JPH0211010B2 - - Google Patents

Info

Publication number
JPH0211010B2
JPH0211010B2 JP58244318A JP24431883A JPH0211010B2 JP H0211010 B2 JPH0211010 B2 JP H0211010B2 JP 58244318 A JP58244318 A JP 58244318A JP 24431883 A JP24431883 A JP 24431883A JP H0211010 B2 JPH0211010 B2 JP H0211010B2
Authority
JP
Japan
Prior art keywords
ion beam
voltage
substrate
lens
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58244318A
Other languages
Japanese (ja)
Other versions
JPS60137012A (en
Inventor
Osamu Tsukagoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP24431883A priority Critical patent/JPS60137012A/en
Publication of JPS60137012A publication Critical patent/JPS60137012A/en
Publication of JPH0211010B2 publication Critical patent/JPH0211010B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

【発明の詳細な説明】 本発明は、イオン源から引き出されたイオンビ
ームを質量分離器で質量分離し、そしてイオンビ
ームを適当な形に整形して減速系を通つて基板へ
入射させるようにしたイオンビームエピタキシヤ
ル成長装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention involves mass-separating an ion beam extracted from an ion source using a mass separator, shaping the ion beam into an appropriate shape, and making it incident on a substrate through a deceleration system. This invention relates to an ion beam epitaxial growth apparatus.

例えばGaAs化合物半導体薄膜をイオンビーム
エピタキシヤル成長(IBE)装置を用いて成長さ
せようとする場合には、Gaをオーブン(蒸発源)
から蒸気として基板に蒸着し、同時にAsはAs+
として100eV程度或いはそれ以下の低エネルギー
で基板に沈着することによつて良好な膜質の薄膜
を得ることができる。As+の基板への入射エネル
ギーが300eVを越えると、As+によるGaAsのス
パツタ量が基板への付着量と同等又はそれ以上に
なり、膜の成長は行なわれないことになる。その
ため基板への入射エネルギーは300eV以下、好ま
しくは100eV以下にする必要がある。
For example, when growing a GaAs compound semiconductor thin film using an ion beam epitaxial growth (IBE) device, Ga is grown in an oven (evaporation source).
At the same time, As is deposited on the substrate as vapor from As +
A thin film of good quality can be obtained by depositing on a substrate at a low energy of about 100 eV or less. If the incident energy of As + on the substrate exceeds 300 eV, the amount of GaAs sputtered by As + will be equal to or greater than the amount attached to the substrate, and no film will grow. Therefore, the energy incident on the substrate needs to be 300 eV or less, preferably 100 eV or less.

そこで従来のイオンビームエピタキシヤル成長
装置では、スパツタリングの影響を避ける目的で
基板への入射エネルギーを100eV以下におさえる
ため、例えばフリーマン型イオン源から引き出さ
れたAs+ビームを立体集束セクター型質量分離系
で質量分離し、その後でAs+ビームを適当な形に
整形して基板へ入射させるのであるが、As+ビー
ムをイオン源から引き出す際に、イオン源と引出
し電極との間に25KV程度の引出し電圧を印加す
る必要があり、またイオンビームを質量分離系を
通つて運ぶ際にイオンビームが空間電荷効果で拡
がるのを防ぐためイオン源の電位を100Vに保持
し、質量分離系および減速系を負の高電圧に保持
してイオンビームを高速で運び、基板の直前で減
速して低エネルギーで基板へ入射する必要があ
る。このためイオンビームをラスターすることが
できず、均一な膜厚分布を得ることは困難であつ
た。
Therefore, in conventional ion beam epitaxial growth equipment, in order to suppress the incident energy to the substrate to less than 100 eV in order to avoid the influence of sputtering, for example, the As + beam extracted from the Freeman ion source is focused using a three-dimensional focusing sector type mass separation system. After that, the As + beam is shaped into an appropriate shape and introduced into the substrate. When extracting the As + beam from the ion source, a voltage of about 25 KV is applied between the ion source and the extraction electrode. It is necessary to apply a voltage, and to prevent the ion beam from spreading due to space charge effects when transporting the ion beam through the mass separation system, the potential of the ion source is held at 100 V, and the mass separation system and deceleration system are It is necessary to hold the ion beam at a high negative voltage and transport it at high speed, then decelerate it just before the substrate so that it enters the substrate with low energy. For this reason, the ion beam could not be rasterized, and it was difficult to obtain a uniform film thickness distribution.

本発明の目的は、従来、100eV以下の低エネル
ギーでイオンビームエピタキシーを行なわせる際
に不可能であつた均一な膜厚分布や膜厚分布の制
御を可能にしたイオンビームエピタキシヤル成長
装置を提供することにある。
An object of the present invention is to provide an ion beam epitaxial growth apparatus that enables uniform film thickness distribution and control of film thickness distribution, which was previously impossible when performing ion beam epitaxy at low energy of 100 eV or less. It's about doing.

この目的を達成するために、本発明によるイオ
ビームエピタキシヤル成長装置は、減速系が同一
軸線上に並んだ複数個の円筒状静電レンズ電圧か
ら成り、これらの円筒状静電レンズのうちの一つ
の円筒状静電レンズを軸線方向に沿つて二分割
し、分割したレンズ部分のいずれか一方に静電レ
ンズ電圧Vとこの電圧Vの10%以下の電圧ΔVと
の和V+ΔVを、また他方のレンズ部分に電圧V
と電圧ΔVとの差V−ΔVをそれぞれ印加し、集
束作用と共に偏向作用をもたせ、また電圧ΔVを
制御してイオンビームの中心を動かすようにした
ことを特徴としている。
To achieve this objective, the iobeam epitaxial growth apparatus according to the present invention has a deceleration system consisting of a plurality of cylindrical electrostatic lenses aligned on the same axis, and one of these cylindrical electrostatic lenses. One cylindrical electrostatic lens is divided into two along the axial direction, and the sum V + ΔV of the electrostatic lens voltage V and a voltage ΔV of 10% or less of this voltage V is applied to one of the divided lens parts, and the other Voltage V on the lens part of
The ion beam is characterized in that the difference V-ΔV between the ion beam and the voltage ΔV is applied to provide a focusing action as well as a deflection action, and the center of the ion beam is moved by controlling the voltage ΔV.

以下本発明を、添附図面を参照して説明する。 The present invention will be described below with reference to the accompanying drawings.

第1図には本発明の適用されるイオンビームエ
ピタキシヤル成長装置の一例を示し、1はイオン
源、2は引出し電極、3は立体集束セクター型質
量分離系、4はスリツト、5は減速系(三つの円
筒状静電レンズ5A,5B,5Cから成つてい
る)、6は蒸発源、7は基板である。図示装置の
各部の構成は公知であるのでここでは詳細な説明
は省略する。また例として蒸発源6からGa蒸気
を発生させ、一方イオン源1から100eVでAs+
ームを基板7へ入射させる場合の電位分布を示
す。
FIG. 1 shows an example of an ion beam epitaxial growth apparatus to which the present invention is applied, where 1 is an ion source, 2 is an extraction electrode, 3 is a three-dimensional focusing sector type mass separation system, 4 is a slit, and 5 is a deceleration system. (It consists of three cylindrical electrostatic lenses 5A, 5B, and 5C), 6 is an evaporation source, and 7 is a substrate. Since the configuration of each part of the illustrated device is well known, detailed explanation will be omitted here. Further, as an example, the potential distribution is shown when Ga vapor is generated from the evaporation source 6, and on the other hand, an As + beam is made to enter the substrate 7 from the ion source 1 at 100 eV.

第2図には第1図に示すような減速系5を用い
てイオンビームを減速した場合の基板7上におけ
るイオン電流密度の装定結果を示し、横軸はイオ
ンビームの中心からの距離rを表わし、グラフ
()は100eVの場合であり、またグラフ()
は1KeVの場合である。第2図において線Crは基
板7の回転中心であり、ビームの中から2cmの位
置にある。
FIG. 2 shows the results of setting the ion current density on the substrate 7 when the ion beam is decelerated using the deceleration system 5 as shown in FIG. 1, and the horizontal axis is the distance r from the center of the ion beam. , the graph () is for 100eV, and the graph ()
is for 1KeV. In FIG. 2, the line Cr is the center of rotation of the substrate 7 and is located 2 cm from the inside of the beam.

第3図にはイオンビームの中心から2cm離れた
点を回転中心Crとして基板7を回転しながら沈
着させた場合の()100eV,()1KeVにおけ
る沈着イオンビームの分布状態を示す。ここでイ
オンビームの中心と基板7の回転中心との距離a
を最適分布となるように設定し、または距離aを
最適に変化させれば極めて均一な沈着膜を形成で
きることが認められる。
FIG. 3 shows the distribution of the deposited ion beam at () 100 eV and () 1 KeV when deposition is performed while rotating the substrate 7 with the rotation center Cr set at a point 2 cm away from the center of the ion beam. Here, the distance a between the center of the ion beam and the rotation center of the substrate 7 is
It is recognized that an extremely uniform deposited film can be formed by setting the distance a to have an optimal distribution or by changing the distance a optimally.

そこで本発明は、イオンビームを整形しかつ適
当に減速させる機能をもつ第1図に示すような円
筒状静電レンズから成る減速系に偏向作用をもた
せることにある。その一実施例を第4図に示す。
Therefore, the present invention is to provide a deflection effect to a deceleration system consisting of a cylindrical electrostatic lens as shown in FIG. 1, which has the function of shaping an ion beam and appropriately decelerating it. One embodiment is shown in FIG.

第4図に示す実施例では減速系は同一軸線上に
並んだ三つの円筒状静電レンズ8,9,10から
成り、図示したように中間のレンズ9は軸線方向
に沿つて二分割され、分離されたレンズ部分9
a,9bのいずれか一方に静電レンズ電圧Vとこ
の電圧Vの10%以下の電圧ΔVとの和V+ΔVを、
また他方のレンズ部分に電圧Vと電圧ΔVとの差
V−ΔVをそれぞれ印加する。これにより中間の
レンズ9は円筒状レンズとしての集束作用と共に
偏向作用を合わせもつことができる。従つてイオ
ンビームの中心から基板の回転中心までの距離a
を変化させる作用が得られる。そして電圧ΔVを
適当なコンピユータ制御系を用いて制御すること
により、イオンビームの中心を適当に動かすよう
にされる。こうしてイオンビームの中心から基板
の回転中心までの距離aを変化させる作用が得ら
れる。
In the embodiment shown in FIG. 4, the deceleration system consists of three cylindrical electrostatic lenses 8, 9, and 10 arranged on the same axis, and as shown, the middle lens 9 is divided into two along the axial direction. Separated lens part 9
Add the sum V+ΔV of the electrostatic lens voltage V and a voltage ΔV that is 10% or less of this voltage V to either a or 9b,
Further, a difference V-ΔV between the voltage V and the voltage ΔV is applied to the other lens portion. This allows the intermediate lens 9 to have both a focusing function as a cylindrical lens and a deflecting function. Therefore, the distance a from the center of the ion beam to the rotation center of the substrate
The effect of changing the By controlling the voltage ΔV using an appropriate computer control system, the center of the ion beam can be moved appropriately. In this way, the effect of changing the distance a from the center of the ion beam to the center of rotation of the substrate can be obtained.

このような集束作用と共に偏向作用をもたせた
本発明における改良型の減速系を用いたイオンビ
ームエピタキシヤル成長装置によつて得られた膜
厚分布の一例を第5図に示す。この図からもわか
るように5〜7.5cmの範囲で極めて均一な膜厚が
得られる。
FIG. 5 shows an example of the film thickness distribution obtained by the ion beam epitaxial growth apparatus using the improved deceleration system of the present invention which has both the focusing action and the deflection action. As can be seen from this figure, an extremely uniform film thickness can be obtained in the range of 5 to 7.5 cm.

以上説明してきたように、本発明においては減
速系が集束作用と共に偏向作用をもつように構成
し、しかも偏向作用を適宜制御できるように構成
しているので、従来100eV以下の低いエネルギー
でイオンビームエピタキシーを行なう場合に不可
能であつた均一膜厚分布および(または)膜厚分
布の制御が達成される。
As explained above, in the present invention, the deceleration system is configured to have a focusing effect as well as a deflecting effect, and the deflecting effect can be appropriately controlled. Uniform film thickness distribution and/or control of film thickness distribution, which was not possible when performing epitaxy, is achieved.

なお本発明は、図示実施例のように減速系の中
間電極を二分割した構成に限定されるものではな
く、減速系の他の電極部分を分割してそれに印加
される電圧を適当に制御することで偏向作用を得
るようにすることもできる。
Note that the present invention is not limited to a configuration in which the intermediate electrode of the deceleration system is divided into two as in the illustrated embodiment, but the other electrode portion of the deceleration system may be divided and the voltage applied thereto may be appropriately controlled. It is also possible to obtain a deflection effect by doing so.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の適用されるイオンビームエピ
タキシヤル成長装置の一例を示す概略図、第2図
は第1図の装置を用いて得られた基板上における
イオン電流密度を示すグラフ、第3図は第2図に
示す条件のもとでの沈着イオンビームの分布状態
を示すグラフ、第4図は本発明に従つて構成した
減速系の一実施例を示す概略斜視図、第5図は本
発明による装置を用いた場合の膜厚分布の一例を
示すグラフである。 図中、1:イオン源、2:引出し電極、3:質
量分離器、4:スリツト、5:減速系、6:蒸発
源、7:基板、8,9,10:静電レンズ。
FIG. 1 is a schematic diagram showing an example of an ion beam epitaxial growth apparatus to which the present invention is applied, FIG. 2 is a graph showing the ion current density on a substrate obtained using the apparatus of FIG. 1, and FIG. The figure is a graph showing the distribution state of the deposited ion beam under the conditions shown in Fig. 2, Fig. 4 is a schematic perspective view showing an embodiment of the deceleration system constructed according to the present invention, and Fig. 5 is a graph showing the distribution state of the deposited ion beam under the conditions shown in Fig. 2. It is a graph showing an example of film thickness distribution when using the apparatus according to the present invention. In the figure, 1: ion source, 2: extraction electrode, 3: mass separator, 4: slit, 5: deceleration system, 6: evaporation source, 7: substrate, 8, 9, 10: electrostatic lens.

Claims (1)

【特許請求の範囲】[Claims] 1 イオン源から引き出されたイオンビームを質
量分離器で質量分離し、そしてイオンビームを適
当な形に整形して減速系を通つて基板へ入射させ
るようにしたイオンビームエピタキシヤル成長装
置において、減速系が同一軸線上に並んだ複数個
の円筒状静電レンズから成り、これらの円筒状静
電レンズのうちの一つの円筒状静電レンズを軸線
方向に沿つて二分割し、分割したレンズ部分のい
ずれか一方に静電レンズ電圧Vとこの電圧Vの10
%以下の電圧ΔVとの和V+ΔVを、また他方の
レンズ部分に電圧Vと電圧ΔVとの差V−ΔVを
それぞれ印加し、集束作用と共に偏向作用をもた
せ、また電圧ΔVを制御してイオンビームの中心
を動かすようにしたことを特徴とするイオンビー
ムエピタキシヤル成長装置。
1. In an ion beam epitaxial growth apparatus in which the ion beam extracted from the ion source is separated by mass using a mass separator, the ion beam is shaped into an appropriate shape, and is then incident on the substrate through a deceleration system. The system consists of a plurality of cylindrical electrostatic lenses arranged on the same axis, and one of these cylindrical electrostatic lenses is divided into two along the axial direction, and the divided lens parts on either side of the electrostatic lens voltage V and 10 of this voltage V
% or less of the voltage ΔV, and the difference V-ΔV between the voltage V and the voltage ΔV to the other lens part, respectively, to have a focusing effect as well as a deflecting effect, and by controlling the voltage ΔV, the ion beam is An ion beam epitaxial growth apparatus characterized in that the center of the ion beam is moved.
JP24431883A 1983-12-26 1983-12-26 Ion-beam epitaxial growth device Granted JPS60137012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24431883A JPS60137012A (en) 1983-12-26 1983-12-26 Ion-beam epitaxial growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24431883A JPS60137012A (en) 1983-12-26 1983-12-26 Ion-beam epitaxial growth device

Publications (2)

Publication Number Publication Date
JPS60137012A JPS60137012A (en) 1985-07-20
JPH0211010B2 true JPH0211010B2 (en) 1990-03-12

Family

ID=17116935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24431883A Granted JPS60137012A (en) 1983-12-26 1983-12-26 Ion-beam epitaxial growth device

Country Status (1)

Country Link
JP (1) JPS60137012A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63216257A (en) * 1987-03-04 1988-09-08 Jeol Ltd Ion beam device
JPS63250813A (en) * 1987-04-08 1988-10-18 Matsushita Electric Ind Co Ltd Method for deposition of reactive ion beam film
JP2890431B2 (en) * 1989-01-09 1999-05-17 株式会社島津製作所 Superconducting circuit manufacturing method
JPH07297459A (en) * 1995-04-05 1995-11-10 Shimadzu Corp Manufacture of quasi-planar josephson junction
JP2874591B2 (en) * 1995-05-16 1999-03-24 株式会社島津製作所 Semiconductor device manufacturing equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48100075A (en) * 1972-03-29 1973-12-18
JPS5318183A (en) * 1976-06-16 1978-02-20 American Chain & Cable Co Intermittent drive conveyor system
JPS58121622A (en) * 1982-01-13 1983-07-20 Ulvac Corp Generator for ion beam
JPS58208122A (en) * 1982-05-26 1983-12-03 Konishiroku Photo Ind Co Ltd Formation of amorphous silicon layer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48100075A (en) * 1972-03-29 1973-12-18
JPS5318183A (en) * 1976-06-16 1978-02-20 American Chain & Cable Co Intermittent drive conveyor system
JPS58121622A (en) * 1982-01-13 1983-07-20 Ulvac Corp Generator for ion beam
JPS58208122A (en) * 1982-05-26 1983-12-03 Konishiroku Photo Ind Co Ltd Formation of amorphous silicon layer

Also Published As

Publication number Publication date
JPS60137012A (en) 1985-07-20

Similar Documents

Publication Publication Date Title
EP0141417B1 (en) Apparatus for forming film by ion beam
US5151605A (en) Method of irradiating an object by means of a charged particle beam, and device for performing the method
US4697086A (en) Apparatus for implanting ion microbeam
US4086108A (en) Selective doping crystal growth method
KR20030084901A (en) Extraction and deceleration of low energy beam with low beam divergence
JPH0211010B2 (en)
Davisson et al. The scattering of electrons by nickel
US4305801A (en) Line-of-sight deposition method
JPH0693352B2 (en) Ion implanter
JPS60100421A (en) Ion beam device
JPH04284343A (en) Device and method of ion beam irradiation
JP4662610B2 (en) Solid convergence mass separator
JP2662072B2 (en) Ion milling equipment
JPS6091625A (en) Manufacture of thin film
JPS58121622A (en) Generator for ion beam
JPS61168915A (en) Depositing method and depositing apparatus
JPH05311392A (en) Method and device for surface-reforming substrate for thin film by metal ion irradiation
JPH0582695B2 (en)
JP2971647B2 (en) Ion beam deposition system
JPS56169771A (en) Device for preparing thin film by using ion beam
JP3420338B2 (en) Ion implanter
JPH0778754A (en) Ion implantation method, thin film stress controlling method thereby, and ion implantation method
JP2835383B2 (en) Sputter type ion source
JPH088084B2 (en) Ion beam vapor deposition equipment
JPS60124931A (en) Device for vapor deposition of thin film

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term