install two pipes at the bottom of the vacuum chamber, one for suction (rising pipe) and one for exhaust (downcoming pipe), and inert gas such as argon is blown into the rising pipe. There is a recirculation vacuum degassing facility (so-called RH vacuum degassing facility) that continuously sucks up and degasses molten steel using the principle of a gas lift pump.

このRH真空脱ガス設備において溶鋼の処理を効率的に
行うためには、熔口をできるだけ短時間に真空槽内に送
り込むことが必要であり、最適環流量で処理することが
重要である。
In order to efficiently process molten steel in this RH vacuum degassing equipment, it is necessary to feed the melt into the vacuum chamber in as short a time as possible, and it is important to process the molten steel at an optimal recirculation rate.

ところが、脱ガス処理に際し、へβ203等の非金属介
在物が上昇管あるいは下降管に堆積し、管内径を残少さ
せることが多く、この場合、/8日環流量が減少し、脱
ガス処理が効率的に行われなくなる。
However, during degassing treatment, non-metallic inclusions such as β203 are often deposited in the ascending or descending pipe, reducing the inner diameter of the tube.In this case, the recirculation flow rate decreases and the degassing is no longer carried out efficiently.

従来、かかるトラブルは、PH脱ガス処理後の測温時、
あるいは該処理末期における溶銅成分の分析値判明時に
、温度不均一、成分偏析等により判定し、RH処理の処
理時間を延長したり、バブリング処理によって対処して
いた。
Conventionally, such troubles occurred when measuring temperature after PH degassing treatment.
Alternatively, when the analysis value of the molten copper component at the end of the treatment is determined, it is determined based on temperature non-uniformity, component segregation, etc., and countermeasures are taken such as extending the treatment time of the RH treatment or bubbling treatment.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記対処法では、上記介在物の除去をRH処理
後に行うものであるため、工場全体のタイムスケ−ジュ
ールを混乱させるものであった。
However, in the above method, the inclusions are removed after the RH treatment, which disrupts the time schedule of the entire factory.

そこで本発明の主目的は、RH脱ガス処理の初期におい
てリアルタイムに環流不良を検知し、環流状態を正常に
戻すことのできる方法を提供することにある。
Therefore, the main object of the present invention is to provide a method capable of detecting poor reflux in real time at the initial stage of RH degassing treatment and returning the reflux condition to normal.

〔課題を解決するための手段〕 上記課題を解決するための本発明は、溶融金属容器の上
方に真空槽を設け、この真空槽内に熔融金属を上昇管か
ら導入して脱ガス処理し、下降管を経て溶融金属容器に
環流させる環流式真空脱ガス装置において、上記真空槽
の振動を振動センサーにより測定し、このセンサーから
の出力に基づいて溶融金属の環流状態を把握し、その環
流状態に基づいて、環流ガス量の増加および下降管に付
着した酸化物を溶融するフラックスの投入の少なくとも
一方を行うことを特徴とするものである。
[Means for Solving the Problems] The present invention for solving the above problems provides a vacuum tank above a molten metal container, introduces molten metal into the vacuum tank from a riser pipe and degasses it, In a recirculation type vacuum degassing device that circulates molten metal into a container via a downcomer, the vibration of the vacuum chamber is measured by a vibration sensor, and the recirculation state of the molten metal is determined based on the output from this sensor, and the recirculation state is determined. Based on this, at least one of increasing the amount of recirculating gas and introducing flux for melting oxides attached to the downcomer pipe is performed.

〔作 用〕[For production]

本発明では、RH真空槽の環流に伴う振動を測定するこ
とを第1の特徴とする。この振動は、)容融合属の環流
エネルギーと、環流ガスの真空雰囲気での破裂のエネル
ギーによって生起されるものであり、振動量と環流量は
一意的に対応する。したがって振動量の測定によって、
環流量すなわち環流状態を検知できる。
The first feature of the present invention is to measure vibrations associated with circulation in an RH vacuum chamber. This vibration is caused by the reflux energy of the fusion metal and the energy of the rupture of the reflux gas in a vacuum atmosphere, and the amount of vibration and the amount of reflux uniquely correspond. Therefore, by measuring the amount of vibration,
The amount of recirculation, that is, the state of recirculation can be detected.

次に本発明では、環流状態の不良時等に環流ガス量の増
加および前記フラックスの投入を行うことを第2の特徴
とする。環流状態が不良となるのは、真空槽の底部また
は下降管等に特定物質の酸化物(Al2O2等)などが
付着し、管径が減少することに起因する。本発明にした
がって環流ガス量を増加するか、この酸化物等の溶解力
のあるフラックスを真空槽に投入することによって、環
流状態の不良を解消できる。
Next, the second feature of the present invention is that when the recirculation condition is poor, the amount of recirculation gas is increased and the flux is added. The reason why the reflux condition becomes poor is that oxides of specific substances (Al2O2, etc.) adhere to the bottom of the vacuum chamber or the downcomer pipe, and the pipe diameter decreases. According to the present invention, the poor recirculation condition can be eliminated by increasing the amount of recirculation gas or by introducing a flux with a dissolving power such as this oxide into the vacuum chamber.

こ発明の具体的構成〕 以下本発明をさらに詳説する。Specific configuration of this invention] The present invention will be explained in more detail below.

第1図は本発明を適用したR H真空脱ガス装置の概要
説明図である。溶融金属の例として溶鋼1が充満された
溶鋼鍋2の−F方に真空槽3を配し、真空槽3の底部に
設けた上界管3aおよび下降管3bを溶wAl中へ浸漬
させる。その後、図示しない真空ポンプ等により真空槽
3の圧力を低下させると、溶鋼1が真空槽3内に吸い上
げられ、この吸い上げられた?8鋼1の呈する圧力と大
気圧とが等しくなった液位で溶鋼1の吸い上げが停止す
る。
FIG. 1 is a schematic explanatory diagram of an R H vacuum degassing apparatus to which the present invention is applied. A vacuum tank 3 is disposed on the -F side of a molten steel ladle 2 filled with molten steel 1 as an example of molten metal, and an upper tube 3a and a downcomer tube 3b provided at the bottom of the vacuum chamber 3 are immersed in the molten wAl. Thereafter, when the pressure in the vacuum chamber 3 is lowered using a vacuum pump (not shown) or the like, the molten steel 1 is sucked up into the vacuum chamber 3. The suction of the molten steel 1 stops at the liquid level where the pressure exerted by the steel 1 becomes equal to the atmospheric pressure.

次に、ガス吹込管4よりアルゴンガス等の不活性ガス6
を上昇管3aに吹込むと、ガスリフトポンプの原理によ
って溶鋼1が上昇管3aを通って上昇し、真空槽3内を
通過5しながら脱ガス処理等が行われた後、下降管3b
を経て溶鋼鍋2に戻され、以後連続的に溶鋼1が環流さ
れる。
Next, an inert gas 6 such as argon gas is supplied from the gas blowing pipe 4.
When molten steel 1 is blown into the rising pipe 3a, the molten steel 1 rises through the rising pipe 3a according to the principle of a gas lift pump, and after being degassed while passing through the vacuum chamber 3, it is transferred to the descending pipe 3b.
After that, the molten steel 1 is returned to the molten steel ladle 2, and thereafter the molten steel 1 is continuously circulated.

上記真空槽3は上記還流に伴い振動し、振動量は環流量
の増力旧こ伴い増加する。したがって、この振動量を連
続的に測定すれば環流状態を把握することができる。そ
こで本発明では、真空槽3に振動センサー7を設置し、
この振動センサー7の電荷出力を電圧に変換する変換器
8を介して、演算器9により、あらかじめ作成された振
動量と環流量との関係式より、環流量を演算する。
The vacuum chamber 3 vibrates with the reflux, and the amount of vibration increases as the reflux flow increases. Therefore, by continuously measuring the amount of vibration, it is possible to grasp the circulation state. Therefore, in the present invention, a vibration sensor 7 is installed in the vacuum chamber 3,
Through a converter 8 that converts the charge output of the vibration sensor 7 into a voltage, a calculation unit 9 calculates the amount of recirculation from a relational expression between the amount of vibration and the amount of recirculation created in advance.

一方、第1図中、真空槽3の上部には、フラックス10
を収容したタンク11を設ける。そして前記方法で環流
不良と判断した場合は、環流用ガス管4からの環流ガス
の増加および/またはフラックス10の真空槽3内への
投入を行う。このフラックスは下降管3b等に付着した
付着物を溶11¥させる作用を有する物質を用いる。
On the other hand, in FIG. 1, a flux 10
A tank 11 containing the following is provided. If it is determined that the recirculation is insufficient by the method described above, the amount of recirculation gas from the recirculation gas pipe 4 is increased and/or the flux 10 is introduced into the vacuum chamber 3. This flux uses a substance that has the effect of dissolving deposits attached to the downcomer pipe 3b and the like.

本発明における真空槽の振動量と溶鋼の環流量との関係
を調査した結果を第2図に示す。ここで、環流量は、C
uをトレーサーとして投入し、Cuの均−混合時間より
次式で求めた実測値である。
FIG. 2 shows the results of an investigation into the relationship between the amount of vibration of the vacuum chamber and the amount of molten steel circulating in the present invention. Here, the reflux amount is C
This is an actual value obtained by adding u as a tracer and using the following equation from the homogeneous mixing time of Cu.

w =3.33X D ” ”W” 33.t −” 
74W:環流量(Ton/m1n) D:下降管径(cm) W:処理量(Ton) t:均一混合時間(sec) 第2図より明らかなように、環流量40Ton/min
以下で環流不良となったが、そのときの環流ガス量によ
って不良が生じる時の振動量は異なる。したがって環流
ガス別に第1表記載の基準で環流不良を判定する。
w = 3.33X D ” “W” 33.t −”
74W: Circulation amount (Ton/m1n) D: Down pipe diameter (cm) W: Processing amount (Ton) t: Uniform mixing time (sec) As is clear from Figure 2, the recirculation amount is 40Ton/min.
A recirculation failure occurred in the following cases, but the amount of vibration when the failure occurs varies depending on the amount of recirculation gas at that time. Therefore, poor recirculation is determined for each recirculated gas based on the criteria listed in Table 1.

上表における環流状態の判定については、取鍋の上層と
下層とで温度・成分の差が少ないときを正常(○)、差
が大のときを不良(×)とする。
Regarding the judgment of the reflux condition in the above table, when there is little difference in temperature and components between the upper and lower layers of the ladle, it is judged as normal (○), and when the difference is large, it is judged as bad (×).

そして不良と判定した場合は、環流ガスを増加し、フラ
ックスを投入する。これにより振動は増加し、成分・温
度の不均一は回避される。このフラックス投入による振
動の変化例を第3図に示す。
If it is determined to be defective, the amount of reflux gas is increased and flux is added. This increases vibration and avoids non-uniformity of components and temperature. FIG. 3 shows an example of the change in vibration caused by this flux injection.

この例では、フラックス投入t400kg、フラックス
:Ca070%、CaFz : 30%、環流ガス量:
6oo 〜120’01/分、環流N : 30Ton
 /分〜50Ton/分であった。
In this example, flux input is 400 kg, flux: Ca070%, CaFz: 30%, reflux gas amount:
6oo ~ 120'01/min, reflux N: 30Ton
/min~50Ton/min.

次に第4図は環流ガス量と振動量との関係を示した図で
ある。
Next, FIG. 4 is a diagram showing the relationship between the amount of recirculated gas and the amount of vibration.

第3図例のように、環流不良回避処置をとったとき、振
動量が増加するが、その増加分が第4図中に示す不良/
正常境界基準線L(第1表中の×と○の境界に対応)を
超えた場合(A)、環流状態の正常復帰とみなして処理
を続行する。しかし、振動量は増加しても、上記基準線
りを超えない場合(B)は復帰しておらず、真空槽の交
換などによって処置する。この(B)の場合の振動増加
分は、環流量に対応するものではなく、環流ガスが真空
雰囲気中に放散することによる振動増加分であると考え
られる。なお、第4図中の基準線りは過去の実操業にお
ける実績より決定したものである。
As shown in the example in Figure 3, when measures are taken to avoid poor circulation, the amount of vibration increases;
If the normal boundary reference line L (corresponding to the boundary between x and ○ in Table 1) is exceeded (A), it is assumed that the perfusion state has returned to normal and the process is continued. However, even if the amount of vibration increases, if it does not exceed the reference line (B), it has not recovered and should be dealt with by replacing the vacuum chamber. The increase in vibration in case (B) does not correspond to the amount of recirculation, but is considered to be the increase in vibration due to the dissipation of the recirculation gas into the vacuum atmosphere. Note that the reference line in Fig. 4 was determined based on actual results in past actual operations.

本発明で用いるフラ、・クスとしては次のようなものを
用いることができる。なお、CaFzはへβ203等を
溶解させる(融点を下げる)作用がある。
The following can be used as the flax and soybean paste used in the present invention. Note that CaFz has the effect of dissolving β203 and the like (lowering the melting point).

また、フラックス投入量は、200〜800kg/チャ
ージ(160Ton溶鋼)が好ましい。200kg未満
ではフラックス投入の効果が弱く、800kgを超える
と耐火物の溶損が大となるからである。
Moreover, the flux input amount is preferably 200 to 800 kg/charge (160 tons of molten steel). This is because if the weight is less than 200 kg, the effect of adding flux will be weak, and if it exceeds 800 kg, the refractory material will suffer significant melting loss.

次に本発明における振動センサーの取付場所について第
5図により説明すると、真空槽3は−γ投に支持台12
に設置された支持枠13に固定され、上部の排ガス管1
4のエキスパンション15をハネとして振動している。
Next, the mounting location of the vibration sensor in the present invention will be explained with reference to FIG.
The upper exhaust gas pipe 1 is fixed to a support frame 13 installed in the
It vibrates using the expansion 15 of No. 4 as a spring.

したがって振動センサーは槽中央の支持部より離れた位
置に取付けるのが、振動が大きく得られるので好ましい
。その反面、真空槽の下部すぎると、図示しない?8E
液面に近づくので溶拙の輻射熱で振動センサーおよびケ
ーブルに支障を来たす。したがって、たとえば第5図に
具体的に数値で示したような大きさの真空槽の場合、支
持枠より約1m以上下方、通常2m下方の位置が好まし
い。
Therefore, it is preferable to install the vibration sensor at a position away from the supporting part at the center of the tank, since a large amount of vibration can be obtained. On the other hand, if it is too low in the vacuum chamber, it is not shown in the diagram. 8E
As it gets close to the liquid level, the radiant heat from the melting will cause trouble to the vibration sensor and cable. Therefore, for example, in the case of a vacuum chamber of the size specifically shown numerically in FIG. 5, the position is preferably about 1 m or more below the support frame, usually 2 m below.

本発明における振動量の検出は、振動速度、振動加速度
、変位等の形で行うことができる。ただし、高周波数の
振動は振動加速度で、低周波数の振動は振動速度あるい
は変位で検出するのが一般的であり、第3図示例の場合
、低周波域の振動であるため振動速度で検出するのが好
ましい。なお、この場合の測定条件例を付記する。
The amount of vibration in the present invention can be detected in the form of vibration velocity, vibration acceleration, displacement, etc. However, high-frequency vibrations are generally detected by vibration acceleration, and low-frequency vibrations are detected by vibration velocity or displacement. In the case of the example shown in the third figure, since the vibration is in a low frequency range, it is detected by vibration velocity. is preferable. Note that an example of measurement conditions in this case will be added.

振動センサー型式・・・圧電式加速度センサー振動セン
サーチャージ感度・・・15.1 pc/gチャージア
ンプ〈変換器)電圧感度 −316mVS/cm 本発明における振動センサーとしては、圧電式振JすJ
センサー、動電形振動センサー、サーボ加速度センサー
等の公知のいずれの振動センサーも使用できる。
Vibration sensor type...Piezoelectric acceleration sensor Vibration sensor Charge sensitivity...15.1 pc/g Charge amplifier (converter) Voltage sensitivity -316mVS/cm The vibration sensor in the present invention is a piezoelectric acceleration sensor.
Any known vibration sensor such as a sensor, an electrodynamic vibration sensor, or a servo acceleration sensor can be used.

次に、環流状態の把握に好適な周波数について検討した
。まず第6図において、3H2および5H2にもピーク
を有するが、本発明者らの知見によれば、これらは真空
槽の固有振動に基づくもので、還流量とは直接関係ない
。ちなみに、第7図のように、非還流状態においても、
3H1および5H2のピークを有する。したがって、1
0H2のピークのみが還流量と関係することが判った。
Next, we investigated frequencies suitable for understanding the circulation state. First, in FIG. 6, 3H2 and 5H2 also have peaks, but according to the knowledge of the present inventors, these are based on the natural vibration of the vacuum chamber and are not directly related to the reflux amount. By the way, as shown in Figure 7, even in a non-reflux state,
It has 3H1 and 5H2 peaks. Therefore, 1
It was found that only the 0H2 peak was related to the reflux amount.

このように、当該真空槽の型式や大きさなどに対して、
固有の振動を示すので、予め非還流状態での振動状況を
測定した後、還流量を示す周波数およびピークをピック
アップすることが望まれる。
In this way, depending on the model and size of the vacuum chamber,
Since it exhibits a unique vibration, it is desirable to measure the vibration state in a non-reflux state in advance and then pick up the frequency and peak that indicate the amount of reflux.

一方、本発明において、振動量の検出は連続的であるこ
とが望ましいけれども間欠的であってもよい。
On the other hand, in the present invention, although it is desirable that the amount of vibration be detected continuously, it may be detected intermittently.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明によれば、RH脱ガス処理の初期に
リアルタイムで環流不良を検知し、環流を容易に正常状
態に回復させることができる。
As described above, according to the present invention, poor recirculation can be detected in real time at the initial stage of RH degassing treatment, and the recirculation can be easily restored to a normal state.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る環流式(RH)真空脱ガス設備
の概略図、第2図は、溶鋼環流量と真空槽の振動速度お
よび環流ガス量の相関図、第3図はフラックス投入時の
真空槽の振動を示したグラフ、第4図は環流ガス量と振
動量の相関図、第5図は振動センサーの取付個所の説明
図、第6図は真空槽の振動時の振動の周波数帯域を示す
図、第7図は同非還流時の周波数帯域図である。 1・・・溶鋼(溶融金属)、2・・・溶鋼鍋(溶融金属
容器)、3・・・真空槽、3a・・・上昇管、3b・・
・下降管、4・・・環流用ガス管、6・・・不活性ガス
、7・・・振動センサー 8・・・変換器、9・・・演
算器、10・・・フラックス。 第3図 第2図 ′O 第4図 便3t1人量つ与 環テ艷量 t4 第 図 第 図 第 図 屓X数FHz+
Fig. 1 is a schematic diagram of the recirculation type (RH) vacuum degassing equipment according to the present invention, Fig. 2 is a correlation diagram between the molten steel recirculation flow rate, the vibration speed of the vacuum chamber, and the recirculation gas amount, and Fig. 3 is a flux injection Figure 4 is a graph showing the relationship between the amount of circulating gas and the amount of vibration, Figure 5 is an explanatory diagram of the installation location of the vibration sensor, and Figure 6 is a graph showing the vibration of the vacuum chamber when it vibrates. A diagram showing frequency bands, FIG. 7 is a frequency band diagram at the time of non-recirculation. 1... Molten steel (molten metal), 2... Molten steel pot (molten metal container), 3... Vacuum tank, 3a... Rising pipe, 3b...
- Descending pipe, 4... Circulation gas pipe, 6... Inert gas, 7... Vibration sensor, 8... Converter, 9... Arithmetic unit, 10... Flux. Fig. 3 Fig. 2'O Fig. 4 Flight 3t 1 person capacity t4 Fig. fig.

Claims (1)

【特許請求の範囲】[Claims] (1)溶融金属容器の上方に真空槽を設け、この真空槽
内に溶融金属を上昇管から導入して脱ガス処理し、下降
管を経て溶融金属容器に環流させる環流式真空脱ガス装
置において、上記真空槽の振動を振動センサーにより測
定し、このセンサーからの出力に基づいて溶融金属の環
流状態を把握し、その環流状態に基づいて、環流ガス量
の増加および下降管に付着した酸化物を溶融するフラッ
クスの投入の少なくとも一方を行うことを特徴とする溶
融金属環流状態制御方法。
(1) In a recirculation type vacuum degassing device in which a vacuum chamber is provided above the molten metal container, the molten metal is introduced into the vacuum chamber from the riser pipe, degassed, and then refluxed to the molten metal container via the downcomer pipe. , the vibration of the vacuum chamber is measured by a vibration sensor, the reflux condition of the molten metal is determined based on the output from this sensor, and based on the reflux condition, an increase in the amount of reflux gas and oxides attached to the downcomer are detected. 1. A method for controlling a molten metal circulation state, comprising: performing at least one of introducing flux to melt the molten metal.
JP63263685A 1988-10-19 1988-10-19 Method for controlling circulating flow condition of molten metal Pending JPH02111813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63263685A JPH02111813A (en) 1988-10-19 1988-10-19 Method for controlling circulating flow condition of molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63263685A JPH02111813A (en) 1988-10-19 1988-10-19 Method for controlling circulating flow condition of molten metal

Publications (1)

Publication Number Publication Date
JPH02111813A true JPH02111813A (en) 1990-04-24

Family

ID=17392917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63263685A Pending JPH02111813A (en) 1988-10-19 1988-10-19 Method for controlling circulating flow condition of molten metal

Country Status (1)

Country Link
JP (1) JPH02111813A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102645318A (en) * 2012-04-25 2012-08-22 东北大学 RH-MFB (Rockwell Hardness-Medial Forebrain Bundle) metallurgy reaction simulation test device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55141515A (en) * 1979-04-18 1980-11-05 Kawasaki Steel Corp Vacuum degassing method of molten steel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55141515A (en) * 1979-04-18 1980-11-05 Kawasaki Steel Corp Vacuum degassing method of molten steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102645318A (en) * 2012-04-25 2012-08-22 东北大学 RH-MFB (Rockwell Hardness-Medial Forebrain Bundle) metallurgy reaction simulation test device

Similar Documents

Publication Publication Date Title
US4386727A (en) Prevention of build up of residual stresses in welds during welding and subsequent reheat cycles
JPH02111813A (en) Method for controlling circulating flow condition of molten metal
US4604137A (en) Method and apparatus for controlled melt refining
JPH09202913A (en) Method for controlling carbon concentration at end point in rh vacuum degassing apparatus and device for controlling carbon concentration
CN106011384A (en) Method for smelting non-sedating molten steel
JPH02104610A (en) Instrument for detecting circulating condition of molten metal
JPH02310307A (en) Instrument for detecting circulation flow condition of molten metal
JP3327210B2 (en) Vacuum refining method and apparatus
JPH02209417A (en) Degassing refining method
JPS5831045A (en) Vacuum degassing method of molten metal and its device
JP2010174320A (en) Method for controlling carbon content in molten steel in rh-degassing refining
KR200278673Y1 (en) Sedimentation pipe for improving refining capacity
JPH02213409A (en) Instrument for detecting molten metal surface in degassing refining
JP4289214B2 (en) Method for decarburizing molten steel and method for producing molten steel
JPH01298111A (en) Rh degassed refining method
JPH03100115A (en) Method and apparatus for vacuum degassing-molten steel
JPH0849013A (en) Control of facility performance of rh vacuum degassing
JP3282487B2 (en) Manufacturing method of enamel steel
JPH0237280A (en) Method of detecting molten metal mixing power
JPH05320738A (en) Method for controlling sucking-up type vacuum refining apparatus
JPH062026A (en) Production of low nitrogen steel through rh-degassing
LIN et al. Theoretical Analysis and Technology Development of Dehydrogenation in Vacuum Degasser
CN116004937A (en) Full-automatic desulfurization method for molten iron pretreatment
JPH02228417A (en) Dip pipe for vacuum degasification device
SU759626A1 (en) Method of control of steel vacuum treatment process