JPH02111470A - Apparatus for producing organic thin membrane - Google Patents

Apparatus for producing organic thin membrane

Info

Publication number
JPH02111470A
JPH02111470A JP26137788A JP26137788A JPH02111470A JP H02111470 A JPH02111470 A JP H02111470A JP 26137788 A JP26137788 A JP 26137788A JP 26137788 A JP26137788 A JP 26137788A JP H02111470 A JPH02111470 A JP H02111470A
Authority
JP
Japan
Prior art keywords
water
membranes
peltier element
org
water tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26137788A
Other languages
Japanese (ja)
Other versions
JPH06220B2 (en
Inventor
Noritake Shimanoe
憲剛 島ノ江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP63261377A priority Critical patent/JPH06220B2/en
Publication of JPH02111470A publication Critical patent/JPH02111470A/en
Publication of JPH06220B2 publication Critical patent/JPH06220B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/122Separate manufacturing of ultra-thin membranes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Formation Of Insulating Films (AREA)
  • Coating Apparatus (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To obtain the production apparatus which precisely controls the various properties of thin org. membranes and can improve productivity by using a Peltier element and infrared rays light to control the temp. of a water tank. CONSTITUTION:The apparatus for producing thin org. membranes which develops an org. material insoluble in water (fatty acid, dye, protein, other materials which can form LB membranes, for example, stearic acid, spiropyrane, porphyrin deriv., flavin deriv., etc.) on a water surface and forms the thin membranes has the water tank 1 installed with the Peltier element 5 for heating and cooling and further, an infrared rays radiation device 12 as a heating source to the water surface in order to raise the heating efficiency of the org. material. The heat radiation from the Peltier element 5 is absorbed by using a heat radiating chamber made of aluminum and the inside of the heat radiating chamber is made into a finned structure and is subjected to a heat exchange by water. The water temp. is measured by a thermocouple 15 and the movement of substrates is controlled by 8, 9, 10.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は水槽及び水面上の有機材料の加熱及び冷却を行
なう有機薄膜製造装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an apparatus for producing an organic thin film for heating and cooling an organic material on a water tank and water surface.

従来の技術 近年、水面展開膜やこれを基板上に移し取るラングミュ
ア−・プロジット膜を用いた各種の電子デバイス、記録
材料が盛んに研究されている。この水面展開膜は、諸条
件、例えば水温、気温、pH等により膜密度、結晶性、
配向性が変化することが知られている。特に水温制御(
有機物の温度間g4)は、従来から、水槽下部または側
面に水を循環させる空間を設け、温度調整した水を流す
方法(例えば、特開昭82−294434号公報、特開
昭63−54933号公報)、水槽に直接温度調整した
溶液を流す方法(例えば、特開昭80−193536号
公報)が行なわれている。しかし、これらの方法では、
強制的に流体を移動させているため水面上の有機分子に
振動が生じ、また水槽の温度変化に要する時間も長くな
り、有41F!li膜の結晶性、配向性、生産性の点で
非常に問題がある。
BACKGROUND OF THE INVENTION In recent years, various electronic devices and recording materials using a water surface spreading film and a Langmuir-prodgit film for transferring the film onto a substrate have been actively researched. This water-surface-deployed film has a change in film density, crystallinity, etc. depending on various conditions such as water temperature, air temperature, pH, etc.
It is known that the orientation changes. Especially water temperature control (
The temperature range g4) of organic matter has conventionally been determined by providing a space for circulating water at the bottom or side of the tank and flowing temperature-adjusted water (for example, JP-A-82-294434, JP-A-63-54933). (Japanese Unexamined Patent Publication No. 80-193536), in which a temperature-controlled solution is directly poured into a water tank. However, these methods
Because the fluid is forcibly moved, organic molecules on the water surface vibrate, and the time required for the temperature of the aquarium to change also increases, resulting in a temperature increase of 41F! There are serious problems in terms of crystallinity, orientation, and productivity of the Li film.

発明が解決しようとする課題 本発明は無振動かつ短時間に均一に水温(有機物の温度
)を調整し、有機薄膜の結晶性、配向性を精密にコント
ロールするとともに、生産性を向上させることが可能な
有機薄膜製造装置を提供することを目的とする。
Problems to be Solved by the Invention The present invention can uniformly adjust the water temperature (temperature of organic matter) without vibration and in a short time, precisely control the crystallinity and orientation of organic thin films, and improve productivity. The purpose is to provide a possible organic thin film manufacturing device.

課題を解決するための手段 水面上に水に不溶な有機材料(脂肪酸1色素。Means to solve problems Water-insoluble organic material (fatty acid 1 pigment) on the water surface.

タンパク質、その他LB膜に成り得る材料、例えばステ
アリン酸、スピロピラン、ポルフィリン誘導体、フラビ
ン誘導体等)を展開し薄膜とする有機薄膜製造装置にお
いて、水槽の加熱及び冷却用のペルチェ素子を設置した
水槽、更には有機材料の加熱効率を上げるために水面へ
の加熱源として赤外光照射装置を有する有機薄膜製造装
置である。
In an organic thin film manufacturing apparatus that develops and forms thin films from proteins and other materials that can be used as LB films, such as stearic acid, spiropyran, porphyrin derivatives, flavin derivatives, etc., an aquarium equipped with a Peltier element for heating and cooling the aquarium; is an organic thin film manufacturing apparatus that has an infrared light irradiation device as a heating source for the water surface in order to increase the heating efficiency of organic materials.

作用 本発明によれば、水面上に有機材料を展開し薄膜とする
際、水槽の温度制御をペルチェ素子及び赤外光で行なう
ことで無振動かつ短時間で均一に制御出来る。
According to the present invention, when an organic material is spread on the water surface to form a thin film, the temperature of the water tank can be controlled uniformly in a short time and without vibration by controlling the temperature of the water tank using a Peltier element and infrared light.

以下詳細に説明する。用いるペルチェ素子は室温付近で
使用可能なものであり、設置場所は水槽の下部や側部で
水槽の形によって決まり、熱拡散が良いように水槽に密
着させる。
This will be explained in detail below. The Peltier element used can be used at around room temperature, and the installation location is determined by the shape of the tank, either at the bottom or on the side of the tank, and it is placed in close contact with the tank to ensure good heat diffusion.

また、ペルチェ素子は水槽面を冷却する場合、もう一方
の面が加熱になり、冷却しなければならない。これは、
大気との温度差が小さい場合・空冷でも良いが、大きい
場合には放熱禮を設けることが望ましい。
Furthermore, when the Peltier element cools the surface of the aquarium, the other surface becomes heated and must be cooled. this is,
If the temperature difference with the atmosphere is small, air cooling may be used, but if the temperature difference is large, it is desirable to provide heat radiation.

個々のペルチェ素子と電源との接続は、電源の容量や素
子の信頼性等により直列でも並列でも良く、素子に流れ
る電流の方向は、第4図で説明すると、上面冷却時にN
型からP型へ、上面加熱時にはP型からN型へなるよう
にする。
The connection between each Peltier element and the power supply may be in series or parallel depending on the capacity of the power supply and the reliability of the element, and the direction of the current flowing through the element is determined by the direction of N when the top surface is cooled.
It is made to change from the mold to the P type, and from the P type to the N type when the top surface is heated.

水面に展開した有機材料に加熱効率を更に良くするため
に赤外光を照射するが、光源にはセラミックスヒーター
が良く、可視光を含む場合に起こる有機材料の変化(光
重合反応、会合、劣化等)を抑制出来る。
Infrared light is irradiated to organic materials spread on the water surface to further improve heating efficiency, but a ceramic heater is a good light source. etc.) can be suppressed.

照射する赤外光の波長は水及び有機材料が吸収をもつ2
.54 m以上で、フィルター等を用いて変化させるこ
とが出来る。
The wavelength of the infrared light to be irradiated is 2, which is absorbed by water and organic materials.
.. 54 m or more, it can be changed using a filter, etc.

赤外光の照射は第2図のように水面上部に光源12を設
置し、金コーティングシャッター13を用い、照射時間
を調整して行なうか、第3図のように遠方からの赤外光
を金コーティングシャッター13で照射時間調整し、金
コーティング反射板14に反射させて行なうか、装置環
境によって選択出来る。
Irradiation of infrared light can be carried out by installing a light source 12 above the water surface, using a gold-coated shutter 13, and adjusting the irradiation time as shown in Figure 2, or by irradiating infrared light from a distance as shown in Figure 3. Depending on the equipment environment, the irradiation time can be adjusted using the gold-coated shutter 13 and the irradiation can be reflected by the gold-coated reflector plate 14.

実施例1 以下図面を参照して本発明の詳細な説明する。Example 1 The present invention will be described in detail below with reference to the drawings.

第1図は本装置全体を示すもので、1は輻10C1+、
長さ60cm、深さ1cmのポリテトラフロロエチレン
でコートされた水槽、2はポリテトラフロロエチレンで
コートされた表面圧縮バーである。これはモーター11
で移動する。
Figure 1 shows the entire device, where 1 is the convergence 10C1+,
A water tank coated with polytetrafluoroethylene having a length of 60 cm and a depth of 1 cm. 2 is a surface compression bar coated with polytetrafluoroethylene. This is motor 11
Move with.

3は表面圧変化を測定するためのプレートで、表面圧検
出はプレートの重さを測定する電子天秤4を用い、wi
lthe1my型で行なっている。
3 is a plate for measuring changes in surface pressure, and the surface pressure is detected using an electronic balance 4 that measures the weight of the plate.
This is done using lthe1my type.

5は本発明の有機薄膜製造装置に具備するペルチェ素子
で上部水槽及び下部放熱槽6と密着している。この場合
アルミニウム製放熱槽を用いペルチェ素子からの熱放出
を吸収するようになっており、放熱槽内部はひれ状構造
で水により熱交換される。
Reference numeral 5 denotes a Peltier element included in the organic thin film manufacturing apparatus of the present invention, and is in close contact with the upper water tank and the lower heat radiation tank 6. In this case, an aluminum heat sink is used to absorb the heat released from the Peltier element, and the inside of the heat sink has a fin-like structure for heat exchange with water.

ペルチェ素子は合計40個で直列4個接続し、これをl
θ個並列にして電源16と接続されている。また、ペル
チェ素子はB1−Te系を用いている。
There are a total of 40 Peltier elements, 4 of which are connected in series.
θ pieces are connected in parallel to the power supply 16. Moreover, the Peltier element uses B1-Te type.

15は熱電対で水温測定用である。7は基板ホルダーで
、基板の上下は8の°モーターで、前後、左右は9.1
0のモーターで制御される。以下、本装置を用いた有a
薄膜の製造例を説明する。
15 is a thermocouple for measuring water temperature. 7 is a board holder, the top and bottom of the board is an 8 degree motor, and the front, back, left and right sides are 9.1 degrees.
Controlled by 0 motor. Below, we will explain how to use this device.
An example of manufacturing a thin film will be explained.

まず、ステアリン酸をクロロホルムに溶解し濃度1.0
g/lの展開溶媒を調整し、この溶液を18℃で2.5
X10−AMのCdCILzを含む500シの水溶液上
に少峨滴下し、クロロホルムを蒸発させた後、バー2を
移動させ表面張力を20dyn/c+sに調整した。
First, dissolve stearic acid in chloroform to a concentration of 1.0.
Adjust the developing solvent to 2.5 g/l and mix this solution at 18°C.
A small amount of the solution was dropped onto a 500 mm aqueous solution containing CdCILz of X10-AM, and after chloroform was evaporated, the bar 2 was moved to adjust the surface tension to 20 dyn/c+s.

表面張力を一定に保ちながらペルチェ素子に2OA(1
個ちり4v、2A)電流を流し水温を40℃にした。こ
の時、要した時間は20分であった。水温を40℃に2
0分保ち、次にペルチェ素子に加熱時とは逆方向に電流
を流し水槽を18℃に冷却した。
While keeping the surface tension constant, 2OA (1
A current of 4 V and 2 A was applied to raise the water temperature to 40°C. At this time, the time required was 20 minutes. Increase the water temperature to 40℃2
The temperature was maintained for 0 minutes, and then a current was applied to the Peltier element in the opposite direction to that during heating, and the water tank was cooled to 18°C.

この時、要した時間は15分であった。At this time, the time required was 15 minutes.

この膜を表面張力を20dyn/cI11に保ちながら
、金電極を設けたSi基板を1 mm/+oinの基板
スピードで上下させ3層移し取った。この膜の上に金電
極を蒸着(面積1c+m2)L、抵抗を測定したところ
to+6Ω#cffiテあツタ。
While maintaining the surface tension of this film at 20 dyn/cI11, three layers were transferred by moving the Si substrate provided with the gold electrode up and down at a substrate speed of 1 mm/+oin. A gold electrode was deposited on this film (area 1c+m2), and the resistance was measured to +6Ω#cffi.

実施例2 実施例1の装置に赤外光光源としてセラミックスヒータ
ー12を水面上に、金コーティングシャッター13を水
槽と光源の間に設置した。
Example 2 In the apparatus of Example 1, a ceramic heater 12 as an infrared light source was installed above the water surface, and a gold-coated shutter 13 was installed between the water tank and the light source.

次に、実施例1と同様にステアリン酸を展開し、表面張
力を20dyn/cm一定に保ちながら、ベルチェ素子
に2OA(1個当り4v、2A)電流を流し、同時に放
射体の温度を200℃設定し、水温を40℃にした。こ
の時、要した時間は10分であった。水温を40℃に2
0分保ち、次にベルチェ素子に加熱時とは逆方向に電流
を流し水槽を18℃に冷却した。この時、要した時間は
15分であった。
Next, stearic acid was developed in the same manner as in Example 1, and while keeping the surface tension constant at 20 dyn/cm, a current of 2 OA (4 V, 2 A per element) was applied to the Vertier element, and at the same time the temperature of the radiator was raised to 200°C. The water temperature was set to 40°C. At this time, the time required was 10 minutes. Increase the water temperature to 40℃2
The temperature was maintained for 0 minutes, and then a current was applied to the Vertier element in the opposite direction to that during heating to cool the water tank to 18°C. At this time, the time required was 15 minutes.

この膜を表面張力を20dyn/c+sに保ちながら、
金電極を設けたSi基板を1 am/sinの基板スピ
ードで上下させ、3層移し取った。この膜の上に金電極
を蒸着(面積1c112)L、抵抗を測定したところ1
016Ω・C11であった。
While maintaining the surface tension of this membrane at 20 dyn/c+s,
The Si substrate provided with the gold electrode was moved up and down at a substrate speed of 1 am/sin to transfer three layers. A gold electrode was deposited on this film (area 1c112) L, and the resistance was measured as 1
It was 016Ω・C11.

比較例 ステアリン酸をクロロホルムに溶解し濃度1.0g/4
の展開溶媒を調整し、この溶液を18℃で2.5XIO
−4MのCaCu5を含む500シの水溶液上に少量滴
下し、クロロホルムを蒸発させた後、バー2を移動させ
表面張力を20dyn/c■に調整した。
Comparative example Stearic acid was dissolved in chloroform and the concentration was 1.0g/4.
Adjust the developing solvent of
A small amount of the solution was dropped onto a 500 cm aqueous solution containing -4M CaCu5, and after chloroform was evaporated, the bar 2 was moved to adjust the surface tension to 20 dyn/c.

表面張力を一定に保ちながら下部水槽にサーキュレータ
を用いて水を循環させ水温を40℃にした。この時、表
面張力は±5 dyn/cmで変化し、要した時間は2
時間であった。
Water was circulated in the lower water tank using a circulator while keeping the surface tension constant, and the water temperature was brought to 40°C. At this time, the surface tension changes at ±5 dyn/cm, and the time required is 2
It was time.

水温を40℃に20分保ち、次にサーキュレータで40
℃の水を18℃に冷却し水槽を冷却した。この時、要し
た時間は4時間であった。また、この時も表面張力が±
5 dffn/c+sで変化した。
Keep the water temperature at 40℃ for 20 minutes, then use a circulator for 40 minutes.
℃ water was cooled to 18 ℃ to cool the water tank. At this time, the time required was 4 hours. Also, at this time, the surface tension is ±
5 changed by dffn/c+s.

この膜を表面張力を20dyn/c■に保ちながら、金
電極を設けたSi基板を1 am/sinの基板スピー
ドで上下させ3層移し取った。この膜には縞模様があり
、金電極を蒸着(面積1ea2)L抵抗を測定したとこ
ろ108〜101′Ω・C■の範囲でばらつきがあった
While maintaining the surface tension of this film at 20 dyn/c, three layers were transferred by moving the Si substrate provided with the gold electrode up and down at a substrate speed of 1 am/sin. This film had a striped pattern, and when a gold electrode was deposited (area: 1ea2) and the L resistance was measured, it varied within the range of 108 to 101'Ω·C2.

発明の効果 本発明によれば、無振動かつ短時間で均一に水槽の温度
(有機材料の温度)制御を可能とする有機薄膜製造装置
を提供することが出来る。
Effects of the Invention According to the present invention, it is possible to provide an organic thin film manufacturing apparatus that can uniformly control the temperature of the water tank (the temperature of the organic material) without vibration and in a short time.

【図面の簡単な説明】 図面はいずれも本発明の実施例を示すもので、第1図は
装置全体を示す斜視図、第2図は水面上からの赤外光照
射を示す説明図、第3図は赤外光の反射照射を示した説
明図、第4図はベルチェ素子を模型的に示した説明図で
ある。 1IIII・水槽、2・・・バー、3・・拳プレート、
4・6拳電子天秤、5・拳・ベルチェ素子、6・・・放
熱槽、7・−・基板ホルダー、8・・・上下モーター、
9.10・・・X−Yモーター11−・・圧縮駆動モー
ター、12・・・赤外光光源、13・−台金コーティン
グシャッター、14・・・金コーティング反射ミラー、
15・a#熱電対、16・・・直流電源、17・・・ア
ルミナ板、180畳・電極、18・・・N型素子、20
・・・P型素子。
[BRIEF DESCRIPTION OF THE DRAWINGS] The drawings all show embodiments of the present invention; FIG. 1 is a perspective view showing the entire device, FIG. 2 is an explanatory view showing infrared light irradiation from above the water surface, and FIG. FIG. 3 is an explanatory diagram showing reflected irradiation of infrared light, and FIG. 4 is an explanatory diagram schematically showing a Vertier element. 1III・Aquarium, 2...Bar, 3...Fist plate,
4. 6. Fist electronic balance, 5. Fist/Beltier element, 6. Heat sink, 7. -. Board holder, 8. Upper and lower motor.
9.10...X-Y motor 11--Compression drive motor, 12...Infrared light source, 13--Base metal coating shutter, 14...Gold-coated reflective mirror,
15・a# thermocouple, 16...DC power supply, 17...alumina plate, 180 tatami electrode, 18...N type element, 20
...P type element.

Claims (2)

【特許請求の範囲】[Claims] (1)水面上に有機材料を展開し薄膜とする有機薄膜製
造装置において、水槽の加熱及び冷却用のペルチェ素子
を水槽に設置して成る有機薄膜製造装置。
(1) An organic thin film manufacturing apparatus that spreads an organic material on a water surface to form a thin film, and includes a Peltier element for heating and cooling the water tank installed in the water tank.
(2)請求項1の装置に水面への加熱源として赤外光を
照射する赤外光照射装置を付加した有機薄膜製造装置。
(2) An organic thin film manufacturing apparatus, which is the apparatus of claim 1 added with an infrared light irradiation device that irradiates infrared light as a heating source to the water surface.
JP63261377A 1988-10-19 1988-10-19 Organic thin film manufacturing equipment Expired - Lifetime JPH06220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63261377A JPH06220B2 (en) 1988-10-19 1988-10-19 Organic thin film manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63261377A JPH06220B2 (en) 1988-10-19 1988-10-19 Organic thin film manufacturing equipment

Publications (2)

Publication Number Publication Date
JPH02111470A true JPH02111470A (en) 1990-04-24
JPH06220B2 JPH06220B2 (en) 1994-01-05

Family

ID=17361001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63261377A Expired - Lifetime JPH06220B2 (en) 1988-10-19 1988-10-19 Organic thin film manufacturing equipment

Country Status (1)

Country Link
JP (1) JPH06220B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100318151B1 (en) * 1998-07-25 2002-04-22 김동호 Club double shaft
EP3034158A1 (en) * 2014-12-17 2016-06-22 Universität Potsdam Device and method for producing ultrathin films
JP2016156843A (en) * 2016-06-07 2016-09-01 シャープ株式会社 Biomolecule analysis apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5298038A (en) * 1976-02-11 1977-08-17 Commissariat Energie Atomique Method and apparatus for depositing monomolecular layer of bimediophilic molecular on substrate
JPS6227069A (en) * 1985-07-30 1987-02-05 Fuji Photo Film Co Ltd Device for forming solid monomolecular film
JPS63224759A (en) * 1987-03-16 1988-09-19 Takashi Sasaki Continuous film forming device of convective circulating vessel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5298038A (en) * 1976-02-11 1977-08-17 Commissariat Energie Atomique Method and apparatus for depositing monomolecular layer of bimediophilic molecular on substrate
JPS6227069A (en) * 1985-07-30 1987-02-05 Fuji Photo Film Co Ltd Device for forming solid monomolecular film
JPS63224759A (en) * 1987-03-16 1988-09-19 Takashi Sasaki Continuous film forming device of convective circulating vessel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100318151B1 (en) * 1998-07-25 2002-04-22 김동호 Club double shaft
EP3034158A1 (en) * 2014-12-17 2016-06-22 Universität Potsdam Device and method for producing ultrathin films
JP2016156843A (en) * 2016-06-07 2016-09-01 シャープ株式会社 Biomolecule analysis apparatus

Also Published As

Publication number Publication date
JPH06220B2 (en) 1994-01-05

Similar Documents

Publication Publication Date Title
US5738165A (en) Substrate holding apparatus
JP3453069B2 (en) Substrate temperature controller
JP4502354B2 (en) Apparatus having a line source of radiant energy for exposing a substrate
US5927077A (en) Processing system hot plate construction substrate
US8073315B2 (en) Radiant heater for heating the building material in a laser sintering device
JP2004039696A5 (en)
JPH10241844A (en) Heating device and heating method
TW200929423A (en) Pulsed laser anneal system architecture
TWI345139B (en) Lithographic apparatus, device manufacturing method, and device manufactured thereby
JP2004512676A (en) Pinhole defect repair by resist flow
JPH02111470A (en) Apparatus for producing organic thin membrane
JP2002540610A (en) Combined heater with plate with jagged ceramic foil and gas assist
JP2901653B2 (en) Heat treatment method and heat treatment apparatus
JP3453073B2 (en) Coating equipment
JPH11233407A (en) Method and device for controlling temperature
CN109937058B (en) Oxygenator with housing wall
JP2000114151A (en) Substrate heating apparatus
US6936182B2 (en) Method and system for optical figuring by imagewise heating of a solvent
JPH06283493A (en) Substrate cooling device
US20200089134A1 (en) Temperature controlled heat transfer frame for pellicle
US4774157A (en) Patterned metal interlayer in a matrix
CN116803546B (en) Coating equipment with temperature control function
CN214291265U (en) Reflow soldering device
JP3214494B2 (en) Holder and exposure system, device
NL2030087B1 (en) Method and device for temperature-controlled bonding of substrates with electromagnetic irradiation