JPH0211132Y2 - - Google Patents
Info
- Publication number
- JPH0211132Y2 JPH0211132Y2 JP5699386U JP5699386U JPH0211132Y2 JP H0211132 Y2 JPH0211132 Y2 JP H0211132Y2 JP 5699386 U JP5699386 U JP 5699386U JP 5699386 U JP5699386 U JP 5699386U JP H0211132 Y2 JPH0211132 Y2 JP H0211132Y2
- Authority
- JP
- Japan
- Prior art keywords
- blade
- cutting
- rotary
- cutting edge
- main body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000919 ceramic Substances 0.000 claims description 11
- 239000000463 material Substances 0.000 description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 238000005219 brazing Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000002023 wood Substances 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 229910001315 Tool steel Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 229910000997 High-speed steel Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000011195 cermet Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
Landscapes
- Nonmetal Cutting Devices (AREA)
- Processing Of Stones Or Stones Resemblance Materials (AREA)
Description
[産業上の利用分野]
本考案は面取り機、溝切り機、ルーター機等各
種材料の切削機に使用される回転刃に関する。
[従来技術]
回転刃の一形式として、基台に設けた駆動部材
にトルク伝達可能に組付けられて回転する本体の
外周に、同本体の回転方向に対して交差状に延び
る所定幅の刃先を同本体の回転方向に所定間隔を
保つて複数具備する回転刃がある。この種形式の
回転刃においては、第11図および第12図に示
すように、各刃先1〜4の先端が幅方向の全体に
わたつて刃部1a〜4aに形成されていて、被切
削材を各刃先1〜4の幅方向全体で均等に切削す
る構成となつている。
しかして、この種形式の回転刃は一般に、炭素
工具鋼、合金工具鋼、高速度鋼等の鋼系材料によ
り形成されている。
ところで、この種形式の回転刃を含めて一般に
切削工具においては、刃先が常に鋭利であるこ
と、耐摩耗性に優れていること、切削熱に対して
も硬度を持続すること、チツピングに対して十分
な靭性を有していることが望ましい。このため、
切削工具を鋼系材料に換えて超硬合金やセラミツ
クにより形成することも多い。特に、セラミツク
からなる切削工具は超硬合金からなる切削工具に
比しても刃先の寿命が長く、特に高速切削におい
てその傾向が著いく、従つて超硬合金からなる切
削工具に比し高速切削可能であるとともに切削面
の仕上りが良好であるといつた利点がある。
[考案が解決しようとする問題点]
このように、セラミツクは切削工具として優れ
た特性を備えているため、前記した形式の回転刃
の刃先に利用することは極めて有効であるが、刃
先をセラミツクで形成した場合セラミツクである
刃先と同刃先が固着される鉄製の本体との熱膨張
係数が著しく相違し、かつセラミツクの抗折力が
極めて低いことから、同刃先をロー付け等の固着
手段により固着した場合には同刃先がかけたり、
われたり等破損し、回転刃を構成することが難し
い。
[問題点を解決するための手段]
本考案はかかる問題に対処すべくなされたもの
で、前記した形式の回転刃において前記各刃先が
幅方向に所定幅の凹部を所定間隔にて多数備えた
超硬合金からなる刃台と同刃台の前記各凹部に固
着された所定幅のセラミツクからなる多数の刃部
とにより構成され、かつ互に隣合う各刃先の各刃
部と各非凹部とが互に対向して位置していること
を特徴とする。
しかして、本考案において超硬合金とはWC−
Co系、WC−TiC−Co系、WC−TiC(NbC)−Co
系、TiC基サーメツト系のTiC−Ni,TiC−Co合
金等をいい、公知の方法にて焼結結合されて形成
される。また、本考案においてセラミツクとは切
削工具用材料としてのセラミツクをいい、例えば
酸化アルミニウムを主成分として公知の方法にて
焼結結合されて形成される。
[考案の作用・効果]
かかる構成によれば、セラミツクからなる各刃
部を鉄製の本体に比し熱膨張係数の差が極めて少
ない起硬合金からなる刃台にロー付等により固着
し、かつかかる刃台を前記本体にロー付等により
固着することができる。このため、各刃部の前記
刃台への固着時にこれら両者の熱収縮の差に起因
する各刃部の破損は極めて少く、しかも刃部を前
記刃台の幅方向に多数分散させているのでこれら
両者の熱収縮の差は互に吸収され易く、各刃部の
破損は一層少くなる。また、前記刃台の前記本体
への固着時には超硬合金である刃台の抗折力が極
めて高いことから刃台が破損することはなく、か
つ同刃台に保持された各刃部が破損することもな
い。
しかして、かかる構成の回転刃においては、各
刃先による切削扮に各非刃部に対応する畆状の多
数の非切削部が形成されるが、これらの非切削部
は隣合う刃先により順次切削される。また、被切
削材の送り速度に対する回転刃の回転速度が極め
て速いことから、各刃先間に残留する非切削部は
極めて小さく切削加工面の面粗度は従来の回転刃
における場合に比し見掛上何等遜色ない。
[実施例]
以下本考案を図面に基づいて説明するに、第1
図には本考案の一実施例に係る回転刃10を組付
けた高速立軸型の面取り盤(面取り機)が示され
ている。走該面取り盤は木工用面取り盤として常
用されているもので、回転刃10は図示しない基
台に配設した電動モータにて駆動し定盤21上に
突出する回転軸22に嵌合固定され、同回転軸2
2と一体回転可能に組付けられている。また、回
転軸22と回転刃10は前記基台に突設されて定
盤21上に突出する支柱23にアーム24を介し
て支持された主軸押え25にて回転可能に押圧支
持され、安定な状態で高速回し得るようになつて
いる。当該面取り盤においては、被切削材である
木材が定盤21上に突設した定規に沿つて第1図
の紙面の表裏を貫通する方向に搬送され、回転刃
10により切削されて所要の面取り加工がなされ
る。
しかして、回転刃10は第1図〜第4図に示す
ように鉄製の本体11と2種類の4枚の刃先1
2,13とからなるもので、本体11は回転軸2
2に嵌合固定される筒部11aと、筒部11aの
外周にて同一間隔に位置し外方へフツク状に突出
する4本の腕部11b〜11eを備えている。各
腕部11b〜11eは所定幅(上下方向)に形成
されていて、互に180゜偏位する一対の腕部11
b,11dの内側面に第1刃先12がロウ付けに
より固着され、かつ他の一対の腕部11c,11
eの内側面に第2刃先13がロウ付けにより固着
されている。
各刃先12,13は所定幅(上下方向)の刃台
12a,13aと、これら刃台12a,13aに
設けた多数の凹部(溝部12a1,13a1)に
嵌合固着した多数の刃部12b,13bとにより
構成されている。各刃台12a,13aはWC−
Co系の超硬合金からなるもので、各刃台12a,
13aの溝部12a1,13a1は所定の幅およ
び深さに形成されていて、刃先12,13の幅方
向に同一間隔で配列されている。各刃台12a,
13a間においては、各溝部12a1,13a1
と各非溝部12a2,13a2とが互に対向して
おり、かつ各溝部12a1と13a1とがわずか
に重複して位置している。各刃部12b,13b
は酸化アルミニウムを主成分とするセラミツクか
らなる半円柱状のもので、表面処理により金属被
膜が形成された状態にて各刃台12a,13aの
各溝部12a1,13a1に嵌合されてロー付け
されている。各刃部12b,13bの先端部は各
刃台12a,13aの各非溝部12a2,13a
2の端部と同一線上にあり、各刃部12b,13
bと各非溝部13a2,12a2とが互に対向し
かつ各刃部12bと13bとはわずかに重複して
いる。
かかる構成の回転刃10においては、同回転刃
10を構成する本体11、刃台12a,13a、
刃部12b,13bが下表に示す性質を備えてい
る。
[Industrial Application Field] The present invention relates to a rotary blade used in various materials cutting machines such as chamfering machines, grooving machines, and router machines. [Prior Art] As a type of rotary blade, a cutting edge of a predetermined width is provided on the outer periphery of a rotating body that is assembled to a driving member provided on a base so as to be able to transmit torque. There is a rotary blade that has a plurality of blades spaced apart from each other at a predetermined interval in the direction of rotation of the main body. In this type of rotary blade, as shown in FIGS. 11 and 12, the tip of each cutting edge 1 to 4 is formed into blade portions 1a to 4a over the entire width direction, and the cutting material is It is configured to cut uniformly across the entire width of each cutting edge 1 to 4. Therefore, this type of rotary blade is generally made of steel-based materials such as carbon tool steel, alloy tool steel, and high-speed steel. By the way, cutting tools, including this type of rotary blade, generally require that the cutting edge is always sharp, have excellent wear resistance, maintain hardness even against cutting heat, and are resistant to chipping. It is desirable to have sufficient toughness. For this reason,
Cutting tools are often made of cemented carbide or ceramic instead of steel. In particular, cutting tools made of ceramic have a longer cutting edge life than cutting tools made of cemented carbide, and this tendency is particularly noticeable in high-speed cutting. It has the advantage that it is possible to cut it and the finish of the cutting surface is good. [Problems to be solved by the invention] As described above, ceramic has excellent properties as a cutting tool, so it is extremely effective to use it for the cutting edge of the above-mentioned type of rotary blade. When the cutting edge is made of ceramic, the coefficient of thermal expansion is significantly different from the iron body to which the cutting edge is fixed, and the transverse rupture strength of ceramic is extremely low. If it gets stuck, the same cutting edge may get stuck,
It is difficult to construct a rotary blade due to damage such as cracking or cracking. [Means for Solving the Problems] The present invention has been made to deal with such problems, and includes a rotary blade of the type described above, in which each of the cutting edges is provided with a number of recesses of a predetermined width at predetermined intervals in the width direction. It is composed of a blade base made of a cemented carbide and a large number of blade parts made of ceramic of a predetermined width fixed to each of the recesses of the same blade base, and each blade part of each blade edge and each non-recessed part are adjacent to each other. are located opposite each other. However, in this invention, cemented carbide is WC-
Co series, WC-TiC-Co series, WC-TiC (NbC)-Co
TiC-based cermet, TiC-Ni, TiC-Co alloy, etc., and is formed by sintering and bonding using a known method. Further, in the present invention, ceramic refers to ceramic as a material for cutting tools, and is formed by sintering and bonding aluminum oxide as a main component by a known method. [Operations and effects of the invention] According to this configuration, each blade portion made of ceramic is fixed by brazing or the like to a blade base made of a hardened alloy, which has an extremely small difference in coefficient of thermal expansion compared to the iron main body, and Such a blade base can be fixed to the main body by brazing or the like. For this reason, damage to each blade part due to the difference in thermal contraction between the two blade parts when fixed to the blade base is extremely small, and since the blade parts are dispersed in large numbers in the width direction of the blade base, The difference in thermal contraction between the two is easily absorbed, and damage to each blade portion is further reduced. In addition, when the blade holder is fixed to the main body, the blade holder, which is made of cemented carbide, has extremely high transverse rupture strength, so the blade holder will not be damaged, and each blade part held by the blade holder will be damaged. There's nothing to do. Therefore, in a rotary blade having such a configuration, a large number of ridge-like non-cutting parts corresponding to each non-cutting part are formed when each cutting edge performs cutting, but these non-cutting parts are sequentially cut by adjacent cutting edges. be done. In addition, since the rotational speed of the rotary blade is extremely fast relative to the feed rate of the material to be cut, the uncut portion remaining between each cutting edge is extremely small, and the surface roughness of the machined surface is comparable to that of conventional rotary blades. Kakegami is no different. [Example] The present invention will be explained below based on the drawings.
The figure shows a high-speed vertical shaft type chamfering machine (chamfering machine) equipped with a rotary blade 10 according to an embodiment of the present invention. The sliding chamfering machine is commonly used as a woodworking chamfering machine, and the rotary blade 10 is driven by an electric motor disposed on a base (not shown) and is fitted and fixed to a rotating shaft 22 protruding above a surface plate 21. , same rotation axis 2
It is assembled so that it can rotate integrally with 2. The rotating shaft 22 and the rotating blade 10 are rotatably pressed and supported by a spindle holder 25 that is supported via an arm 24 on a support 23 that is protruded from the base and projects above the surface plate 21. It is designed to be able to rotate at high speeds. In this chamfering machine, the wood to be cut is conveyed along a ruler protruding from a surface plate 21 in a direction penetrating the front and back sides of the paper in FIG. Processing is done. As shown in FIGS. 1 to 4, the rotary blade 10 has an iron main body 11 and two types of four cutting edges 1.
2 and 13, the main body 11 is the rotating shaft 2.
2, and four arm portions 11b to 11e that are positioned at the same interval on the outer periphery of the cylindrical portion 11a and protrude outward like hooks. Each of the arm portions 11b to 11e is formed to have a predetermined width (in the vertical direction), and the pair of arm portions 11 are offset by 180° from each other.
The first cutting edge 12 is fixed to the inner surfaces of the arms b and 11d by brazing, and the other pair of arm parts 11c and 11
A second cutting edge 13 is fixed to the inner surface of e by brazing. Each cutting edge 12, 13 has a blade rest 12a, 13a of a predetermined width (in the vertical direction), and a large number of blade parts 12b, 13b that are fitted and fixed in a number of recesses (grooves 12a1, 13a1) provided in these blade rests 12a, 13a. It is composed of. Each blade stand 12a, 13a is WC-
It is made of Co-based cemented carbide, and each blade stand 12a,
The grooves 12a1 and 13a1 of the blade 13a are formed to have a predetermined width and depth, and are arranged at equal intervals in the width direction of the cutting edges 12 and 13. Each blade stand 12a,
Between 13a, each groove 12a1, 13a1
and the non-groove portions 12a2 and 13a2 are opposed to each other, and the groove portions 12a1 and 13a1 are located slightly overlapping each other. Each blade part 12b, 13b
is a semi-cylindrical piece made of ceramic whose main component is aluminum oxide, and is fitted into each groove 12a1, 13a1 of each blade stand 12a, 13a and brazed with a metal coating formed by surface treatment. ing. The tip of each blade part 12b, 13b is connected to each non-groove part 12a2, 13a of each blade stand 12a, 13a.
2, and each blade part 12b, 13
b and each non-groove portion 13a2, 12a2 are opposed to each other, and each blade portion 12b and 13b slightly overlap. In the rotary blade 10 having such a configuration, the main body 11, the blade stands 12a, 13a, which constitute the rotary blade 10,
The blade portions 12b and 13b have the properties shown in the table below.
【表】
上記表から明らかなように各刃台12a,13
aと各刃部12b,13bとは熱膨張係数が近似
しているため、各刃部12b,13bの各刃台1
2a,13aに対するロー付け時にこれら両者の
熱収縮の差に起因する各刃部12b,13bは各
刃台12a,13aの幅方向に多数分散させてい
るのでこれら両者の熱収縮の差は互に吸収され易
く、各刃部12b,13bの破損は一層少くな
い。また、各刃台12a,13aの本体11に対
するロー付け時には、これら両者の熱膨張係数が
大きく相違するが各刃台12a,13aの抗折力
が大きいことから、各刃台12a,13aが破損
することはなくかつ同刃台12a,13aに保持
された各刃部12b,13bが破損することもな
い。
しかして、かかる構成の回転刃10において
は、面取り盤の電動モータの駆動により回転軸2
2と一体的に例えば5000rpmで回転し、搬送速度
が例えば6m/minで搬送される被切削材(木材)
の一側を切削して面取り加工する。この場合、各
刃先12,13は多数の刃部12b,13bと非
溝部12a2,13a2を交互に備えているた
め、各刃先12,13により切削部には各非溝部
12a2,13a2に対応する畆状の多数の非切
削部が形成されることとなるが、各刃先12,1
3における各非溝部12a2と各刃部13b、各
刃部12bと各非溝部13a2が互に対向して位
置しているため、上記各非切削部は隣合う刃先に
より順次切削される。しかして、回転刃10の各
刃先12,13における各刃部12b,13bの
合計の刃渡りは従来のこの種の回転刃の各刃先に
比較して少なくこれにより切削抵抗が減少し切削
が軽快になされ、かつ木目に対する逆目によるサ
サクレが少くて加工面の仕上りが向上する。ま
た、切削時における被切削材の幅方向における局
部的な圧縮変形が小さくて、切削性が向上する。
ところで、かかる回転刃10による被切削材の
切削状態は第5図に示す状態となり、回転刃10
の各刃先12,13は被切削材Eを搬送方向に間
隔P毎に切削する。このため、被切削材Eの加工
面には間隔P毎に微小な突起e1,e2…が残留
するが、これらの微小突起e1,e2…は下記に
示すように一般の切削加工においては無視し得る
大きさであり、加工面の面粗度は見掛上従来と何
等遜色がない。
(1) 切削間隔Pは回転刃の回転数をN、被切削材
の搬送速度をF、刃先数をnとした場合
P=F/(nN)
(2) 微小突起e1,e2…の高さeは回転刃の回
転半径をRとした場合
(3) 高速立軸型面取り盤の稼働条件として、回転
刃の回転半径Rを50mm、回転数Nを500rpm、
被切削材の搬送速度Fを6m/minとした場合
回転刃の刃先数2……P=0.6mm,
e=0.001mm
回転刃の刃先数4……P=0.3mm,
e=0.0002mm
本実施例の回転刃10を用いて上記条件により
切削加工した場合には、微小突起e1,e2…の
高さeは刃先数2の相当する0.001mmとなり、こ
の大きさは一般の切削加工においては無視し得る
値である。
第6図a,bおよび第7図a,bには、上記実
施例に係る刃先12,13の第1、第2変形例1
4,15が示されており、同実施例における各刃
部12b,13bをその抄い面側を正面として半
円形の正面形汎の刃部14b、半長円形の正面形
状の刃部15bに変更してもよい。
また、第8図a,b、第9図a,bおよび第1
0図a,bには上記実施例に係る刃先12,13
の第3、第4、第5変形例16,17,18が示
されている、これら変形例の各刃先16〜18に
おいては、各刃部16b,17b,18bが各刃
台16a,17a,18aから所定長さ突出して
いて、各刃部16b〜18b間が畆状の溝部にな
つている。かかる刃先16〜18を採用した回転
刃においては、切削抵抗が一層低減し、切削が一
層軽快になされる。[Table] As is clear from the table above, each blade stand 12a, 13
a and each blade part 12b, 13b have approximate thermal expansion coefficients, each blade part 1 of each blade part 12b, 13b
2a, 13a due to the difference in heat shrinkage between these two blade parts 12b, 13b are distributed in large numbers in the width direction of each blade base 12a, 13a, so the difference in heat shrinkage between these two parts is mutually distributed. It is easily absorbed, and damage to each blade portion 12b, 13b is even more likely. Furthermore, when each blade stand 12a, 13a is brazed to the main body 11, each blade stand 12a, 13a is damaged because the transverse rupture force of each blade stand 12a, 13a is large, although the thermal expansion coefficients of the two are greatly different. This will not cause any damage to the blade parts 12b and 13b held by the blade stands 12a and 13a. In the rotary blade 10 having such a configuration, the rotary shaft 2 is driven by the electric motor of the chamfering machine.
2, the material to be cut (wood) is rotated at, for example, 5000 rpm and transported at a transport speed of, for example, 6 m/min.
Cut and chamfer one side. In this case, each cutting edge 12, 13 has a large number of blade parts 12b, 13b and non-grooved parts 12a2, 13a2 alternately, so each cutting edge 12, 13 has a ridge corresponding to each non-grooved part 12a2, 13a2 in the cutting part. A large number of non-cutting parts will be formed, but each cutting edge 12, 1
Since each non-groove portion 12a2 and each blade portion 13b, and each blade portion 12b and each non-groove portion 13a2 in No. 3 are located facing each other, each non-cutting portion is sequentially cut by the adjacent blade edge. Therefore, the total blade length of each cutting edge 12b, 13b of each cutting edge 12, 13 of the rotary blade 10 is smaller than that of each cutting edge of a conventional rotary blade of this type, which reduces cutting resistance and makes cutting easier. This improves the finish of the machined surface because there are fewer cracks due to the grain being against the grain of the wood. In addition, local compressive deformation in the width direction of the material to be cut during cutting is small, improving machinability. By the way, the cutting state of the material to be cut by the rotary blade 10 is as shown in FIG.
The cutting edges 12 and 13 cut the material E at intervals P in the conveying direction. Therefore, minute protrusions e1, e2... remain on the machined surface of the workpiece E at intervals P, but these minute protrusions e1, e2... are ignored in general cutting as shown below. The surface roughness of the machined surface is apparently comparable to that of the conventional method. (1) Cutting interval P is when the rotation speed of the rotary blade is N, the conveyance speed of the material to be cut is F, and the number of cutting edges is n.P=F/(nN) (2) Height of minute protrusions e1, e2... e is when the radius of rotation of the rotary blade is R (3) The operating conditions for the high-speed vertical shaft type chamfering machine are: the rotation radius R of the rotary blade is 50 mm, the rotation speed N is 500 rpm,
When the conveyance speed F of the cut material is 6 m/min Number of cutting edges of the rotary blade 2...P=0.6mm, e=0.001mm Number of cutting edges of the rotating blade 4...P=0.3mm, e=0.0002mm This implementation When cutting is performed under the above conditions using the rotary blade 10 in the example, the height e of the minute protrusions e1, e2, etc. is 0.001 mm, which corresponds to the number of cutting edges 2, and this size is ignored in general cutting. It is a possible value. 6a, b and 7a, b show first and second modified examples 1 of the cutting edges 12, 13 according to the above embodiment.
4 and 15 are shown, and the respective blade parts 12b and 13b in the same embodiment are divided into a semicircular frontal general blade part 14b and a semielliptical frontal blade part 15b with the cutting surface side as the front. May be changed. In addition, Fig. 8 a, b, Fig. 9 a, b, and Fig. 1
Figures 0 a and b show cutting edges 12 and 13 according to the above embodiment.
In each of the cutting edges 16 to 18 of the third, fourth, and fifth modified examples 16, 17, and 18 of these modified examples, each blade part 16b, 17b, and 18b is connected to each blade stand 16a, 17a, It protrudes from 18a by a predetermined length, and a ridge-like groove is formed between each of the blade portions 16b to 18b. In a rotary blade employing such cutting edges 16 to 18, cutting resistance is further reduced, and cutting is performed more easily.
第1図は本考案の一実施例に係る回転刃を組付
けた面取り盤の一部を示す部分側面図、第2図は
同回転刃の拡大平面図、第3図は第2図の矢印
−方向の縦断面図、第4図a,bは各刃先の平
面図、第5図は同回転刃による切削状態を説明す
る模型図、第6図aは刃先の第1変形例を示す正
面図、同図bは矢印−方向の断面図、第7図
aは刃先の第2変形例を示す正面図、同図bは矢
印−方向の断面図、第8図aは刃先の第3変
形例を示す正面図、同図bは矢印−方向の断
面図、第9図aは刃先の第4変形例を示す正面
図、同図bは矢印−方向の断面図、第10図
aは刃先の第5の変形例を示す正面図、同図bは
矢印−方向の断面図、第11図および第12
図は従来の回転刃を示す第2図および第3図に対
応する平面図および縦断面図である。
符号の説明、10……回転刃、11……本体、
11b〜11e……腕部、12〜18……刃先、
12a〜18a……刃台、12b〜18b……刃
部、21……定盤、22……回転軸。
Fig. 1 is a partial side view showing a part of a chamfering machine equipped with a rotary blade according to an embodiment of the present invention, Fig. 2 is an enlarged plan view of the rotary blade, and Fig. 3 is an arrow shown in Fig. 2. Fig. 4a and b are plan views of each cutting edge, Fig. 5 is a model diagram explaining the cutting state by the rotary blade, and Fig. 6a is a front view showing the first modification of the cutting edge. Fig. 7b is a sectional view in the direction of the arrow, Fig. 7a is a front view showing the second modification of the cutting edge, Fig. 8b is a sectional view in the direction of the arrow, and Fig. 8a is the third modification of the cutting edge. FIG. 9a is a front view showing a fourth modification of the cutting edge, FIG. 10b is a sectional view in the direction of the arrow, and FIG. 10a is a sectional view of the cutting edge. FIG. 11 is a front view showing a fifth modified example of FIG.
The figures are a plan view and a longitudinal sectional view corresponding to FIGS. 2 and 3 showing a conventional rotary blade. Explanation of symbols, 10...Rotary blade, 11...Main body,
11b to 11e...arm portion, 12 to 18...blade tip,
12a to 18a...Blade stand, 12b to 18b...Blade portion, 21...Surface plate, 22...Rotating shaft.
Claims (1)
けられて回転する本体の外周に、同本体の回転方
向に対して交差状に延びる所定幅の刃先を同本体
の回転方向に所定間隔を保つて複数具備する回転
刃において、前記各刃先が幅方向に所定幅の凹部
を所定間隔にて多数備えた超硬合金からなる刃台
と同刃台の前記各凹部に嵌合固着された所定幅の
セラミツクからなる多数の刃部とにより構成さ
れ、かつ互に隣合う各刃先の各刃部と各非凹部と
が互に対向して位置していることを特徴とする回
転刃。 A cutting edge of a predetermined width extending crosswise to the rotation direction of the main body is maintained at a predetermined interval in the rotation direction of the main body on the outer periphery of a rotating main body that is assembled to a driving member provided on a base so as to be able to transmit torque. In a rotary blade having a plurality of rotary blades, each of the cutting edges has a blade base made of cemented carbide having a number of recesses of a predetermined width at predetermined intervals in the width direction, and a blade of a predetermined width that is fitted and fixed to each of the recesses of the blade base. What is claimed is: 1. A rotary blade comprising a large number of blade parts made of ceramic, and characterized in that each blade part and each non-recessed part of each adjacent blade edge are positioned opposite to each other.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5699386U JPH0211132Y2 (en) | 1986-04-16 | 1986-04-16 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5699386U JPH0211132Y2 (en) | 1986-04-16 | 1986-04-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62167605U JPS62167605U (en) | 1987-10-24 |
JPH0211132Y2 true JPH0211132Y2 (en) | 1990-03-20 |
Family
ID=30886296
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5699386U Expired JPH0211132Y2 (en) | 1986-04-16 | 1986-04-16 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0211132Y2 (en) |
-
1986
- 1986-04-16 JP JP5699386U patent/JPH0211132Y2/ja not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS62167605U (en) | 1987-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5272940A (en) | Helically fluted tool | |
JPH0753853Y2 (en) | Ball end mill | |
JP2934927B2 (en) | Diamond rotary cutter | |
US20070172321A1 (en) | Ball endmill | |
KR960007687Y1 (en) | End mill | |
JPH0211132Y2 (en) | ||
JP2724485B2 (en) | New ceramic solid end mill | |
JP4823266B2 (en) | Cutting method | |
JPH10509096A (en) | Cutting insert | |
JP4378307B2 (en) | Axial feed edge replaceable tool | |
JP3883103B2 (en) | Finger cutter | |
JPH031218Y2 (en) | ||
JPH052247Y2 (en) | ||
JP3188415B2 (en) | Reamer and hole finishing method using the same | |
JPH0513451Y2 (en) | ||
JPS6137043B2 (en) | ||
JPS5841060Y2 (en) | Throwaway tip | |
JPH031219Y2 (en) | ||
JP2505803B2 (en) | End mill | |
JP3725956B2 (en) | End mill | |
JP3113317B2 (en) | Ball end mill and manufacturing method thereof | |
JPH10113819A (en) | Rotary cutting tool | |
KR102300774B1 (en) | A Diamond Nick Single 360degree Helix Endmill | |
JP2526825Y2 (en) | Router cutlery for woodworking | |
JPS6225293Y2 (en) |