JPH0211137B2 - - Google Patents

Info

Publication number
JPH0211137B2
JPH0211137B2 JP58020786A JP2078683A JPH0211137B2 JP H0211137 B2 JPH0211137 B2 JP H0211137B2 JP 58020786 A JP58020786 A JP 58020786A JP 2078683 A JP2078683 A JP 2078683A JP H0211137 B2 JPH0211137 B2 JP H0211137B2
Authority
JP
Japan
Prior art keywords
layer
coating
laser
atom
ethyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58020786A
Other languages
Japanese (ja)
Other versions
JPS59146063A (en
Inventor
Kazuharu Katagiri
Yoshihiro Oguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP58020786A priority Critical patent/JPS59146063A/en
Priority to US06/577,208 priority patent/US4555472A/en
Publication of JPS59146063A publication Critical patent/JPS59146063A/en
Publication of JPH0211137B2 publication Critical patent/JPH0211137B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B7/247Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes methine or polymethine dyes
    • G11B7/2472Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes methine or polymethine dyes cyanine
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0666Dyes containing a methine or polymethine group
    • G03G5/0672Dyes containing a methine or polymethine group containing two or more methine or polymethine groups
    • G03G5/0674Dyes containing a methine or polymethine group containing two or more methine or polymethine groups containing hetero rings

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Filters (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、レーザ特に長波長側に発振波長を有
する半導体レーザを効果的に吸収し、別のエネル
ギーを変換しうる有機被膜を関し、詳しくは半導
体レーザを光源とした電子写真方式プリンターの
電子写真用感光被膜、半導体レーザによる書込み
と再生が可能な光デイスク用被膜あるいは赤外線
カツトフイルターなどに適用できる新規な有機被
膜に関する。 レーザを光源とした電子写真方式プリンター
は、画像情報に応じた電気信号によつて、レーザ
の変調を行なわせ、この変調されたレーザをガル
バノミラーなどによつて感光体上に光走査して静
電潜像を形成した後、トナー現像および転写を順
次施すことにより、所望の再生画像を形成するこ
とができる。この際に用いられていたレーザは、
一般にヘリウムカドミニウム(発振波長:441.6n
m)やヘリウム−ネオン(発振波長:632.8nm)
などのガスレーザであつた。従つて、この様な光
源に対して用いられる感光体は、650nm程度ま
でに分光増感されていればよく、例えばポリビニ
ルカルバゾールとトリニトロフルオレノンとの電
荷移動錯体を感光層に用いたもの、セレンによつ
て増感させたテルル蒸着層を感光体に用いたも
の、電荷輪送層としてセレン蒸着層を導電層上に
形成し、このセレン蒸着層上にセレンーテルル蒸
着層を形成させたことからなる感光層を用いたも
の、増感色素によつて分光増感させた硫化カドミ
ニウムを感光層に用いたもの、また有機顔料を含
有した電荷発生層と電荷輸送層に機能分解し、そ
の感光波長域を長波長側まで増感した感光層を用
いたものなどが知られている。 一方、光デイスク技術で用いる記録被膜は、光
学的に検出可能な小さな(例えば、約1μ)ピツ
トをらせん状又は円形のトラツク形態にして、高
密度情報を記憶することができる。この様なデイ
スク情報を書込むには、レーザ感応層の表面に集
束したレーザを走査し、このレーザ光線が照射さ
れた表面のみがピツトを形成し、このピツトをら
せん状又は円形トラックの形態で形成する。レー
ザ感応層は、レーザ・エネルギーを吸収して光学
的に検出可能なピツトを形成できる。例えば、ヒ
ートモード記録方式では、レーザ感応層は熱エネ
ルギーを吸収し、その個所に蒸発又は融解により
小さな凹部(ピツト)を形成できる。また、別の
ヒートモード記録方式では、照射されたレーザ・
エネルギーの吸収により、その個所に光学的に検
出可能な濃度差を有するピツトを形成できる。 この光デイスクに記録された情報は、レーザを
トラツクに沿つて走査し、ピツトが形成された部
分とピツトが形成されていない部分の光学的変化
を読み取ることによつて検出される。例えば、レ
ーザがトラツクに沿つて走査され、デイスクによ
り反射されたエネルギーがフオトデイテクターに
よつてモニターされる。ピツトが形成されていな
い時、フオトデイテクターの出力は低下し、一方
ピツトが形成されている時はレーザ光線は下層の
反射面によつて充分に反射されフオトデイテクタ
ーの出力は大きくなる。 この様な光デイスクに用いる記録媒体として、
これまでアルミニウム蒸着膜などの金属薄膜、ビ
スマス薄膜、酸化テルル薄膜やカルコゲナイト系
非晶質ガラス膜などの無機物質を主に用いたもの
が提案されている。 ところで、近年レーザとして小型でしかも低コ
ストの上、直接変調が可能な半導体レーザが開発
されているが、このレーザの発振波長が750nm
以上の波長を有していることが多い。従つて、こ
の様な半導体レーザを用いて記録及び(又は)再
生を行なう場合には、レーザ感応被膜の吸収特性
は長波長側に吸収ピーク(一般に750nm〜850n
mの領域)を有する必要がある。 しかし、これまでのレーザ感応被膜、特に無機
材料を主成分として形成した被膜は、レーザ光に
対する反射率が高いため、レーザの利用率が低く
なり、高感度特性が得らない欠点を有しており、
しかも感応波長域を750nm以上とすることは、
レーザ感応被膜の層構成を被雑化したり、特に電
子写真用感応被膜の場合では使用した増感染料が
繰り返し帯電一露光を行なつているうちに、退色
してしまうなどの欠点を有している。 この様なことから、近年750nm以上の波長光
に対して高感度特性を示す有機被膜が堤案されて
いる。例えば、米国特許第4315983号、「Reseach
Disclosure」20517(1981.5)に開示のピリリウム
系染料や「J.Vac.Scl.Technol.、18(1)、Jan./
Feb.1981、P105〜P109に開示のスクエアリリウ
ム染料を含有した有機被膜が750nm以上のレー
ザに対して感応性であることが知られている。 しかし、一般に有機化合物は吸収特性が長波長
領域になるほど不安定で、わずかの温度上昇によ
つて分解されやすいなどの問題点を有すると同時
に電子写真方式プリンターあるいは光デイスクで
要求される各種の特性を満足する必要があるた
め、必ずしも実用性の点で十分に満足できる有機
被膜が開発されているものとは言えないのが現状
である。 従つて、本発明の第1の目的は、新規且つ有用
な有機被膜を提供することにある。 本発明の第2の目的は、長波長側、特に750n
m以上に吸収帯をもつ有機被膜を提供することに
ある。 本発明の第3の目的は、熱に対して安定な有機
被膜を提供することにある。 本発明の第4の目的は、レーザを光源とした電
子写真方式プリンターの電子写真用感光被膜を提
供することにある。 本発明の第5の目的は、750nm以上の波長域
で高感度な特性を有する電子写真用感光被膜を提
供することにある。 本発明の第6の目的は、光デイスク記録用被膜
を提供することにある。 本発明の第7の目的は、750nm以上の波長域
で高感度であり、しかも十分なS/N比を有する
光デイスク記録用被膜を提供することにある。 本発明のかかる目的は、下記一般式(1)の示され
る化合物を含有する有機被膜に達成される。 一般式(1) Z1は、置換または未置換の含窒素複素環、例え
ば、チアゾール系列の核(例えばチアゾール、4
−メチルチアゾール、4−フエニチアゾール、5
−メチルチアゾール、5−フエニルチアゾール、
4,5−ジメチルチアゾール、4,5−ジフエニ
ルチアゾール、4−(2−チエニル)−チアゾルな
ど)、ベンゾチアゾール系列の核(例えばベンゾ
チアゾール、5−クロロベンゾチアゾール、5−
メチルベンゾチアゾール、6−メチルベンゾチア
ゾール、5,6−ジメチルベンゾチアゾール、5
−プロモベンゾチアゾール、5−フエニルベンゾ
チアゾール、5−メトキシベンゾチアゾール、6
−メトキシベンゾチアゾール、5,6−ジメトキ
シベンゾチアゾール、5,6−ジオキシメチレン
ベンゾチアゾール、5−ヒドロキシベンゾチアゾ
ール、6−ヒドロキシベンゾチアゾール、4,
5,6,7−テトラヒドロベンゾチアゾールな
ど)、ナフトチアゾール系列の核(例えばナフト
〔2,1−d〕チアゾール、ナフト〔1,2−d〕
チアゾール、5−メトキシナフト〔1,2−d〕
チアゾール、5−エトキシナフト〔1,2−d〕
チアゾール、8−メトキシナフト〔2,1−d〕
チアゾール、7−メトキシナフト〔2,1−d〕
チアゾールなど)、チオナフテン〔7,6−d〕
チアゾール系列の核(例えば7−メトキシチオナ
フテン〔7,6−d〕チアゾール)、オキサゾー
ル系例の核(例えば4−メチルオキサゾール、5
−メチルオキサゾール、4−フエニルオキサゾー
ル、4,5−ジフエニルオキサゾール、4−エチ
ルオキサゾール、4,5−ジメチルオキサゾー
ル、5−フエニルオキサゾール)、ベンゾオキサ
ゾール系列の核(例えばベンゾオキサゾール、5
−クロロベンゾオキサゾール、5−メチルベンゾ
オキサゾール、5−フエニルベンゾオキサゾー
ル、6−メチルベンゾオキサゾール、5,6−ジ
メチルベンゾオキサゾール、5−メトキシベンゾ
オキサゾール、6−メトキシベンゾオキサゾー
ル、5−ヒドロキシベンゾオキサゾール、6−ヒ
ドロキシベンゾオキサゾールなど)、ナフトオキ
サゾール系列の核(例えばナフト〔2,1−d〕
オキサゾール、ナフト〔1,2−d〕オキサゾー
ルなど)、セレナゾール系列の核(例えば4−メ
チルセレナゾール、4−フエニルセレナゾールな
ど)、ベンゾセレナゾール系列の核(例えばベン
ゾセレナゾール、5−クロロベンゾセレナゾー
ル、5−メチルベンゾセレナゾール、5,6−ジ
メチルベンゾセレナゾール、5−メチルキシベン
ゾセレナゾール、5−メチル−6−メトキシベン
ゾセレナゾール、5,6−ジオキシメチルベンゾ
セレナゾール、5−ヒドロキシベンゾセレナゾー
ル、4,5,6,7−テトラヒドロベンゾセレナ
ゾールなど)、ナフトセレナゾール系列の核(例
えばナフト〔2,1−d〕セレナゾール、ナフト
〔1,2−d〕セレナゾール)、チアゾリン系列の
核(例えばチアゾリン、4−メチルチアゾリン、
4−ヒドロキシメチル−4−メチルチアゾリン、
4,4−ビス−ヒドロキシメチルチアゾリンな
ど)、オキサゾリン系列の核(例えばオキサゾリ
ン)、セレナゾリン系列の核(例えばセレナゾリ
ン)、2−キノリン系列の核(例えばキノリン、
6−メチルキノリン、6−クロロキノリン、6−
メトキシキノリン、6−エトキシキノリン、6−
ヒドロキシキノリン)、4−キノリン系列の核、
(例えばキノリン、6−メトキシキノリン、7−
メチルキノリン、8−メチルキノリン)、1−イ
ソキノリン系列の核(例えばイソキノリン、3,
4−ジヒドロイソキノリン)、3−イソキノリン
系列の核(例えばイソキノリン)、3,3−ジア
ルキルインドレニン系列の核(例えば3,3−ジ
メチルインドレニン、3,3−ジメチル−5−ク
ロロインドレニン、3,3,5−トリメチルイン
ドレニン、3,3,7−トリメチルインドレニ
ン)、ピリジン系列の核(例えばピリジン、5−
メチルピリジン)、ベンゾイミダゾール系列の核
(例えば1−エチル−5,6−ジクロロベンゾイ
ミダゾール、1−ヒドロキシエチル−5,6−ジ
クロロベンゾイミダゾール、1−エチル−クロロ
ベンゾイミダゾール、1−エチル−5,6−ジプ
ロモベンゾイミダゾール、1−エチル−5−フエ
ニルベンゾイミダゾール、1−エチル−5−フエ
オロベンゾイミダゾール、1−エチル−5−シア
ノベンゾイミダゾール、1−(β−アセトキシエ
チル)−5−シアノベンゾイミダゾール、1−エ
チル−5−クロロ−6−シアノベンゾイミダゾー
ル、1−エチル−5−フルオロ−6−シアノベン
ゾイミダゾール、1−エチル−5−アセチルベン
ゾイミダゾール、1−エチル−5−カルボキシベ
ンゾイミダゾール、1−エチル−5−エトキシカ
ルボニルベンゾイミダゾール、1−エチル−5−
スルフアミルベンゾイミダゾール、1−エチル−
5−N−エチルスルフアミルベンゾイミダゾー
ル、1−エチル−5,6−ジフルオロベンゾイミ
ダゾール、1−エチル−5,6−ジシアノベンゾ
イミダゾール、1−エチル−5−エチルスルホニ
ルベンゾイミダゾール、1−エチル−5−メチル
スルホニルベンゾイミダゾール、1−エチル−5
−トリフルオロメチルベンゾイミダゾール、1−
エチル−5−トリフルオロメチルスルホニルベン
ゾイミダゾール、1−エチル−5−トリフルオロ
メチルスルフイニルベンゾイミダゾールなど)を
完成するに必要な非金属原子群を表わす。 Z2は、置換されてもよいピラン、チアピラン、
セレナピラン、ベンゾピラン、ベンゾチアピラ
ン、ベンゾセレナピラン、ナフトピラン、ナフト
チアピラン又はナフトセレナピランを完成するに
必要な原子群を示し、Xは硫黄原子、酸素原子又
はセレン原子である。置換基としては、下述の
R2およびR3に示す水素原子以外のものを具体的
に挙げることができる。 Z3は、置換又は未置換の5員若しくは6員環を
形成する2価の炭化水素基(−CH2−CH2−、−
CH2−CH2−CH2−、
The present invention relates to an organic coating that can effectively absorb a laser, especially a semiconductor laser having an oscillation wavelength on the long wavelength side, and convert it into another energy. The present invention relates to a novel organic coating that can be applied to photosensitive coatings, coatings for optical discs that can be written and read by semiconductor lasers, infrared cut filters, and the like. An electrophotographic printer that uses a laser as a light source modulates the laser using an electrical signal that corresponds to image information, and scans the modulated laser light onto a photoreceptor using a galvano mirror or the like to create a static image. After forming the electrostatic latent image, a desired reproduced image can be formed by sequentially performing toner development and transfer. The laser used at this time was
Generally helium cadmium (oscillation wavelength: 441.6n)
m) and helium-neon (oscillation wavelength: 632.8nm)
It was a gas laser such as Therefore, the photoreceptor used for such a light source only needs to be spectrally sensitized to about 650 nm, such as one using a charge transfer complex of polyvinylcarbazole and trinitrofluorenone in the photosensitive layer, or one using selenium. A photoreceptor in which a tellurium vapor-deposited layer sensitized by Those using a photosensitive layer, those using cadmium sulfide that has been spectrally sensitized with a sensitizing dye, and those that are functionally decomposed into a charge generation layer and a charge transport layer containing organic pigments, and their photosensitive wavelength range There are known devices that use a photosensitive layer that is sensitized to the long wavelength side. On the other hand, recording coatings used in optical disk technology can store high-density information using optically detectable small (eg, about 1 micron) pits in the form of spiral or circular tracks. To write such disc information, a focused laser beam is scanned over the surface of the laser-sensitive layer, and only the surface irradiated with this laser beam forms a pit, which is then shaped into a spiral or circular track. Form. The laser sensitive layer can absorb laser energy to form optically detectable pits. For example, in a heat mode recording method, the laser sensitive layer absorbs thermal energy and can form small pits at that location by evaporation or melting. In addition, in another heat mode recording method, the irradiated laser
The absorption of energy can form pits with optically detectable concentration differences at that location. The information recorded on this optical disk is detected by scanning a laser along the track and reading the optical changes in the pitted and non-pitted areas. For example, a laser is scanned along a track and the energy reflected by the disk is monitored by a photodetector. When pits are not formed, the output of the photodetector is reduced, while when pits are formed, the laser beam is sufficiently reflected by the underlying reflective surface and the output of the photodetector is increased. As a recording medium used for such optical discs,
So far, methods have been proposed that mainly use inorganic materials such as metal thin films such as aluminum vapor-deposited films, bismuth thin films, tellurium oxide thin films, and chalcogenite amorphous glass films. Incidentally, in recent years, semiconductor lasers have been developed that are small, low-cost, and capable of direct modulation, but the oscillation wavelength of this laser is 750 nm.
In many cases, the wavelength is longer than that. Therefore, when recording and/or reproducing using such a semiconductor laser, the absorption characteristics of the laser sensitive coating have an absorption peak on the long wavelength side (generally 750nm to 850nm).
m area). However, conventional laser-sensitive coatings, especially those formed mainly of inorganic materials, have a high reflectance to laser light, resulting in a low laser utilization rate and the drawback of not being able to achieve high sensitivity characteristics. Ori,
Moreover, setting the sensitive wavelength range to 750 nm or more means that
It has drawbacks such as making the layer structure of the laser-sensitive coating complex, and especially in the case of electrophotographic sensitive coatings, the sensitizing dye used fades during repeated charging and exposure. There is. For this reason, in recent years, organic coatings have been proposed that exhibit high sensitivity to light with a wavelength of 750 nm or more. See, for example, U.S. Pat. No. 4,315,983, “Reseach
Pyrylium dyes disclosed in "Disclosure" 20517 (May 1981) and "J.Vac.Scl.Technol., 18(1), Jan./
It is known that the organic coating containing the squareylium dye disclosed in Feb. 1981, P105 to P109 is sensitive to lasers of 750 nm or more. However, in general, organic compounds have problems such as their absorption characteristics becoming unstable in the longer wavelength region and being easily decomposed by a slight temperature rise. Therefore, at present, it cannot be said that an organic film that is fully satisfactory in terms of practicality has been developed. Accordingly, a first object of the present invention is to provide a new and useful organic coating. The second object of the present invention is to
The object of the present invention is to provide an organic coating having an absorption band of 100 m or more. A third object of the present invention is to provide a thermally stable organic coating. A fourth object of the present invention is to provide an electrophotographic photosensitive coating for an electrophotographic printer using a laser as a light source. A fifth object of the present invention is to provide a photosensitive film for electrophotography that has high sensitivity in a wavelength range of 750 nm or more. A sixth object of the present invention is to provide a coating for optical disc recording. A seventh object of the present invention is to provide an optical disc recording film that is highly sensitive in a wavelength range of 750 nm or more and has a sufficient S/N ratio. This object of the present invention is achieved by an organic film containing a compound represented by the following general formula (1). General formula (1) Z 1 is a substituted or unsubstituted nitrogen-containing heterocycle, for example, a thiazole series nucleus (for example, thiazole, 4
-Methylthiazole, 4-phenythiazole, 5
-Methylthiazole, 5-phenylthiazole,
4,5-dimethylthiazole, 4,5-diphenylthiazole, 4-(2-thienyl)-thiazole, etc.), benzothiazole series nuclei (e.g. benzothiazole, 5-chlorobenzothiazole, 5-
Methylbenzothiazole, 6-methylbenzothiazole, 5,6-dimethylbenzothiazole, 5
-Promobenzothiazole, 5-phenylbenzothiazole, 5-methoxybenzothiazole, 6
-methoxybenzothiazole, 5,6-dimethoxybenzothiazole, 5,6-dioxymethylenebenzothiazole, 5-hydroxybenzothiazole, 6-hydroxybenzothiazole, 4,
5,6,7-tetrahydrobenzothiazole, etc.), naphthothiazole series nuclei (e.g. naphtho[2,1-d]thiazole, naphtho[1,2-d]
Thiazole, 5-methoxynaphtho [1,2-d]
Thiazole, 5-ethoxynaphtho [1,2-d]
Thiazole, 8-methoxynaphtho [2,1-d]
Thiazole, 7-methoxynaphtho[2,1-d]
thiazole, etc.), thionaphthene [7,6-d]
Thiazole series nuclei (e.g. 7-methoxythionaphthene[7,6-d]thiazole), oxazole series nuclei (e.g. 4-methyloxazole, 5
-methyloxazole, 4-phenyloxazole, 4,5-diphenyloxazole, 4-ethyloxazole, 4,5-dimethyloxazole, 5-phenyloxazole), benzoxazole series nuclei (e.g. benzoxazole, 5-phenyloxazole),
-chlorobenzoxazole, 5-methylbenzoxazole, 5-phenylbenzoxazole, 6-methylbenzoxazole, 5,6-dimethylbenzoxazole, 5-methoxybenzoxazole, 6-methoxybenzoxazole, 5-hydroxybenzoxazole, 6-hydroxybenzoxazole, etc.), naphthoxazole series nuclei (e.g. naphtho[2,1-d]
oxazole, naphtho[1,2-d]oxazole, etc.), selenazole series nuclei (e.g. 4-methylselenazole, 4-phenylselenazole, etc.), benzoselenazole series nuclei (e.g. benzoselenazole, 5-chloro Benzoselenazole, 5-methylbenzoselenazole, 5,6-dimethylbenzoselenazole, 5-methyloxybenzoselenazole, 5-methyl-6-methoxybenzoselenazole, 5,6-dioxymethylbenzoselenazole, 5-hydroxybenzoselenazole, 4,5,6,7-tetrahydrobenzoselenazole, etc.), naphthoselenazole series nuclei (e.g. naphtho[2,1-d]selenazole, naphtho[1,2-d]selenazole) , thiazoline series nuclei (e.g. thiazoline, 4-methylthiazoline,
4-hydroxymethyl-4-methylthiazoline,
4,4-bis-hydroxymethylthiazoline, etc.), oxazoline series nuclei (e.g. oxazoline), selenazoline series nuclei (e.g. selenazoline), 2-quinoline series nuclei (e.g. quinoline,
6-methylquinoline, 6-chloroquinoline, 6-
Methoxyquinoline, 6-ethoxyquinoline, 6-
hydroxyquinoline), 4-quinoline series nucleus,
(e.g. quinoline, 6-methoxyquinoline, 7-
methylquinoline, 8-methylquinoline), 1-isoquinoline series nuclei (e.g. isoquinoline, 3,
4-dihydroisoquinoline), 3-isoquinoline series nuclei (e.g. isoquinoline), 3,3-dialkylindolenine series nuclei (e.g. 3,3-dimethylindolenine, 3,3-dimethyl-5-chloroindolenine, 3 , 3,5-trimethylindolenine, 3,3,7-trimethylindolenine), pyridine series nuclei (e.g. pyridine, 5-
methylpyridine), benzimidazole series nuclei (e.g. 1-ethyl-5,6-dichlorobenzimidazole, 1-hydroxyethyl-5,6-dichlorobenzimidazole, 1-ethyl-chlorobenzimidazole, 1-ethyl-5, 6-dipromobenzimidazole, 1-ethyl-5-phenylbenzimidazole, 1-ethyl-5-pheolobenzimidazole, 1-ethyl-5-cyanobenzimidazole, 1-(β-acetoxyethyl)-5- Cyanobenzimidazole, 1-ethyl-5-chloro-6-cyanobenzimidazole, 1-ethyl-5-fluoro-6-cyanobenzimidazole, 1-ethyl-5-acetylbenzimidazole, 1-ethyl-5-carboxybenzo Imidazole, 1-ethyl-5-ethoxycarbonylbenzimidazole, 1-ethyl-5-
Sulfamylbenzimidazole, 1-ethyl-
5-N-ethylsulfamylbenzimidazole, 1-ethyl-5,6-difluorobenzimidazole, 1-ethyl-5,6-dicyanobenzimidazole, 1-ethyl-5-ethylsulfonylbenzimidazole, 1-ethyl- 5-methylsulfonylbenzimidazole, 1-ethyl-5
-trifluoromethylbenzimidazole, 1-
ethyl-5-trifluoromethylsulfonylbenzimidazole, 1-ethyl-5-trifluoromethylsulfinylbenzimidazole, etc.). Z 2 is optionally substituted pyran, thiapyran,
Indicates an atomic group necessary to complete selenapyran, benzopyran, benzothiapyran, benzoselenapyran, naphthopyran, naphthothiapyran, or naphthoselenapyran, and X is a sulfur atom, an oxygen atom, or a selenium atom. As substituents, the following
Specific examples include atoms other than hydrogen atoms shown in R 2 and R 3 . Z 3 is a substituted or unsubstituted divalent hydrocarbon group forming a 5- or 6-membered ring (-CH 2 -CH 2 -, -
CH 2 −CH 2 −CH 2 −,

【式】− CH=CH−などを示し、これらの5員又は6員
環はベンゼン環、ナフタレン環などを縮合さてい
てもよい。 R1は、水素原子又はアルキル基(例えば、メ
チル、エチル、n−プロピル、iso−プロピル、
n−ブチル、sec−ブチル、iso−ブチル、t−ブ
チル、n−アミル、t−アミル、n−ヘキシル、
n−オクチル、t−オクチル基など)を示し、さ
らに他のアルキル基、例えば置換アルル基(例え
ば、2−ヒドロキシエチル、3−ヒドロキシプロ
ピル、4−ヒドロキシブチル、2−アセトキシエ
チル、カルボキシメチル、2−カルボキシエル、
3−カルボキシプロピル、2−スルホエチル、3
−スルホプロピル、4−スルホブチル、3−スル
フエートプロビル、4−スルフエートブチル、N
−(メチルスルホニル)−カルバミルメチル、3−
(アセチルスルフアミル)プロピル、4−(アセチ
ルスルフアミル)ブチルなど)、環式アルキル基
(例えば、シクロヘキシルなど)、アリル基(CH2
=CH−CH2−)、アラルキル基(例えば、ベンジ
ル、フエネチル、α−ナフチルメチル、β−ナフ
チルメチルなど、)置換アラキル基(例えば、カ
ルボキシベンジル、スルホベンジル、ヒドロキシ
ベンジルなど)を包含する。 R2およびR3は、各々 (a) 水素原子、 (b) ハロゲン原子:塩素原子、臭素原子、沃素原
子又は1価の有機残基、例えば (c) アルキル基、特に炭素原子数1〜15のアルキ
ル基:例えば、メチル、エチル、プロピル、イ
ソプロピル、ブチル、t−ブチル、アミル、イ
ソアミル、ヘキシル、オクチル、ノニル、ドデ
シル (d) アルコキシ基:例えば、メトキシ、エトキ
シ、プロポキシ、ブトキシ、アミロキシ、ヘキ
ソキシ、オクトキシ (e) アリール基:フエニル、α−ナフチル、β−
ナフチル (f) 置換アリール基:トリル、キシリル、ビフエ
ニル、エチルフエニル、メトキシフエニル、エ
トキシフエニル、アミロキシフエニル、ジメト
ロキシフエニル、ジエトキシフエニル、ヒドロ
キシフエニル、クロロフエニル、ジクロロフエ
ニル、プロモフエニル、ジブロモフエニル、ニ
トロフエニル、ジエチルアミノフエニル、ジメ
チルアミノフエニル、ジベンジルアミノフエニ
ル (g) スチリル (h) 置換スチリル基:メトキシスチリル、ジメト
キシスチリル、エトキシスチリル、ジエトキシ
スチリル、ジメチルアミノスチリル、ジエチル
アミノスチリル (i) 置換又は未置換の複数環基:例えば3−カル
バゾリル、9−メチル−3−カルバゾリル、9
−エチル−3−カルバゾリル、9−カルバゾリ
ル環を形成することができる。 R4は、水素原子又はハロゲン原子(例えば、
塩素原子、臭素原子、沃素原子)を示す。 A は、塩化物イオン、臭化物イオン、ヨウ化
物イオン、過塩素酸塩イオン、ベンゼンスルホン
酸塩イオン、P−トルエンスルホン酸塩イオン、
メチル硫酸塩イオン、エチル硫酸塩イオン、プロ
ピル硫酸塩イオンなどの陰イオンを表わし、A
はR1自体が陰イオン基、例えば−SO3 、OSC3
、−COO 、SO2 NH−、
[Formula] -CH=CH-, etc., and these 5- or 6-membered rings may be fused with a benzene ring, a naphthalene ring, etc. R 1 is a hydrogen atom or an alkyl group (e.g. methyl, ethyl, n-propyl, iso-propyl,
n-butyl, sec-butyl, iso-butyl, t-butyl, n-amyl, t-amyl, n-hexyl,
n-octyl, t-octyl, etc.), and also other alkyl groups, such as substituted allyl groups (e.g., 2-hydroxyethyl, 3-hydroxypropyl, 4-hydroxybutyl, 2-acetoxyethyl, carboxymethyl, - carboxiel,
3-carboxypropyl, 2-sulfoethyl, 3
-Sulfopropyl, 4-sulfobutyl, 3-sulfatepropyl, 4-sulfatebutyl, N
-(methylsulfonyl)-carbamylmethyl, 3-
(acetylsulfamyl)propyl, 4-(acetylsulfamyl)butyl, etc.), cyclic alkyl groups (e.g. cyclohexyl, etc.), allyl groups ( CH2
=CH- CH2- ), aralkyl groups (e.g., benzyl, phenethyl, α-naphthylmethyl, β-naphthylmethyl, etc.), substituted aralkyl groups (e.g., carboxybenzyl, sulfobenzyl, hydroxybenzyl, etc.). R 2 and R 3 each represent (a) a hydrogen atom, (b) a halogen atom: a chlorine atom, a bromine atom, an iodine atom or a monovalent organic residue, such as (c) an alkyl group, especially a carbon atom number of 1 to 15 Alkyl groups: For example, methyl, ethyl, propyl, isopropyl, butyl, t-butyl, amyl, isoamyl, hexyl, octyl, nonyl, dodecyl (d) Alkoxy groups: For example, methoxy, ethoxy, propoxy, butoxy, amyloxy, hexoxy , octoxy(e) Aryl group: phenyl, α-naphthyl, β-
Naphthyl (f) substituted aryl group: tolyl, xylyl, biphenyl, ethyl phenyl, methoxyphenyl, ethoxyphenyl, amyloxyphenyl, dimethoxyphenyl, diethoxyphenyl, hydroxyphenyl, chlorophenyl, dichlorophenyl, Promophenyl, dibromophenyl, nitrophenyl, diethylaminophenyl, dimethylaminophenyl, dibenzylaminophenyl (g) styryl (h) Substituted styryl group: methoxystyryl, dimethoxystyryl, ethoxystyryl, diethoxystyryl, dimethylaminostyryl, Diethylaminostyryl (i) Substituted or unsubstituted multi-ring group: e.g. 3-carbazolyl, 9-methyl-3-carbazolyl, 9
-Ethyl-3-carbazolyl, 9-carbazolyl ring can be formed. R 4 is a hydrogen atom or a halogen atom (for example,
chlorine atom, bromine atom, iodine atom). A is a chloride ion, bromide ion, iodide ion, perchlorate ion, benzenesulfonate ion, P-toluenesulfonate ion,
Represents anions such as methyl sulfate ion, ethyl sulfate ion, propyl sulfate ion, etc.
R 1 itself is an anionic group, e.g. -SO 3 , OSC 3
, −COO, SO 2 NH−,

【式】【formula】

【式】を含む ときには存在しない。mおよびnは、0又は1を
示し、lは0、1又は2を示す。 前記一般式(1)の化合物は、下記一般式(2)で示す
化合物と共鳴体を形成するが、本発明はかかる共
鳴体を包含するものである。 一般式(2) (式中、Z1〜Z3、R1〜R4、X、A 、l、mお
よびnは前記と同一の意味である。但し、Z2はピ
リリウム、チアピリリウム、セレナピリリウム、
ベンゾピリリウム、ベンゾチアピリリウム、ベン
ゾセレナピリリウム、ナフトピリリウム、ナフト
チアピリリウム又はナフトセレナピリリウムの如
くピリリウム塩系列で表現される。) 次に、前記一般式(1)で示されるシアニン化合物
の代表例を挙げる。
Does not exist when [expression] is included. m and n represent 0 or 1, and l represents 0, 1 or 2. The compound represented by the general formula (1) forms a resonator with the compound represented by the following general formula (2), and the present invention includes such a resonator. General formula (2) (In the formula, Z 1 to Z 3 , R 1 to R 4 , X, A , l, m and n have the same meanings as above. However, Z 2 is pyrylium, thiapyrylium, selenapyrylium,
It is expressed in the pyrylium salt series such as benzopyrylium, benzothiapyrylium, benzoselenapyrylium, naphthopyrylium, naphthothiapyrylium or naphthoselenapyrylium. ) Next, representative examples of the cyanine compound represented by the general formula (1) will be listed.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 これらのシアニン化合物は、米国特許第
2734900号公報に記載されている方法によつて合
成することができる。 一般式(1)において、l=0の化合物は一般式(3)
で示される化合物と 一般式(3) (式中Z1、Z3、R1、R4、A およびnは前述で
定義したものと同様のものを表わす。) 一般式(4)または一般式(5)で示される化合物とを 一般式(4) (式中Z2、X、R2、R3、A およびmは前述で
定義したものと同様のものを表わし、R5はメチ
ル基、エチル基などのアルキル基を表わす。) 一般式(5) (式中Z2、R2、R3、Xおよびmは前述で定義し
たものと同様ものを表わす。) 適当な溶媒中で加熱することにより得られる。 一般式(1)において、l=1又は2である化合物
は、前述した一般式(3)で示される化合物と、一般
式(6)で 一般式(6) (式中Z2、R2、R3、X、A およびmは前述で
定義したものと同様のものを表わし、R6はアセ
チル基、プロピオニル基、ベンゾイル基などのア
シル基を表わし、R7は、フエニル基、トルイル
基などのフエニル基を表わす。kは1又は2を表
わす。) 示される化合物とを適当な溶媒中で加熱すること
により得られる。 これら一般式(1)または一般式(2)で表わされる化
合物は重合体と共晶錯体を形成することができ、
これらの共晶錯体は本発明に包含されるものであ
る。 本発明の有機被膜は、光デイスク記録に用いる
ことができる。例えば、第1図に示す様な基板1
に前述の有機被膜2を形成した記録媒体とするこ
とができる。かかる有機被膜2は、前述のシアニ
ン化合物を真空蒸着によつて形成でき、またバイ
ンダー中に前述のシアニン化合物を含有させた塗
工液を塗布することによつても形成することがで
きる。塗工によつて被膜を形成する際、前述の化
物はバインダー中に分散状態で含有されていても
よく、あるいは非晶質状態で含有されていてもよ
い。好適なバインダーとしては、広範な樹脂から
選択することができる。具体的には、ニトロセル
ロース、リン酸セルロース、硫酸セルロース、酢
酸セルロース、プロピオン酸セルロース、酪酸セ
ルロース、ミリスチン酸セルロース、パルミチン
酸セルロース、酢酸・プロピオン酸セルロース、
酢酸・酪酸セルロースなどのセルロースエステル
類、メチルセルロース、エチルセルロース、プロ
ピルセルロース、ブチルセルロースなどのセルロ
ースエーテル類、ポリスチレン、ポリ塩化ビニ
ル、ポリ酢酸ビニル、ポリビニルブチラール、ポ
リビニルアセタール、ポリビニルアルコール、ポ
リビニルピロリドンなどのビニル樹脂類、スチレ
ン−ブタジエンコポリマー、スチレン−アクリロ
ニトリルコポリマー、スチレン−ブタジエン−ア
クリロニトリルポリマー、塩化ビニル−酢酸ビニ
ルポリマーなどの共重合体樹脂類、ポリメチルメ
タクリレート、ポリメチルアクリレート、ポリブ
チルアクリレート、ポリアクリル酸、ポリメタク
リル酸、ポリアクリルアミド、ポリアクリロニト
リルなどのアクリル樹脂類、ポリエチレンテレフ
タレートなどのポリエステル類、ポリ(4,4′−
イソプロピリデンジフエニレン−コ−1,4−シ
クロヘキシレンジメチレンカ−ボネート)、ポリ
(エチレンジオキシ−3,3′−フエニレンチオカ
ーボネート)、ポリ、(4,4′−イソプロピリデン
ジフエニレンカーボネート−コ−テレフタレー
ト)、ポリ(4,4′−イソプロピリデンジフエニ
レンカーボネート)、ポリ(4,4′−sec−ブチリ
デンジフエニレンカーボネート)、ポリ(4,
4′−イソプロピリデンジフエニレンカーボネート
−ブロツク−オキシエチレン)などのポリアリレ
ート樹脂類、あるいはポリアミド類、ポリイミド
類、エポキシ樹脂類、フエノール樹脂類、ポリエ
チレン、ポリプロピレン、塩素化ポリエチレンな
どのポリオレフイン類などを用いることができ
る。 塗工の際に使用できる有機溶剤は、バインダー
の種類や前述の化合物をバインダー中に含有させ
る際、分散状態とするか、あるいは非晶質状態と
するかによつて異なつてくるが、一般には、メタ
ノール、エタノール、イソプロパノールなどのア
ルコール類、アセトン、メチルエチルケトン、シ
クロヘキサノンなどのケトン類、N,N−ジメチ
ルホルムアミド、N,N−ジメチルアセトンアミ
ドなどのアミド類、ジメチルスルホキシドなどの
スルホキシド類、テトラヒドロフラン、ジオキサ
ン、エチレングリコールモノメチルエーテルなど
のエーテル類、酢酸メチル、酢酸エチル、酢酸ブ
チルなどのエステル類、クロロホルム、塩化メチ
レン、ジクロルエチレン、四塩化炭素、トリクロ
ルエチレンなどの脂肪族ハロゲン化炭化水素類あ
るいはベンゼン、トルエン、キシレン、リグロイ
ン、モノクロルベンゼン、ジクロルベンゼンなど
の芳香族類などを用いることができる。 塗工は、浸漬コーテイング法、スプレーコーテ
イング法、スピンナーコーテイング法、ビードコ
ーテイング法、マイヤーバーコーテイング法、ブ
レードコーテイング法、ローラーコーテイング
法、カーテンコーテイング法などのコーテイング
法を用いて行なうことができる。 バインダーとともに有機被膜2を形成する際、
前述のシアニン化合物の含有量は、有機被膜2中
において1〜90重量%、好ましくは、20〜70重量
%である。また、有機被膜2の乾燥膜厚あるいは
蒸着膜厚は、10ミクロン以下、好ましくは2ミク
ロン以下である。 基板1としては、ポリエステル、アクリル樹
脂、ポリオレフイン樹脂、フエノール樹脂、エポ
キシ樹脂、ポリアミド、ポリイミドなどのプラス
チツク、ガラスあるいは金属類などを用いること
ができる。 また、本発明は、第2図に示す様に基板1と有
機被膜2の間に反射層3を設けることができる。
反射層3は、アルミニウム、銀、クロムなどの反
射性金属の蒸着層又はラミネート層とすることが
できる。 有機被膜2は、第3図に示す集束されたレーザ
光線4の照射によつてピツト5を形成することが
できる。ピツト5の深さを有機被膜2の膜厚と同
一にすると、ピツト領域における反射率を増加さ
せることができる。読み出しの際、書込みに用い
たレーザ光線の波長を有するが、強度の小さいレ
ーザ光線を用いれば、読み出し光がピツト領域で
大きく反射されるが、非ピツト領域においては吸
収される。また、別の方法は有機被膜2が吸収す
る第1の波長のレーザ光線で実時間書込みを行な
い、読み出しに有機被膜2を実質的に透過する第
2の波長のレーザ光線を用いることである。読み
出しレーザ光線は、ピツト領域とピツト領域にお
ける異なる膜厚によつて生じる反射相の変化に応
対することができる。 本発明の有機被膜は、アルゴンレーザ(発振波
長488nm)、ヘリウム−ネオンレーザ(発振波長
633nm)、ヘリウム−カドミウムレーザ(発振波
長442nm)などのガスレーザーの照射によつて
記録することも可能であるが、好ましくは750n
m以上の波長を有するレーザ、特にガリウム−ア
ルミニウム−ヒ素半導体レーザ(発振波長780n
m)なぉの近赤外あるいは赤外領域に発振波長を
有するレーザ光線の照射によつて記録する方法が
適している。また、読み出しのためには、前述の
レーザ光線を用いることができる。この際、書込
みと読み出しを同一波長のレーザで行なうことが
でき、また異なる波長のレーザで行なうことがで
きる。 本発明の別の具体例では、電子写真感光体の感
光層として適用することができる。また、かかる
感光層を電荷発生層と電荷輪送層に機能分離した
電子写真感光体における電荷発生層としても適用
することができる。 電荷発生層は、十分な吸光度を得るために、で
きる限り多くの前述のシアニン化合物を含有し、
且つ発生した電荷キヤリアの飛程を短かくするた
めに薄膜層、例えば5ミクロン以下、好ましくは
0.01ミクロン〜1ミクロンの膜厚をもつ薄膜層と
することが好ましい。このことは、入射光量の大
部分が電荷発生層で吸収されて、多くのキヤリア
を生成すること、さらに発生した電荷キリヤリア
を再結合や補獲(トラツプ)により失活すること
なく電荷輸送層に注入する必要があることに帰因
している。 電荷発生層は、前述のシアニル化合物を適当な
バインダーに分散させ、これを基体の上に塗工す
ることによつて形成でき、また真空蒸着装置によ
り蒸着膜を形成することによつて得ることができ
る。電荷発生層を塗工によつて形成する際に用い
うるバインダーとしては広範な絶縁性樹脂から選
択でき、またポリ−N−ビニルカルバゾール、ポ
リビニルアントラセンやポリビニルプレンなどの
有機光導電性ポリマーから選択できる。好ましく
は、ポリビニルブチラール、ポリアリレート(ブ
スフエノールAとフタル酸の縮重合体など、ポリ
カーボネート、ポリエステル、フエノキシ樹脂、
ポリ酢酸ピニル、アクリル樹脂、ポリアクリルア
ミド樹脂、ポリアミド、ポリビニルピリジン、セ
ルロース系樹脂、ウレタン樹脂、エポキシ樹脂、
カゼイン、ポリビニルアルコール、ポリビニルピ
ロリドンなどの絶縁性樹脂を挙げることがきる。
電荷発生層中に含有する樹脂は、80重量%下、好
ましくは40重量%以下が適している。 これらの樹脂を溶解する溶剤は、樹脂の種類に
よつて異なり、また下述の電荷輸送層や下引層を
溶解しないものから選択することが好ましい。具
体的な有機溶剤としては、メタノール、エタノー
ル、イソプロパノールなどのアルコール類、アセ
トン、メチルエチルケトン、シクロヘキサノンな
どのケトン類、N,N−ジメチルホルムアミド、
N,N−ジメチルアセトアミドなどのアミド類、
ジメチスルホキシドなどのスルホキシド類、テト
ラヒドロフラン、ジオキサン、エチレングリコー
ルモノメチルエーテルなどのエーテル類、酢酸メ
チル、酢酸エチルなどのエステル類、クロロホル
ム、塩化メチレン、ジクロルエチレン、四塩化炭
素、トリクロルエチレンなどの脂肪族ハロゲン化
炭化水素類あるいはベンゼン、トルエン、キシレ
ン、リグロイン、モノクロルベンゼン、ジクロル
ベンゼンなどの芳香族類などを用いることができ
る。 塗工は、浸漬コーテイング法、スプレーコーテ
イング法、スピンナーコーテイング法、ビードコ
ーテイング法、マイヤーバーコーテイング法、ブ
レードコーテイング法、ローラーコーテイング
法、カーテンコーテイング法などのコーテイング
法を用いて行なうことができる。乾燥は、室温に
おける指触乾燥後、加熱乾燥する方法が好まし
い。加熱乾燥は、30℃〜200℃の温度で5分〜2
時間の範囲の時間で、静止または送風下で行なう
ことができる。 電荷輸送層は、前述の電荷発生層と電気的に接
続されており、電界の存在下で電荷発生層から注
入された電荷キヤリアを受け取るとともに、これ
らの電荷キヤリアを表面まで輸送できる機能を有
している。この際、この電荷輸送層は、電荷発生
層の上に積層されていてもよくまたその下に積層
されていてもよい。しかし、電荷輸送層は、電荷
発生層の上に積層されていることが望ましい。 電荷輸送層における電荷キヤリアを輸送する物
質(以下、単に電荷輸送物質という)は、前述の
電荷発生層が感応する電磁波の波長域に実質的に
非感応性であること好ましい。ここで言う「電磁
波」とは、r線、X線、紫外線、可視光線、近赤
外線、赤外線、遠赤外線などを包含する広義の
「光線」の定義を包含する。電荷輸送層の光感応
性波長域が電荷発生層のそれと一致またはオーバ
ーラツプする時には、両者で発生した電荷キヤリ
アが相互に補獲し合い、結果的には感度の低下の
原因となる。 電荷輸送物質としては電子輸送性物質と正孔輸
送性物質があり、電子輸送性物質としては、クロ
ルアニル、ブロモアニル、テトラシアノエチレ
ン、テトラシアノキノジメタン、2,4,7−ト
リニトロ−9−フルオレノン、2,4,5,7−
テトラニトロ−9−フルオレノン、2,4,7,
−トリニトロ−9−ジシアノメチレンフルオレノ
ン、2,4,5,7−テトラニトロキサントン、
2,4,8−トリニトロチオキサントン等の電子
吸引性物質やこれら電子吸引物質を高分子化した
もの等がある。 正孔輸送性物質としては、ピレン、N−エチル
カルバゾーン、N−イソプロピルカルバーゾー
ン、N−メチル−N−フエニルヒドラジノ−3−
メチリデン−9−エチルカルバゾール、N,N−
ジフエニルヒドラジノ−3−メチリデン−9−エ
チルカルバゾール、N,N−ジフエニルヒドラジ
ノ−3−メチリデン−10−エチルフエノチアジ
ン、N,N−ジフエニルヒドラジノ−3−メチリ
デン−10−エチルフエノキサジン、P−ジエチル
アミノベンズアルデヒド−N,N−ジフエニルヒ
ドラゾン、P−ジエチルアミノベンズアルデヒド
−N−α−ナフチル−N−フエニルヒドラゾン、
P−ピロリジノベンズアルデヒド−N,N−ジフ
エニルヒドラゾン、1,3,3,−トリメチルイ
ンドレニン−ω−アルデヒド−N,N−ジフエニ
ルヒドラゾン、P−ジエチルベンズアルデヒド−
3−メチルベンズチアゾリノン−2−ヒドラゾン
等のヒドラゾン類、2,5−ビス(P−ジエチル
アミノフエニル)−1,3,4−オキサジアゾー
ル、1−フエニル−3−(P−ジエチルアミノス
チリル)−5−(P−ジエチルアミノフエニル)ピ
ラゾリン、1−〔キノリル(2)〕−3−(P−ジエチ
ルアミノスチリル)−5−(P−ジエチルアミノフ
エニル)ピラゾリン、1−〔ピリジル(2)〕−3−
(P−ジエチルアミノスチリル)−5−(P−ジエ
チルアミノフエニル)ピラゾリル、1−〔6−メ
トキシ−ピリジル(2)〕−3−(P−ジエチルアミノ
スチリル)−5−(P−ジエチルアミノフエニル)
ピラリゾン、1−〔ピリジル(3)〕−3−(P−ジエ
チルアミノスチリル)−5−(P−ジエチルアミノ
フエニル)プラゾリン、1−〔レピジル(2)〕−3−
(P−ジエチルアミノスチリル)−5−(P−ジエ
チルアミノフエニル)ピラゾリン、1−〔ピリジ
ル(2)〕−3−(P−ジエチルアミノスチリル)−4
−メチル−5−(P−ジエチルアミノフエニル)
ビラゾリン、1−〔ピリジル(2)〕−3−(α−メチ
ル−P−ジエチルアミノスチリル)−5−(P−ジ
エチルアミノフエニル)ピラゾリン、1−フエニ
ル−3−(P−ジエチルアミノスチリル)−4−メ
チル−5−(P−ジエチルアミノフエニル)ピラ
ゾリン、1−フエニル−3−(α−ベンジル−P
−ジエチルアミノスチリル)−5−(P−ジエチル
アミノフエニル)ピラゾリン、スピロピラゾリン
などのピラゾリン類、2−(P−ジエチルアミノ
スチリル)−6−ジエチルアミノベンズオキサゾ
ール、2−(P−ジエチルアミノフエニル)−4−
(P−ジメチルアミノフエニル)−5−(2−クロ
ロフエニル)オササゾール等のオキサゾール系化
合物、2−(P−ジエチルアミノスチリル)−6−
ジエチルアミノベンゾチアゾール等のチアゾール
系化合物、ビス(4−ジエチルアミノ−2−メチ
ルフエニル)−フエニルメタン等のトリアリール
メタン系化合物、1,1−ビス(4−N,N−ジ
エチルアミノ−2−メチルフエニル)ヘブタン、
1,1,2,2,−テトラキス(4−N,N−ジ
メチルアミノ−2−メチルフエニル)エタン等の
ポリアリールアルカン類、トリフエニルアミン、
ポリ−N−ビニルカルバゾール、ポリビニルピレ
ン、ポリビニルアントラセン、ポリビニルアクリ
ジン、ポリ−9−ビリルフエニルアントラセン、
ピレン−ホルムアルデヒド樹脂、エチルカルバゾ
ールホルムアルデヒド樹脂等がある。 これらの有機電荷輸送物質の他に、セレン、セ
レン−テルル、アモルフアスシリコン、硫化カド
ミウムなどの無機材料を用いることができる。 また、これらの電荷輸送物質は、1種または2
種以上組合せて用いることができる。 電荷輸送物質に成膜性を有していない時には、
適当なバインダーを選択することによつて被膜形
成できる。バインダーとして使用できる樹脂は、
例えばアクリル樹脂、ポリアリレート、ポリエス
テル、ポリカーボネート、ポリスチレン、アクリ
ロニトル−スチレンコポリマー、アクリロニトル
−ブタジエンコポリマー、ポリビニルブチラー
ル、ポリビニルホルマール、ポリスルホン、ポリ
アクリルアミド、ポリアミド、塩素化ゴムなどの
絶縁性樹脂、あるいはポリーN−ビニルカルバゾ
ール、ポリビニルアントラセン、ポリビニルピレ
ンなどの有機光導電性ポリマーを挙げることがで
きる。 電荷輸送層は、電荷キヤリアを輸送できる限界
があるので、必要以上に膜厚を厚くすることがで
きない。一般的には、5ミクロン〜30ミクロンで
あるが、好ましい範囲は8ミクロン〜20ミクロン
である。塗工によつて電荷輸送層を形成する際に
は、前述した様な適当なコーテイング法を用いる
ことができる。 この様な電荷発生層と電荷輸送層の積層構造か
らなる感光層は、導電層を有する基体の上に設け
られる。導電層を有する基体としては、基体自体
が導電性をもつもの、例えばアルミニウム、アル
ミニウム合金、銅、亜鉛、ステンレス、パナジウ
ム、モリブデン、クロム、チタン、ニツケル、イ
ンジウム、金や白金などを用いることができ、そ
の他にアルミニウム、アルミニウム合金、酸化イ
ンジウム、酸化錫、酸化インジウム一酸化錫合金
などを真空蒸着法によつて被膜形成した層を有す
るプラスチツク(例えばポリエチレン、ポリプロ
ピレン、ポリ塩化ビニル、ポリエチレンテレフタ
レート、アクリル樹脂、ポリフツ化エチレンな
ど)、導電性粒子(例えば、カーボンブラツク、
銀粒子など)を適当なバインダーとともにプラス
チツクの上に被覆した基体、導電性粒子をプラス
チツクや紙に含浸した基体や導電性ポリマーを有
するプラスチツクなどを用いることができる。 導電層と感光層の中間に、バイヤー機能と接着
機能をもつ下引層を設けることもできる。下引層
は、カゼイン、ポリビニルアルコール、ニトロセ
ルロース、エチレン−アクリル酸コポリマー、ポ
リアミド(ナイロン6、ナイロン66、ナイロン
610、共重合ナイロン、アルコキシメチル化ナイ
ロンなど)、ポリウレタン、ゼラチン、酸化アル
ミニウムなどによつて形成できる。 下引層の膜厚は、0.1ミクロン〜5ミクロン、
好ましくは0.5ミクロン〜3ミクロンが適当であ
る。 導電層、電荷発生層、電荷輸送層の順に積層し
た感光体を使用する場合において電荷輸送物質が
電子輸送性物質からなるときは、電荷輸送層表面
を正に帯電する必要があり、帯電後露光すると露
光部では電荷発生層において生成した電子が電荷
輸送層に注入され、そろあと表面に達して正電荷
を中和し、表面電位の減衰が生じ未露光部との間
に静電コントラストが生じる。この様にしてでき
た静電潜像を負荷電性のトナーで現象すれば可視
像が得られる。これを直接定着するか、あるいは
トナー像を紙やプラスチツクフイルム等に転写
後、現像し定着することができる。 また、感光体上の静電潜像を転写紙の絶縁層上
に転写後現像し、定着する方法もとれる。現像剤
の種類や現像方法、定着方法は公知のものや公知
の方法のいずれかを採用しても良く、特定のもの
に限定されるものではない。 一方、電荷輸送物質が正孔輸送物質から成る場
合、電荷輸送物質を負に帯電する必要があり、帯
電後、露光すると露光部では電荷発生層において
生成した正孔が電荷輸送層に注入され、その後表
面に達して負電荷を中和し、表面電位の減衰が生
じ未露光部との間に静電コントラストが生じる。
現像時には電子輸送物質を用いた場合とは逆に正
電荷性トナーを用いる必要がある。 また、本発明の別の具体例では、前述のヒドラ
ゾン類、ピラゾリン類、オキサゾール類、チアゾ
ール類、トリアリールメタン類、ポリアリールア
ルカン類、トリフエニアミン、ポリ−N−ビニル
カルバゾール類などの有機光導電性物質や酸化亜
鉛、硫化カドミニウム、セレンなどの無機光導電
性物質の増感剤として前述のシアニン化合物を含
有させた有機被膜とすることができる。有機被膜
は、これらの光導電性物質と前述の化合物をバイ
ンダーとともに塗工によつて被膜形成される。ま
た、別の具体例では、前述のシアニン化合物を含
有する有機被膜を感光層として用いることができ
る。 いずれの感光体においても、用いる化合物は一
般式(1)で示される化合物から選ばれる少なくとも
1種類を含有し、必要に応じて光吸収の異なる顔
料を組合せて使用した感光体の感度を高めたり、
パンクロマチツクな感光体を得るなどの目的で一
般式(1)で示される化合物を2種類以上組合せた
り、または公知の染料、顔料から選ばれた電荷発
生物質と組合せて使用することも可能である。 本発明の有機被膜は、前述の光デイスク記録体
が電子写真感光体のレーザ感光被膜として用いる
他に、赤外線カツトフイルター、太陽電池あるい
は光センサーなどにも用いることができる。太陽
電池は、例えば酸化インジウムとアルミニウムを
電極として、これらの間に前述の有機被膜をサン
ドイツチ構造とすることによつて調製できる。 本発明の有機被膜は、従来のレーザ用電子写真
感光体と比較して750nm以上の波長域で著しく
高感度とすることができ、また従来のデイスク記
録体と比較しても高感度でしかも十分に改善され
たS/N比を与えることができる。さらに、本発
明で用いる化合物は、750nm以上に吸収ピーク
を有しているのもかかわらず、熱に対して極めて
安定している利点を有している。 以下、本発明を実施例に従つて説明する。 実施例 1 アルミニウムシリンダー上にカゼインのアンモ
ニア水溶液(カゼイン11.2g、28%、アンモニア
水1g、水222ml)を浸漬コーテイング法で塗工
し、乾装して塗工量1.0g/m2の下引層を形成し
た。 次に、前述の化合物No.(1)のシアニン化合物1重
量部とブチラール樹脂(エスレツクBM−2:積
水化学(株)製)1重量部とテトラヒドロフラン30重
量部とボールミル分散機で4時間分散した。この
分散液を先に形成した下引層の上に浸漬コーテイ
ング法で塗工し、乾燥して電荷発生層を形成し
た。この時の膜厚は0.3μであつた。 次にP−ジエチルアミノベンズアルデビド−N
−フエニル−N−α−ナフチルヒドラゾン1重量
部、ポリスルホン樹脂(P1700:ユニオンカーバ
イド社製、1重量部とモノクロルベンゼン6重量
部を混合し、撹拌機で撹拌溶解した。この液を電
荷発生層の上に浸漬コーテイング法で塗工し、乾
燥して電荷輸送層を形成した。この時の膜厚は、
12μであつた。 こうして調製した感光体に−5KVのコロナ放
電を行なつた。この時の表面電位を測定した(初
期電位V0)。さらに、この感光体を5秒間暗所で
放置した後の表面電位を測定した(暗減衰V5)。
感度は、暗減衰した後の電位V5を1/2に減衰する
に必要な露光量(E1/2マイクロジユール/cm2
を測定することによつて評価した。この際、光源
としてガリウム、アルミニウム・ヒ素半導体レー
ザ(発振波長780nm)を用いた。これらの結果
は、次のとおりであつた。 V0:−620ボルト V5:−580ボルト E1/2:8.5マイクロジユール/cm2 実施例 2〜17 実施例1で用いた化合物No.(1)の化合物に代え
て、第1表に示す化合物をそれぞれ用いたほか
は、実施例1と全く同様の方法で感光体を調製
し、この感光体の特性を測定した。これらの結果
を第1表に示す。
[Table] These cyanine compounds are listed in U.S. Patent No.
It can be synthesized by the method described in Japanese Patent No. 2734900. In the general formula (1), the compound with l=0 has the general formula (3)
Compound represented by and general formula (3) (In the formula, Z 1 , Z 3 , R 1 , R 4 , A and n represent the same as defined above.) The compound represented by the general formula (4) or the general formula (5) Formula (4) (In the formula, Z 2 , X, R 2 , R 3 , A and m represent the same as defined above, and R 5 represents an alkyl group such as a methyl group or an ethyl group.) General formula (5 ) (In the formula, Z 2 , R 2 , R 3 , X and m are the same as defined above.) It can be obtained by heating in a suitable solvent. In the general formula (1), the compound in which l=1 or 2 is a compound represented by the above-mentioned general formula (3) and a compound represented by the general formula (6). (In the formula, Z 2 , R 2 , R 3 , X, A and m represent the same as defined above, R 6 represents an acyl group such as an acetyl group, a propionyl group, a benzoyl group, and R 7 represents a phenyl group such as a phenyl group or a tolyl group. k represents 1 or 2) It can be obtained by heating the indicated compound in an appropriate solvent. These compounds represented by general formula (1) or general formula (2) can form a eutectic complex with a polymer,
These eutectic complexes are included in the present invention. The organic coating of the present invention can be used for optical disc recording. For example, a substrate 1 as shown in FIG.
It is possible to provide a recording medium on which the organic film 2 described above is formed. Such an organic film 2 can be formed by vacuum deposition of the above-mentioned cyanine compound, or by applying a coating liquid containing the above-mentioned cyanine compound in a binder. When forming a film by coating, the above-mentioned compound may be contained in the binder in a dispersed state or in an amorphous state. Suitable binders can be selected from a wide variety of resins. Specifically, cellulose nitro, cellulose phosphate, cellulose sulfate, cellulose acetate, cellulose propionate, cellulose butyrate, cellulose myristate, cellulose palmitate, cellulose acetate/propionate,
Cellulose esters such as cellulose acetate and butyrate, cellulose ethers such as methyl cellulose, ethyl cellulose, propyl cellulose, and butyl cellulose, vinyl resins such as polystyrene, polyvinyl chloride, polyvinyl acetate, polyvinyl butyral, polyvinyl acetal, polyvinyl alcohol, and polyvinylpyrrolidone. Copolymer resins such as styrene-butadiene copolymer, styrene-acrylonitrile copolymer, styrene-butadiene-acrylonitrile polymer, vinyl chloride-vinyl acetate polymer, polymethyl methacrylate, polymethyl acrylate, polybutyl acrylate, polyacrylic acid, poly Acrylic resins such as methacrylic acid, polyacrylamide and polyacrylonitrile, polyesters such as polyethylene terephthalate, poly(4,4'-
Isopropylidene diphenylene-co-1,4-cyclohexylene dimethylene carbonate), poly(ethylenedioxy-3,3'-phenylene thiocarbonate), poly, (4,4'-isopropylidene diphenylene) poly(4,4'-isopropylidene diphenylene carbonate), poly(4,4'-sec-butylidene diphenylene carbonate), poly(4,4'-sec-butylidene diphenylene carbonate),
Polyarylate resins such as 4'-isopropylidene diphenylene carbonate-block oxyethylene), or polyolefins such as polyamides, polyimides, epoxy resins, phenolic resins, polyethylene, polypropylene, and chlorinated polyethylene, etc. Can be used. The organic solvent that can be used during coating varies depending on the type of binder and whether the above-mentioned compound is contained in the binder in a dispersed or amorphous state, but in general, , alcohols such as methanol, ethanol, and isopropanol; ketones such as acetone, methyl ethyl ketone, and cyclohexanone; amides such as N,N-dimethylformamide and N,N-dimethylacetonamide; sulfoxides such as dimethyl sulfoxide; tetrahydrofuran and dioxane. , ethers such as ethylene glycol monomethyl ether, esters such as methyl acetate, ethyl acetate, butyl acetate, aliphatic halogenated hydrocarbons such as chloroform, methylene chloride, dichloroethylene, carbon tetrachloride, trichlorethylene, or benzene, Aromatics such as toluene, xylene, ligroin, monochlorobenzene, dichlorobenzene, etc. can be used. Coating can be carried out using coating methods such as dip coating, spray coating, spinner coating, bead coating, Meyer bar coating, blade coating, roller coating, and curtain coating. When forming the organic film 2 together with the binder,
The content of the aforementioned cyanine compound in the organic coating 2 is 1 to 90% by weight, preferably 20 to 70% by weight. Further, the dry film thickness or vapor deposited film thickness of the organic film 2 is 10 microns or less, preferably 2 microns or less. As the substrate 1, plastics such as polyester, acrylic resin, polyolefin resin, phenolic resin, epoxy resin, polyamide, and polyimide, glass, or metals can be used. Further, in the present invention, a reflective layer 3 can be provided between the substrate 1 and the organic coating 2 as shown in FIG.
The reflective layer 3 can be a deposited layer or a laminate layer of a reflective metal such as aluminum, silver, or chromium. The organic coating 2 can be formed into pits 5 by irradiation with a focused laser beam 4 as shown in FIG. By making the depth of the pits 5 the same as the thickness of the organic coating 2, the reflectance in the pit region can be increased. When reading, if a laser beam having the same wavelength as the laser beam used for writing but with low intensity is used, the reading light will be largely reflected in pit areas, but will be absorbed in non-pit areas. Another method is to perform real-time writing with a laser beam of a first wavelength, which is absorbed by the organic coating 2, and to use a laser beam of a second wavelength, which is substantially transmitted through the organic coating 2, for reading. The readout laser beam can respond to changes in the reflection phase caused by the different film thicknesses in the pit region and the pit region. The organic coating of the present invention can be used with argon laser (oscillation wavelength: 488 nm), helium-neon laser (oscillation wavelength: 488 nm), helium-neon laser (oscillation wavelength:
It is also possible to record by irradiation with a gas laser such as a helium-cadmium laser (oscillation wavelength: 442 nm), but preferably 750 nm).
Lasers with wavelengths longer than m, especially gallium-aluminum-arsenic semiconductor lasers (oscillation wavelength 780n)
m) A method of recording by irradiation with a laser beam having an oscillation wavelength in the near-infrared or infrared region is suitable. Furthermore, the aforementioned laser beam can be used for reading. At this time, writing and reading can be performed using a laser of the same wavelength, or can be performed using lasers of different wavelengths. In another embodiment of the present invention, it can be applied as a photosensitive layer of an electrophotographic photoreceptor. Further, such a photosensitive layer can be applied as a charge generation layer in an electrophotographic photoreceptor in which the functions are separated into a charge generation layer and a charge transport layer. The charge generation layer contains as much of the aforementioned cyanine compound as possible to obtain sufficient absorbance;
In addition, in order to shorten the range of the generated charge carriers, a thin film layer, for example, 5 microns or less, preferably
A thin film layer having a thickness of 0.01 micron to 1 micron is preferable. This means that most of the incident light is absorbed by the charge generation layer and generates a large number of carriers, and that the generated charge carriers are not deactivated by recombination or trapping and are transferred to the charge transport layer. This is due to the need for injection. The charge generation layer can be formed by dispersing the above-mentioned cyanyl compound in a suitable binder and coating it on the substrate, or it can be obtained by forming a vapor deposited film using a vacuum vapor deposition apparatus. can. Binders that can be used to form the charge generating layer by coating can be selected from a wide variety of insulating resins, and can also be selected from organic photoconductive polymers such as poly-N-vinylcarbazole, polyvinylanthracene, and polyvinylprene. . Preferably, polyvinyl butyral, polyarylate (condensation polymer of busphenol A and phthalic acid, etc.), polycarbonate, polyester, phenoxy resin,
Polypynylacetate, acrylic resin, polyacrylamide resin, polyamide, polyvinylpyridine, cellulose resin, urethane resin, epoxy resin,
Examples include insulating resins such as casein, polyvinyl alcohol, and polyvinylpyrrolidone.
The resin contained in the charge generation layer is suitably 80% by weight or less, preferably 40% by weight or less. The solvent that dissolves these resins varies depending on the type of resin, and is preferably selected from those that do not dissolve the charge transport layer or undercoat layer described below. Specific organic solvents include alcohols such as methanol, ethanol, and isopropanol, ketones such as acetone, methyl ethyl ketone, and cyclohexanone, N,N-dimethylformamide,
Amides such as N,N-dimethylacetamide,
Sulfoxides such as dimethysulfoxide, ethers such as tetrahydrofuran, dioxane, and ethylene glycol monomethyl ether, esters such as methyl acetate and ethyl acetate, and aliphatic halogens such as chloroform, methylene chloride, dichloroethylene, carbon tetrachloride, and trichloroethylene. Hydrocarbons or aromatics such as benzene, toluene, xylene, ligroin, monochlorobenzene, dichlorobenzene, etc. can be used. Coating can be carried out using coating methods such as dip coating, spray coating, spinner coating, bead coating, Meyer bar coating, blade coating, roller coating, and curtain coating. For drying, it is preferable to dry to the touch at room temperature and then heat dry. Heat drying at a temperature of 30℃ to 200℃ for 5 minutes to 2
It can be carried out stationary or under blown air for a period of time within a range of hours. The charge transport layer is electrically connected to the charge generation layer described above, and has the function of receiving charge carriers injected from the charge generation layer in the presence of an electric field and transporting these charge carriers to the surface. ing. At this time, this charge transport layer may be laminated on or under the charge generation layer. However, it is desirable that the charge transport layer is laminated on the charge generation layer. The substance that transports charge carriers in the charge transport layer (hereinafter simply referred to as charge transport substance) is preferably substantially insensitive to the wavelength range of electromagnetic waves to which the charge generation layer is sensitive. The term "electromagnetic waves" used herein includes a broad definition of "light rays" including r-rays, X-rays, ultraviolet rays, visible light, near-infrared rays, infrared rays, far-infrared rays, and the like. When the photosensitive wavelength range of the charge transport layer coincides with or overlaps that of the charge generation layer, charge carriers generated in both layers capture each other, resulting in a decrease in sensitivity. Charge transport substances include electron transport substances and hole transport substances, and electron transport substances include chloranil, bromoanil, tetracyanoethylene, tetracyanoquinodimethane, and 2,4,7-trinitro-9-fluorenone. , 2, 4, 5, 7-
Tetranitro-9-fluorenone, 2,4,7,
-trinitro-9-dicyanomethylenefluorenone, 2,4,5,7-tetranitroxanthone,
Examples include electron-withdrawing substances such as 2,4,8-trinitrothioxanthone, and polymerized versions of these electron-withdrawing substances. Examples of hole-transporting substances include pyrene, N-ethylcarbazone, N-isopropylcarbazone, and N-methyl-N-phenylhydrazino-3-
Methylidene-9-ethylcarbazole, N,N-
Diphenylhydrazino-3-methylidene-9-ethylcarbazole, N,N-diphenylhydrazino-3-methylidene-10-ethylphenothiazine, N,N-diphenylhydrazino-3-methylidene-10- Ethylphenoxazine, P-diethylaminobenzaldehyde-N,N-diphenylhydrazone, P-diethylaminobenzaldehyde-N-α-naphthyl-N-phenylhydrazone,
P-pyrrolidinobenzaldehyde-N,N-diphenylhydrazone, 1,3,3,-trimethylindolenine-ω-aldehyde-N,N-diphenylhydrazone, P-diethylbenzaldehyde-
Hydrazones such as 3-methylbenzthiazolinone-2-hydrazone, 2,5-bis(P-diethylaminophenyl)-1,3,4-oxadiazole, 1-phenyl-3-(P-diethylaminostyryl) )-5-(P-diethylaminophenyl)pyrazoline, 1-[quinolyl(2)]-3-(P-diethylaminostyryl)-5-(P-diethylaminophenyl)pyrazoline, 1-[pyridyl(2)] -3-
(P-diethylaminostyryl)-5-(P-diethylaminophenyl)pyrazolyl, 1-[6-methoxy-pyridyl(2)]-3-(P-diethylaminostyryl)-5-(P-diethylaminophenyl)
Pyrarizone, 1-[pyridyl(3)]-3-(P-diethylaminostyryl)-5-(P-diethylaminophenyl)prazolin, 1-[lepidyl(2)]-3-
(P-diethylaminostyryl)-5-(P-diethylaminophenyl)pyrazoline, 1-[pyridyl(2)]-3-(P-diethylaminostyryl)-4
-Methyl-5-(P-diethylaminophenyl)
Birazoline, 1-[pyridyl(2)]-3-(α-methyl-P-diethylaminostyryl)-5-(P-diethylaminophenyl)pyrazoline, 1-phenyl-3-(P-diethylaminostyryl)-4- Methyl-5-(P-diethylaminophenyl)pyrazoline, 1-phenyl-3-(α-benzyl-P
-diethylaminostyryl)-5-(P-diethylaminophenyl)-pyrazoline, spiropyrazoline and other pyrazolines, 2-(P-diethylaminostyryl)-6-diethylaminobenzoxazole, 2-(P-diethylaminophenyl)-4-
(P-dimethylaminophenyl)-5-(2-chlorophenyl)oxazole and other oxazole compounds, 2-(P-diethylaminostyryl)-6-
Thiazole compounds such as diethylaminobenzothiazole, triarylmethane compounds such as bis(4-diethylamino-2-methylphenyl)-phenylmethane, 1,1-bis(4-N,N-diethylamino-2-methylphenyl)hebutane,
Polyarylalkanes such as 1,1,2,2,-tetrakis(4-N,N-dimethylamino-2-methylphenyl)ethane, triphenylamine,
Poly-N-vinylcarbazole, polyvinylpyrene, polyvinylanthracene, polyvinylacridine, poly-9-bilylphenylanthracene,
Examples include pyrene-formaldehyde resin and ethylcarbazole formaldehyde resin. In addition to these organic charge transport materials, inorganic materials such as selenium, selenium-tellurium, amorphous silicon, and cadmium sulfide can be used. Moreover, these charge transport substances may be one or two types.
More than one species can be used in combination. When the charge transport material does not have film-forming properties,
A film can be formed by selecting an appropriate binder. Resins that can be used as binders are:
For example, insulating resins such as acrylic resin, polyarylate, polyester, polycarbonate, polystyrene, acrylonitrile-styrene copolymer, acrylonitrile-butadiene copolymer, polyvinyl butyral, polyvinyl formal, polysulfone, polyacrylamide, polyamide, chlorinated rubber, or poly N-vinyl Mention may be made of organic photoconductive polymers such as carbazole, polyvinylanthracene, polyvinylpyrene. Since the charge transport layer has a limit in its ability to transport charge carriers, it cannot be made thicker than necessary. Typically it is between 5 microns and 30 microns, with a preferred range between 8 microns and 20 microns. When forming the charge transport layer by coating, an appropriate coating method as described above can be used. A photosensitive layer having such a laminated structure of a charge generation layer and a charge transport layer is provided on a substrate having a conductive layer. As the substrate having the conductive layer, materials that are conductive themselves such as aluminum, aluminum alloy, copper, zinc, stainless steel, panadium, molybdenum, chromium, titanium, nickel, indium, gold, and platinum can be used. In addition, plastics (e.g., polyethylene, polypropylene, polyvinyl chloride, polyethylene terephthalate, acrylic resin) have a layer formed by vacuum deposition of aluminum, aluminum alloy, indium oxide, tin oxide, indium tin monoxide alloy, etc. conductive particles (e.g., carbon black, etc.), conductive particles (e.g., carbon black,
A substrate made of plastic coated with silver particles (silver particles, etc.) together with a suitable binder, a substrate made of plastic or paper impregnated with conductive particles, a plastic containing a conductive polymer, etc. can be used. A subbing layer having a Bayer function and an adhesive function can also be provided between the conductive layer and the photosensitive layer. The subbing layer is made of casein, polyvinyl alcohol, nitrocellulose, ethylene-acrylic acid copolymer, polyamide (nylon 6, nylon 66, nylon
610, copolymerized nylon, alkoxymethylated nylon, etc.), polyurethane, gelatin, aluminum oxide, etc. The thickness of the undercoat layer is 0.1 micron to 5 micron.
Preferably, 0.5 micron to 3 micron is appropriate. When using a photoreceptor in which a conductive layer, a charge generation layer, and a charge transport layer are laminated in this order, and the charge transport material is an electron transport material, the surface of the charge transport layer must be positively charged, and exposure after charging is required. Then, in the exposed area, electrons generated in the charge generation layer are injected into the charge transport layer, which eventually reaches the surface and neutralizes the positive charge, causing a decrease in surface potential and creating an electrostatic contrast with the unexposed area. . A visible image can be obtained by treating the electrostatic latent image thus formed with a negatively charged toner. This can be directly fixed, or the toner image can be transferred to paper, plastic film, etc. and then developed and fixed. Alternatively, a method may be used in which the electrostatic latent image on the photoreceptor is transferred onto an insulating layer of transfer paper, then developed and fixed. The type of developer, the developing method, and the fixing method may be any known ones or known methods, and are not limited to specific ones. On the other hand, when the charge transport material is made of a hole transport material, it is necessary to charge the charge transport material negatively, and when exposed to light after being charged, holes generated in the charge generation layer are injected into the charge transport layer in the exposed area. Thereafter, it reaches the surface and neutralizes the negative charge, causing a decrease in surface potential and creating an electrostatic contrast with the unexposed area.
During development, it is necessary to use a positively charged toner, contrary to the case where an electron transport material is used. Further, in another specific example of the present invention, organic light such as the above-mentioned hydrazones, pyrazolines, oxazoles, thiazoles, triarylmethanes, polyarylalkanes, tripheniamine, poly-N-vinylcarbazoles, etc. The organic coating may contain the aforementioned cyanine compound as a sensitizer for conductive substances and inorganic photoconductive substances such as zinc oxide, cadmium sulfide, and selenium. The organic film is formed by coating these photoconductive substances and the above-mentioned compounds together with a binder. In another embodiment, an organic film containing the aforementioned cyanine compound can be used as the photosensitive layer. In any of the photoreceptors, the compound used contains at least one compound selected from the compounds represented by the general formula (1), and if necessary, pigments with different light absorptions may be combined to increase the sensitivity of the photoreceptor. ,
For the purpose of obtaining a panchromatic photoreceptor, it is also possible to combine two or more compounds represented by general formula (1), or to use them in combination with a charge-generating substance selected from known dyes and pigments. be. The organic coating of the present invention can be used not only as a laser-sensitive coating for an electrophotographic photoreceptor in the above-mentioned optical disk recording medium, but also for infrared cut filters, solar cells, optical sensors, and the like. A solar cell can be prepared, for example, by using indium oxide and aluminum as electrodes and forming the above-mentioned organic film between them in a sandwich structure. The organic film of the present invention can have significantly higher sensitivity in the wavelength range of 750 nm or more compared to conventional electrophotographic photoreceptors for lasers, and has high sensitivity and sufficient sensitivity compared to conventional disk recording materials. It is possible to provide an improved S/N ratio. Furthermore, the compound used in the present invention has the advantage of being extremely stable against heat, although it has an absorption peak at 750 nm or higher. Hereinafter, the present invention will be explained according to examples. Example 1 An ammonia aqueous solution of casein (11.2 g of casein, 28%, 1 g of aqueous ammonia, 222 ml of water) was coated on an aluminum cylinder using a dip coating method, dried, and coated with a coating amount of 1.0 g/ m2. formed a layer. Next, 1 part by weight of the cyanine compound of Compound No. (1) mentioned above, 1 part by weight of butyral resin (Eslec BM-2, manufactured by Sekisui Chemical Co., Ltd.), and 30 parts by weight of tetrahydrofuran were dispersed for 4 hours using a ball mill dispersion machine. . This dispersion was applied onto the previously formed subbing layer by a dip coating method and dried to form a charge generation layer. The film thickness at this time was 0.3μ. Next, P-diethylaminobenzaldebide-N
1 part by weight of -phenyl-N-α-naphthylhydrazone, 1 part by weight of polysulfone resin (P1700 manufactured by Union Carbide Co., Ltd.) and 6 parts by weight of monochlorobenzene were mixed and dissolved by stirring with a stirrer.This liquid was added to the charge generation layer. A charge transport layer was formed by coating on top using a dip coating method and drying.The film thickness at this time was:
It was 12μ. Corona discharge of -5 KV was applied to the photoreceptor thus prepared. The surface potential at this time was measured (initial potential V 0 ). Furthermore, the surface potential of this photoreceptor was measured after it was left in a dark place for 5 seconds (dark decay V 5 ).
Sensitivity is the amount of exposure required to attenuate the potential V 5 to 1/2 after dark decay (E1/2 microjoule/cm 2 )
It was evaluated by measuring. At this time, a gallium, aluminum arsenide semiconductor laser (oscillation wavelength 780 nm) was used as a light source. These results were as follows. V 0 : -620 volts V 5 : -580 volts E1/2: 8.5 microjoules/cm 2 Examples 2 to 17 In place of the compound No. (1) used in Example 1, the compounds shown in Table 1 were used. A photoreceptor was prepared in exactly the same manner as in Example 1, except that the compounds shown were used, and the characteristics of this photoreceptor were measured. These results are shown in Table 1.

【表】【table】

【表】 実施例 18 厚さ100ミクロン厚のアルミ板上にカゼインの
アンモニウム水溶液を塗布し、乾燥して膜厚1.1
ミクロンの下引層を形成した。 次に、2,4,7−トリニトロ−9−フルオレ
ノン5gとポリ−N−ビニルカルバゾール(数平
均分子量300000)5gをテトラヒドロフラン70ml
に溶かして電荷移動錯化合物を形成した。この電
荷移動錯化合物と前述の化合物No.(1)の化合物1g
をポリエステル樹脂(バイロン:東洋紡製)5g
をテトラヒドフラン70mlに溶かした液に加え、分
散した。この分散液を下引層の上に乾燥後の膜厚
が12ミクロンとなる様に塗布し、乾燥した。 こうして調整した感光体の帯電特性を実施例1
と同様の方法で測定した。これの結果は、次のと
おりであつた。但し、帯電極性はとした。 V0:550ボルト V5:450ボルト E1/2:48.5マイクロジユール/cm2 実施例 19 アルミ蒸着ポリエチレンチレフタレートフイル
ムのアルミ面上に膜厚1.1ミクロンのポリビニル
アルコールの被膜を形成した。 次に、実施例1で用いた前述の化合物No.(1)の化
合物の分散液を先に形成したポリビニルアルコー
ル層の上に、乾燥後の膜厚が0.5ミクロンとなる
様にマイヤーバーで塗布し、乾燥して電荷発生を
形成した。 次に、構造式 のピラゾリン化合物5gとポリアリレート樹脂
(ビスフエノールAとテレフタル酸−イソフタン
酸の縮重合体)5gをテトラヒドロフラン70mlに
溶かした電荷発生層の上に乾燥後の膜厚が10ミク
ロンとなる様に塗布し、乾燥して電荷輸送層を形
成した。 こうして調製した感光体の帯電特性を実施例1
と同様の方法によつて測定した。これの結果は、
次のとおりであつた。 V0:−580ボルト V5:−520ボルト E1/2:10.5マイクロジユール/cm2 前述の各実施例から判るとおり、本発明の電子
写真感光体は、750nm以上の波長域で著しい高
感度特性を有するとともに、初期電位や暗減衰な
どの帯電特性に優れている。 実施例 20 ニトロセルロース溶液(ダイセル化学工業(株)
製;オーハーレスラツカー:ニトロセルロース25
重量%のメチルエチルケトン溶液)12重量部、前
述の化合物No.(1)の化合物3重量部およびメチルエ
チルケトン70重量部を混合し、十分に分散した。
この分散液をアルミ蒸着ガラス板上に浸漬コーテ
イング法により塗布した後、乾燥して0.6g/m2
の記録層を得た。 こうして作成した光デイスク記録体をターンテ
ーブル上に取り付け、ターンテーブルをモータで
1800rpmの回転を与えながら、スポツトサイズ
1.0ミクロンに集束した5mWおよび4MHzのガリ
ウム−アルミニウム−ヒ素半導体レーザ(発振波
長780nm)を記録層面にトラツク状で照射して
記録を行なつた。 この記録された光デイスクの表面を走査型電子
顕微鏡で観察したところ、鮮明なピツトが認めら
れた。また、この光デイスクに低出力のガリウム
−アルミニウム−ヒ素半導体レーザを入射し、反
射光の検知を行なつたところ、十分なS/N比を
有する波形が得られた。 実施例 21 前述の化合物No.(1)の化合物500mgを蒸着用モリ
ブデンボートに入れ、1×10-6mmHg以下に排気
した後、アルミ蒸着ガラス板に蒸着した。蒸着中
は真空室内の圧力が10-5mmHg以上に上昇しない
様にヒーターを制御しながら、0.2ミクロンの蒸
着膜を形成させた。 こうして作成した光デイスク記録体に実施例20
と同様の方法で情報を記憶させたところ、実施例
20と同様の鮮明なピツトが認められ、また実施例
20と同様の方法で情報を再生したが、この際十分
なS/N比を有する波形が認められた。 実施例 22 前述の化合物No.(5)の化合物を実施例20と同様の
方法でアルミ蒸着ガラス板の上に塗工して、乾装
塗工量0.6g/m2の記録層を有する光デイスク記
録体を作成した。 この光デイスク記録体に実施例20と同様の方法
で情報を記記憶させてから、再生したところ、十
分なS/N比を有する波形が認められた。又、情
報を書き込みした後の記録層面を走査型電子顕微
鏡で観察したところ、鮮明なピツトが形成されて
いた。 実施例 23 前述の化合物No.(8)の化合物を実施例20と同様の
方法でアルミ蒸着ガラス板の上に塗工して、乾燥
塗工量0.6g/m2の記録層を有する光デイスク記
録体を作成した。 この光デイスク記録体に実施例20と同様の方法
で情報を記憶させてから、再生したところ、十分
なS/N比を有する波形が認められた。又、情報
を書き込みした後の記録層面を走査型電子顕微鏡
で観察したところ、鮮明なピツトが形成されてい
た。 実施例 24 前述の化合物No.(14)の化合物を実施例20と同
様の方法でアルミ蒸着ガラス板の上に塗工して、
乾燥塗工量0.6g/m2の記録層を有する光デイス
ク記録体を作成した。 この光デイスク記録体に実施例20と同様の方法
で情報を記憶させてから、再生したところ、十分
なS/N比を有する波形が認められた。又、情報
を書み込みした後の記録層面を走査型電子顕微鏡
で観察したところ、鮮明なピツトが形成されてい
た。
[Table] Example 18 An ammonium aqueous solution of casein was applied on a 100 micron thick aluminum plate and dried to a film thickness of 1.1
A micron subbing layer was formed. Next, 5 g of 2,4,7-trinitro-9-fluorenone and 5 g of poly-N-vinylcarbazole (number average molecular weight 300,000) were added to 70 ml of tetrahydrofuran.
to form a charge transfer complex. This charge transfer complex compound and 1 g of the above compound No. (1)
5g of polyester resin (Vylon: manufactured by Toyobo)
was added to a solution of 70 ml of tetrahydrofuran and dispersed. This dispersion was applied onto the undercoat layer so that the film thickness after drying was 12 microns, and dried. Example 1 The charging characteristics of the photoreceptor thus adjusted
It was measured in the same manner as. The results of this were as follows. However, the charging polarity was determined. V 0 : 550 volts V 5 : 450 volts E1/2: 48.5 microjoules/cm 2 Example 19 A polyvinyl alcohol film having a thickness of 1.1 microns was formed on the aluminum surface of an aluminum vapor-deposited polyethylene terephthalate film. Next, a dispersion of the aforementioned compound No. (1) used in Example 1 was applied onto the polyvinyl alcohol layer formed earlier using a Meyer bar so that the film thickness after drying was 0.5 microns. and dried to form a charge generator. Next, the structural formula 5 g of pyrazoline compound and 5 g of polyarylate resin (condensation polymer of bisphenol A and terephthalic acid-isophthanic acid) were dissolved in 70 ml of tetrahydrofuran and applied onto the charge generating layer so that the film thickness after drying was 10 microns. , and dried to form a charge transport layer. Example 1 shows the charging characteristics of the photoreceptor thus prepared.
Measured using the same method as above. The result of this is
It was as follows. V 0 : -580 volts V 5 : -520 volts E1/2: 10.5 microjoules/cm 2 As can be seen from the above-mentioned examples, the electrophotographic photoreceptor of the present invention has extremely high sensitivity in the wavelength range of 750 nm or more. It has excellent charging characteristics such as initial potential and dark decay. Example 20 Nitrocellulose solution (Daicel Chemical Industries, Ltd.)
Manufactured by Ohares Latzker: Nitrocellulose 25
12 parts by weight of methyl ethyl ketone solution), 3 parts by weight of the aforementioned compound No. (1) and 70 parts by weight of methyl ethyl ketone were mixed and thoroughly dispersed.
This dispersion was applied onto an aluminum vapor-deposited glass plate by dip coating method, and then dried to give a coating density of 0.6 g/m 2 .
A recording layer was obtained. The optical disk recording medium created in this way is mounted on a turntable, and the turntable is driven by a motor.
Spot size while giving 1800rpm rotation
Recording was performed by irradiating the surface of the recording layer in the form of a track with a 5 mW and 4 MHz gallium-aluminum-arsenide semiconductor laser (oscillation wavelength: 780 nm) focused at 1.0 micron. When the recorded surface of the optical disc was observed using a scanning electron microscope, clear pits were observed. Furthermore, when a low-output gallium-aluminum-arsenic semiconductor laser was incident on this optical disk and reflected light was detected, a waveform with a sufficient S/N ratio was obtained. Example 21 500 mg of the above compound No. (1) was placed in a molybdenum boat for vapor deposition, and after evacuating to 1×10 -6 mmHg or less, it was vapor deposited on an aluminum vapor-deposited glass plate. During the deposition, a 0.2 micron deposited film was formed while controlling the heater so that the pressure in the vacuum chamber did not rise above 10 -5 mmHg. Example 20 was applied to the optical disk recording body thus prepared.
When information was stored in the same manner as in Example
Clear pits similar to those in Example 20 were observed.
Information was reproduced in the same manner as in No. 20, and a waveform with a sufficient S/N ratio was observed. Example 22 The above-mentioned compound No. (5) was coated on an aluminum vapor-deposited glass plate in the same manner as in Example 20 to form a light beam having a recording layer with a dry coating weight of 0.6 g/ m2 . A disk recorder was created. When information was recorded on this optical disk recording medium in the same manner as in Example 20 and then reproduced, a waveform with a sufficient S/N ratio was observed. Further, when the surface of the recording layer after information was written was observed with a scanning electron microscope, clear pits were found to have been formed. Example 23 The above compound No. (8) was coated on an aluminum vapor-deposited glass plate in the same manner as in Example 20 to produce an optical disc having a recording layer with a dry coating weight of 0.6 g/ m2 . A record was created. When information was stored on this optical disk recording medium in the same manner as in Example 20 and then reproduced, a waveform with a sufficient S/N ratio was observed. Further, when the surface of the recording layer after information was written was observed with a scanning electron microscope, clear pits were found to have been formed. Example 24 The aforementioned compound No. (14) was coated on an aluminum vapor-deposited glass plate in the same manner as in Example 20.
An optical disc recording medium having a recording layer with a dry coating weight of 0.6 g/m 2 was prepared. When information was stored on this optical disk recording medium in the same manner as in Example 20 and then reproduced, a waveform with a sufficient S/N ratio was observed. Further, when the surface of the recording layer after information was written was observed with a scanning electron microscope, clear pits were found to have been formed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は、本発明の有機被膜を光
デイスク記録体に用いた時の断面図で、第3図は
この光デイスク記録体の実施態様を示す説明図で
ある。 1……基板、2……有機被膜、3……反射層、
4……レーザ光線、5……ピツト。
1 and 2 are cross-sectional views when the organic coating of the present invention is used in an optical disk recording medium, and FIG. 3 is an explanatory view showing an embodiment of this optical disk recording medium. 1...Substrate, 2...Organic coating, 3...Reflection layer,
4... Laser beam, 5... Pit.

Claims (1)

【特許請求の範囲】 1 下記一般式(1)で示される化合物を含有するこ
とを特徴とする有機被膜。 一般式(1) (式中、Z1は置換又は未置換の含窒素複素環を完
成するに必要な原子群を示す。Z2は、置換されて
もよいピラン、チアピラン、セレナピラン、ベン
ピラン、ベンゾチアピラン、ベンゾセレナピラ
ン、ナフトピラン、ナフトチアピラン又はナフト
セレナピランを完成するに必要な原子群を示し、
Xは硫黄原子、酸素原子又はセレン原子である。
Z3は、置換又は未置換の5員若しくは6員を形成
する2価の炭化水素基を示す。R1は、水素原子
又は置換もしくは未置換のアルキル基を示す。
R2およびR3は、水素原子、ハロゲン原子又は1
価の有機残基を示す。R4は、水素原子又はハロ
ゲン原子を示す。A は、陰イオンを示し、mお
よびnは0又は1で、lは0、1又は2である。)
[Scope of Claims] 1. An organic film characterized by containing a compound represented by the following general formula (1). General formula (1) (In the formula, Z 1 represents an atomic group necessary to complete a substituted or unsubstituted nitrogen-containing heterocycle. Z 2 represents an optionally substituted pyran, thiapyran, selenapyran, bempyran, benzothiapyran, benzoselenapyran, Indicates the atomic group necessary to complete naphthopyran, naphthothiapyran or naphthoselenapyran,
X is a sulfur atom, an oxygen atom or a selenium atom.
Z 3 represents a substituted or unsubstituted 5- or 6-membered divalent hydrocarbon group. R 1 represents a hydrogen atom or a substituted or unsubstituted alkyl group.
R 2 and R 3 are hydrogen atoms, halogen atoms, or 1
Indicates the organic residue of valence. R 4 represents a hydrogen atom or a halogen atom. A represents an anion, m and n are 0 or 1, and l is 0, 1 or 2. )
JP58020786A 1983-02-09 1983-02-09 Organic film Granted JPS59146063A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58020786A JPS59146063A (en) 1983-02-09 1983-02-09 Organic film
US06/577,208 US4555472A (en) 1983-02-09 1984-02-06 Organic coating film and radiation-sensitive member having the film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58020786A JPS59146063A (en) 1983-02-09 1983-02-09 Organic film

Publications (2)

Publication Number Publication Date
JPS59146063A JPS59146063A (en) 1984-08-21
JPH0211137B2 true JPH0211137B2 (en) 1990-03-13

Family

ID=12036786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58020786A Granted JPS59146063A (en) 1983-02-09 1983-02-09 Organic film

Country Status (1)

Country Link
JP (1) JPS59146063A (en)

Families Citing this family (130)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6175358A (en) * 1984-09-21 1986-04-17 Canon Inc Electrophotographic sensitive body
ATE193532T1 (en) 1993-09-16 2000-06-15 Ciba Sc Holding Ag VINYL ETHER COMPOUNDS WITH ADDITIONAL FUNCTIONAL GROUPS DIFFERENT FROM VINYL ETHER GROUPS AND THEIR USE FOR FORMULING CURRABLE COMPOSITIONS
ATE385463T1 (en) 1999-05-21 2008-02-15 Fujifilm Corp PHOTOSENSITIVE COMPOSITION AND PLATE PRINTING PLATE USING SUCH COMPOSITION
JP4469927B2 (en) 2000-05-23 2010-06-02 Dic株式会社 Photosensitive composition, lithographic printing plate precursor and image forming method using the same
US6511790B2 (en) 2000-08-25 2003-01-28 Fuji Photo Film Co., Ltd. Alkaline liquid developer for lithographic printing plate and method for preparing lithographic printing plate
EP2036721B1 (en) 2000-11-30 2011-02-09 FUJIFILM Corporation Planographic printing plate precursor
CN100470365C (en) 2001-01-12 2009-03-18 富士胶片株式会社 Positive imaging material
JP2002341536A (en) 2001-05-21 2002-11-27 Kodak Polychrome Graphics Japan Ltd Negative photosensitive composition and negative photosensitive planographic printing plate
US20040067435A1 (en) 2002-09-17 2004-04-08 Fuji Photo Film Co., Ltd. Image forming material
ATE532106T1 (en) 2002-09-20 2011-11-15 Fujifilm Corp METHOD FOR PRODUCING A PLANT PLATE PRINTING PLATE
JP4048134B2 (en) 2003-02-21 2008-02-13 富士フイルム株式会社 Planographic printing plate precursor
EP2093055B1 (en) 2003-03-26 2012-05-16 FUJIFILM Corporation Lithographic printing method
JP2005028774A (en) 2003-07-07 2005-02-03 Fuji Photo Film Co Ltd Original plate for planographic printing plate, and planographic printing method
JP4291638B2 (en) 2003-07-29 2009-07-08 富士フイルム株式会社 Alkali-soluble polymer and planographic printing plate precursor using the same
US20050153239A1 (en) 2004-01-09 2005-07-14 Fuji Photo Film Co., Ltd. Lithographic printing plate precursor and lithographic printing method using the same
DE602005003606T2 (en) 2004-04-09 2008-12-04 Fujifilm Corp. Planographic printing plate precursor and planographic printing process.
US20050263021A1 (en) 2004-05-31 2005-12-01 Fuji Photo Film Co., Ltd. Platemaking method for lithographic printing plate precursor and planographic printing method
JP2006021396A (en) 2004-07-07 2006-01-26 Fuji Photo Film Co Ltd Original lithographic printing plate and lithographic printing method
US7146909B2 (en) 2004-07-20 2006-12-12 Fuji Photo Film Co., Ltd. Image forming material
US7425406B2 (en) 2004-07-27 2008-09-16 Fujifilm Corporation Lithographic printing plate precursor and lithographic printing method
US20060032390A1 (en) 2004-07-30 2006-02-16 Fuji Photo Film Co., Ltd. Lithographic printing plate precursor and lithographic printing method
JP2006058430A (en) 2004-08-18 2006-03-02 Fuji Photo Film Co Ltd Lithography original plate
JP2006058702A (en) 2004-08-20 2006-03-02 Fuji Photo Film Co Ltd Lithographic printing original plate
US7745090B2 (en) 2004-08-24 2010-06-29 Fujifilm Corporation Production method of lithographic printing plate, lithographic printing plate precursor and lithographic printing method
JP2006062188A (en) 2004-08-26 2006-03-09 Fuji Photo Film Co Ltd Color image forming material and original plate of lithographic printing plate
JP4429116B2 (en) 2004-08-27 2010-03-10 富士フイルム株式会社 Planographic printing plate precursor and lithographic printing plate making method
JP2006068963A (en) 2004-08-31 2006-03-16 Fuji Photo Film Co Ltd Polymerizable composition, hydrophilic film using this composition and original lithographic printing plate
US7462437B2 (en) 2004-08-31 2008-12-09 Fujifilm Corporation Presensitized lithographic plate comprising support and hydrophilic image-recording layer
JP5089866B2 (en) 2004-09-10 2012-12-05 富士フイルム株式会社 Planographic printing method
JP4404734B2 (en) 2004-09-27 2010-01-27 富士フイルム株式会社 Planographic printing plate precursor
US20060150846A1 (en) 2004-12-13 2006-07-13 Fuji Photo Film Co. Ltd Lithographic printing method
JP2006181838A (en) 2004-12-27 2006-07-13 Fuji Photo Film Co Ltd Original plate of lithographic printing plate
JP2007055224A (en) 2005-01-26 2007-03-08 Fujifilm Corp Lithographic printing original plate, lithographic printing method and package of lithographic printing original plate precursors
JP4474296B2 (en) 2005-02-09 2010-06-02 富士フイルム株式会社 Planographic printing plate precursor
EP1696268B1 (en) 2005-02-28 2016-11-09 FUJIFILM Corporation Lithographic printing plate precursor
JP4538350B2 (en) 2005-03-18 2010-09-08 富士フイルム株式会社 Photosensitive composition, image recording material, and image recording method
JP4404792B2 (en) 2005-03-22 2010-01-27 富士フイルム株式会社 Planographic printing plate precursor
JP4574506B2 (en) 2005-03-23 2010-11-04 富士フイルム株式会社 Planographic printing plate precursor and its plate making method
JP2006272782A (en) 2005-03-29 2006-10-12 Fuji Photo Film Co Ltd Planographic printing plate
JP4524235B2 (en) 2005-03-29 2010-08-11 富士フイルム株式会社 Planographic printing plate precursor
JP4815270B2 (en) 2005-08-18 2011-11-16 富士フイルム株式会社 Method and apparatus for producing a lithographic printing plate
JP4759343B2 (en) 2005-08-19 2011-08-31 富士フイルム株式会社 Planographic printing plate precursor and planographic printing method
JP4701042B2 (en) 2005-08-22 2011-06-15 富士フイルム株式会社 Photosensitive planographic printing plate
WO2007136005A1 (en) 2006-05-18 2007-11-29 Fujifilm Corporation Method and apparatus for drying substance to be dried
JP4777226B2 (en) 2006-12-07 2011-09-21 富士フイルム株式会社 Image recording materials and novel compounds
US8771924B2 (en) 2006-12-26 2014-07-08 Fujifilm Corporation Polymerizable composition, lithographic printing plate precursor and lithographic printing method
JP2008163081A (en) 2006-12-27 2008-07-17 Fujifilm Corp Laser-decomposable resin composition and pattern-forming material and laser-engravable flexographic printing plate precursor using the same
JP4881756B2 (en) 2007-02-06 2012-02-22 富士フイルム株式会社 Photosensitive composition, lithographic printing plate precursor, lithographic printing method, and novel cyanine dye
JP5159123B2 (en) 2007-02-27 2013-03-06 富士フイルム株式会社 Photosensitive lithographic printing plate precursor for infrared laser
ATE471812T1 (en) 2007-03-23 2010-07-15 Fujifilm Corp NEGATIVE LITHOGRAPHIC PRINTING PLATE PRECURSOR AND LITHOGRAPHIC PRINTING PROCESS THEREFROM
JP4860525B2 (en) 2007-03-27 2012-01-25 富士フイルム株式会社 Curable composition and planographic printing plate precursor
EP1974914B1 (en) 2007-03-29 2014-02-26 FUJIFILM Corporation Method of preparing lithographic printing plate
EP1975706A3 (en) 2007-03-30 2010-03-03 FUJIFILM Corporation Lithographic printing plate precursor
EP1975710B1 (en) 2007-03-30 2013-10-23 FUJIFILM Corporation Plate-making method of lithographic printing plate precursor
JP5046744B2 (en) 2007-05-18 2012-10-10 富士フイルム株式会社 Planographic printing plate precursor and printing method using the same
JP5376844B2 (en) 2007-06-21 2013-12-25 富士フイルム株式会社 Planographic printing plate precursor and planographic printing method
EP2006091B1 (en) 2007-06-22 2010-12-08 FUJIFILM Corporation Lithographic printing plate precursor and plate making method
JP5247261B2 (en) 2007-07-02 2013-07-24 富士フイルム株式会社 Planographic printing plate precursor and printing method using the same
JP2009069761A (en) 2007-09-18 2009-04-02 Fujifilm Corp Plate making method for planographic printing plate
JP2009091555A (en) 2007-09-18 2009-04-30 Fujifilm Corp Curable composition, image forming material and planographic printing plate precursor
KR20100061730A (en) 2007-09-19 2010-06-08 후지필름 가부시키가이샤 Acetylene compound, salt thereof, condensate thereof and composition thereof
JP4890403B2 (en) 2007-09-27 2012-03-07 富士フイルム株式会社 Planographic printing plate precursor
JP2009083106A (en) 2007-09-27 2009-04-23 Fujifilm Corp Lithographic printing plate surface protective agent and plate making method for lithographic printing plate
JP2009085984A (en) 2007-09-27 2009-04-23 Fujifilm Corp Planographic printing plate precursor
JP2009086373A (en) 2007-09-28 2009-04-23 Fujifilm Corp Method of developing negative planographic printing plate
JP2009098688A (en) 2007-09-28 2009-05-07 Fujifilm Corp Lithographic printing plate precursor, method of preparing lithographic printing plate, and lithographic printing method
US7955781B2 (en) 2007-09-28 2011-06-07 Fujifilm Corporation Negative-working photosensitive material and negative-working planographic printing plate precursor
JP4890408B2 (en) 2007-09-28 2012-03-07 富士フイルム株式会社 Polymerizable composition, lithographic printing plate precursor using the same, alkali-soluble polyurethane resin, and method for producing diol compound
JP4994175B2 (en) 2007-09-28 2012-08-08 富士フイルム株式会社 Planographic printing plate precursor and method for producing copolymer used therefor
JP5244518B2 (en) 2007-09-28 2013-07-24 富士フイルム株式会社 Planographic printing plate precursor and lithographic printing plate preparation method
JP5002399B2 (en) 2007-09-28 2012-08-15 富士フイルム株式会社 Processing method of lithographic printing plate precursor
JP5055077B2 (en) 2007-09-28 2012-10-24 富士フイルム株式会社 Image forming method and planographic printing plate precursor
JP4790682B2 (en) 2007-09-28 2011-10-12 富士フイルム株式会社 Planographic printing plate precursor
JP5322537B2 (en) 2007-10-29 2013-10-23 富士フイルム株式会社 Planographic printing plate precursor
JP5408967B2 (en) 2007-11-08 2014-02-05 富士フイルム株式会社 Resin composition for laser engraving, resin printing plate precursor for laser engraving, relief printing plate and method for producing relief printing plate
CN101855026A (en) 2007-11-14 2010-10-06 富士胶片株式会社 Method of drying coating film and process for producing lithographic printing plate precursor
JP2009139852A (en) 2007-12-10 2009-06-25 Fujifilm Corp Method of preparing lithographic printing plate and lithographic printing plate precursor
JP2009186997A (en) 2008-01-11 2009-08-20 Fujifilm Corp Lithographic printing plate precursor, method of preparing lithographic printing plate and lithographic printing method
JP5155677B2 (en) 2008-01-22 2013-03-06 富士フイルム株式会社 Planographic printing plate precursor and its plate making method
JP5500831B2 (en) 2008-01-25 2014-05-21 富士フイルム株式会社 Method for preparing relief printing plate and printing plate precursor for laser engraving
JP5241252B2 (en) 2008-01-29 2013-07-17 富士フイルム株式会社 Resin composition for laser engraving, relief printing plate precursor for laser engraving, relief printing plate and method for producing relief printing plate
JP2009184188A (en) 2008-02-05 2009-08-20 Fujifilm Corp Lithographic printing original plate and printing method
JP5150287B2 (en) 2008-02-06 2013-02-20 富士フイルム株式会社 Preparation method of lithographic printing plate and lithographic printing plate precursor
JP5137618B2 (en) 2008-02-28 2013-02-06 富士フイルム株式会社 Resin composition for laser engraving, relief printing plate precursor for laser engraving, relief printing plate and method for producing relief printing plate
EP2095970A1 (en) 2008-02-29 2009-09-02 Fujifilm Corporation Resin composition for laser engraving, resin printing plate precursor for laser engraving, relief printing plate and method for production of relief printing plate
JP5175582B2 (en) 2008-03-10 2013-04-03 富士フイルム株式会社 Preparation method of lithographic printing plate
JP2009214428A (en) 2008-03-11 2009-09-24 Fujifilm Corp Original plate of lithographic printing plate and lithographic printing method
JP5422134B2 (en) 2008-03-25 2014-02-19 富士フイルム株式会社 Automatic development method for immersion lithographic printing plates
US7923197B2 (en) 2008-03-25 2011-04-12 Fujifilm Corporation Lithographic printing plate precursor
JP2009236942A (en) 2008-03-25 2009-10-15 Fujifilm Corp Planographic printing plate precursor and plate making method of the same
JP5020871B2 (en) 2008-03-25 2012-09-05 富士フイルム株式会社 Planographic printing plate manufacturing method
JP5422146B2 (en) 2008-03-25 2014-02-19 富士フイルム株式会社 Processing solution for preparing a lithographic printing plate and processing method of a lithographic printing plate precursor
JP2009236355A (en) 2008-03-26 2009-10-15 Fujifilm Corp Drying method and device
EP2105298B1 (en) 2008-03-28 2014-03-19 FUJIFILM Corporation Negative-working lithographic printing plate precursor and method of lithographic printing using same
JP5322575B2 (en) 2008-03-28 2013-10-23 富士フイルム株式会社 Resin composition for laser engraving, image forming material, relief printing plate precursor for laser engraving, relief printing plate, and method for producing relief printing plate
JP5305793B2 (en) 2008-03-31 2013-10-02 富士フイルム株式会社 Relief printing plate and method for producing relief printing plate
JP5164640B2 (en) 2008-04-02 2013-03-21 富士フイルム株式会社 Planographic printing plate precursor
US20090260531A1 (en) 2008-04-18 2009-10-22 Fujifilm Corporation Aluminum alloy plate for lithographic printing plate, lithographic printing plate support, presensitized plate, method of manufacturing aluminum alloy plate for lithographic printing plate and method of manufacturing lithographic printing plate support
JP5296434B2 (en) 2008-07-16 2013-09-25 富士フイルム株式会社 Master for lithographic printing plate
JP5444933B2 (en) 2008-08-29 2014-03-19 富士フイルム株式会社 Negative-type planographic printing plate precursor and planographic printing method using the same
JP5183380B2 (en) 2008-09-09 2013-04-17 富士フイルム株式会社 Photosensitive lithographic printing plate precursor for infrared laser
JP5398282B2 (en) 2008-09-17 2014-01-29 富士フイルム株式会社 Resin composition for laser engraving, relief printing plate precursor for laser engraving, method for producing relief printing plate, and relief printing plate
JP5408942B2 (en) 2008-09-22 2014-02-05 富士フイルム株式会社 Planographic printing plate precursor and plate making method
JP5449898B2 (en) 2008-09-22 2014-03-19 富士フイルム株式会社 Planographic printing plate precursor and printing method using the same
JP2010102330A (en) 2008-09-24 2010-05-06 Fujifilm Corp Method of preparing lithographic printing plate
JP5660268B2 (en) 2008-09-30 2015-01-28 富士フイルム株式会社 Planographic printing plate precursor, lithographic printing plate making method and polymerizable monomer
JP2010237435A (en) 2009-03-31 2010-10-21 Fujifilm Corp Lithographic printing plate precursor
US8883401B2 (en) 2009-09-24 2014-11-11 Fujifilm Corporation Lithographic printing original plate
US8828648B2 (en) 2010-02-17 2014-09-09 Fujifilm Corporation Method for producing a planographic printing plate
JP5253433B2 (en) 2010-02-19 2013-07-31 富士フイルム株式会社 Preparation method of lithographic printing plate
EP2365389B1 (en) 2010-03-08 2013-01-16 Fujifilm Corporation Positive-working lithographic printing plate precursor for infrared laser and process for making lithographic printing plate
EP2366546B1 (en) 2010-03-18 2013-11-06 FUJIFILM Corporation Process for making lithographic printing plate and lithographic printing plate
US8846300B2 (en) 2010-03-31 2014-09-30 Fujifilm Corporation Developer for processing lithographic printing plate precursor, method for manufacturing lithographic printing plate by using the developer, and printing method
JP5662832B2 (en) 2010-08-31 2015-02-04 富士フイルム株式会社 Image forming material, lithographic printing plate precursor and lithographic printing plate production method
JP5286350B2 (en) 2010-12-28 2013-09-11 富士フイルム株式会社 Planographic printing plate precursor, plate making method thereof, and planographic printing method thereof
JP5241871B2 (en) 2011-03-11 2013-07-17 富士フイルム株式会社 Thermal positive lithographic printing plate precursor and method for preparing lithographic printing plate
JP5301015B2 (en) 2011-07-25 2013-09-25 富士フイルム株式会社 Photosensitive lithographic printing plate precursor and method for preparing lithographic printing plate
JP5255100B2 (en) 2011-07-29 2013-08-07 富士フイルム株式会社 Laser engraving type flexographic printing plate precursor and manufacturing method thereof, and flexographic printing plate and plate making method thereof
JP5438074B2 (en) 2011-08-12 2014-03-12 富士フイルム株式会社 Method for producing flexographic printing plate precursor for laser engraving
JP5624003B2 (en) 2011-09-13 2014-11-12 富士フイルム株式会社 Planographic printing plate manufacturing method and planographic printing plate
JP5714544B2 (en) 2011-09-15 2015-05-07 富士フイルム株式会社 Recycling process waste liquid
JP5690696B2 (en) 2011-09-28 2015-03-25 富士フイルム株式会社 Planographic printing plate making method
IN2014CN03280A (en) 2011-11-04 2015-07-03 Fujifilm Corp
JP5490168B2 (en) 2012-03-23 2014-05-14 富士フイルム株式会社 Planographic printing plate precursor and lithographic printing plate preparation method
JP5703417B2 (en) 2012-03-29 2015-04-22 富士フイルム株式会社 Planographic printing plate precursor and printing method thereof
JP5512730B2 (en) 2012-03-30 2014-06-04 富士フイルム株式会社 Preparation method of lithographic printing plate
JP5554362B2 (en) 2012-03-30 2014-07-23 富士フイルム株式会社 Planographic printing plate making method
JP5699112B2 (en) 2012-07-27 2015-04-08 富士フイルム株式会社 Planographic printing plate precursor and plate making method
EP2975461B1 (en) 2013-03-14 2017-08-16 Fujifilm Corporation Concentrating method for platemaking waste fluid and recycling method
CN112601763B (en) 2018-09-20 2024-03-19 富士胶片株式会社 Curable composition, cured film, infrared transmission filter, laminate, solid-state imaging element, sensor, and pattern forming method

Also Published As

Publication number Publication date
JPS59146063A (en) 1984-08-21

Similar Documents

Publication Publication Date Title
JPH0211137B2 (en)
JPH0211134B2 (en)
JPH0211135B2 (en)
JPH0211140B2 (en)
US4548886A (en) Radiation sensitive organic thin film comprising an azulenium salt
JPH0220094B2 (en)
JPH05230B2 (en)
US4501808A (en) Recording medium and process employing a photosensitive organic film
JPH0125717B2 (en)
US4555472A (en) Organic coating film and radiation-sensitive member having the film
JPH0211138B2 (en)
JPH0211133B2 (en)
JPH0211131B2 (en)
JPH0211132B2 (en)
JPS58219091A (en) Optical recording medium
JPH0473149B2 (en)
JPS63135943A (en) Photosensitive composition
JPS63136054A (en) Photosensitive composition
JPS63141068A (en) Photosensitive composition
JPH0553262B2 (en)
JPS63135942A (en) Photosensitive composition
JPH01124861A (en) Photosensitive composition
US5320930A (en) Optical recording medium and process for recording thereon
JPS63155146A (en) Photosensitive composition
JPS63172271A (en) Photosensitive composition