JPH02109306A - Manufacture of mn-zn ferrite for magnetic head core - Google Patents

Manufacture of mn-zn ferrite for magnetic head core

Info

Publication number
JPH02109306A
JPH02109306A JP63261733A JP26173388A JPH02109306A JP H02109306 A JPH02109306 A JP H02109306A JP 63261733 A JP63261733 A JP 63261733A JP 26173388 A JP26173388 A JP 26173388A JP H02109306 A JPH02109306 A JP H02109306A
Authority
JP
Japan
Prior art keywords
ferrite
heat treatment
temperature
atmosphere
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63261733A
Other languages
Japanese (ja)
Inventor
Susumu Matsui
進 松井
Kunio Kanai
邦夫 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP63261733A priority Critical patent/JPH02109306A/en
Publication of JPH02109306A publication Critical patent/JPH02109306A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Ceramics (AREA)
  • Magnetic Heads (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To enhance easiness for precision processing and the magnetic characteristic by making primary sintering of ferrite material, subjecting it to hot press with hydrostatic pressure, and performing a heat treatment under N2 atmosphere at a specified temp. CONSTITUTION:In manufacturing high density Mn-Zn ferrite used as a material of magnetic head core, the ferrite material is subjected to primary sintering followed by hot press with hydrostatic pressure. Then a heat treatment is performed under N2 atmosphere at a temp. of 400-900 deg.C. The result is free from internal strain, return of voids, and precipitation of different phase, that will enhance easiness of precision processing and the magnetic characteristic.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気ヘッドコア材料として用いられる高密度M
n−Znフェライトの製造方法に係る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a high-density magnetic material used as a magnetic head core material.
The present invention relates to a method for manufacturing n-Zn ferrite.

〔従来の技術] 磁気へラドコア材として用いられるフェライト材料とし
ては、加工性、耐摩耗性等の機械的性質及び、磁気特性
に優れることが要求される。この要求を満たす材料とし
て、従来のNi−Znフェライトに代わり、高密度のM
n−Znフェライトが多く用いられる傾向にある。この
高密度Mn−Znフェライトの製造方法としては、−次
焼結後、熱間静水圧プレスを施すという方法が知られて
いる(特開昭53−51217>、 Lかし、熱間静水
圧プレスを施したフェライトは、かなりの高圧で処理さ
れるため、内部にかなりの歪が残存しており、そのため
、加工時に、欠け、割れが生じやすいという欠点がある
。そこで、この内部歪を除去するために、熱処理を行う
という方法が知られている(時開53−33392、特
開昭54−69795 、特開昭55−32764 、
特開昭55−32765)、その熱処理の温度に関して
は、例えば、500℃〜800℃で行うと、空孔の膨張
を生じないこと(特開昭55−32765)、また、8
00℃〜1100℃で行うと、抗折強度が増加すること
(特開昭55−32764)等が知られているが、熱処
理時の雰囲気に関しては、これら文献には全く言及され
ていない。
[Prior Art] A ferrite material used as a magnetic herad core material is required to have excellent mechanical properties such as workability and wear resistance, and excellent magnetic properties. In place of the conventional Ni-Zn ferrite, high-density M
There is a tendency that n-Zn ferrite is often used. As a method for manufacturing this high-density Mn-Zn ferrite, a method is known in which hot isostatic pressing is performed after secondary sintering (Japanese Unexamined Patent Publication No. 53-51217, L Pressing, Hot Isostatic Pressing) Pressed ferrite is processed under very high pressure, so there is a considerable amount of strain left inside, which has the disadvantage of being prone to chipping and cracking during processing.Therefore, this internal strain is removed. In order to do this, a method of heat treatment is known.
Regarding the temperature of the heat treatment, for example, if it is carried out at 500°C to 800°C, no expansion of the pores will occur (Japanese Patent Application Laid-open No. 55-32765), and 8
It is known that the bending strength increases when heat treatment is carried out at a temperature of 00°C to 1100°C (Japanese Patent Application Laid-Open No. 55-32764), but these documents do not mention the atmosphere during heat treatment at all.

更にまた、より高い温度で熱処理することも知られてお
り、例えば、1000℃〜1100℃の温度で空気中で
熱処理を行うと磁気特性が向上することが特開昭53−
3392で、また、900°C〜1300℃の温度でN
2雰囲気中で熱処理を行うことも特開昭54−6979
5で提案されている。
Furthermore, it is also known that heat treatment can be performed at higher temperatures; for example, it has been reported in JP-A-53-1989 that magnetic properties are improved when heat treatment is performed in air at a temperature of 1000°C to 1100°C.
3392, and also N at temperatures between 900°C and 1300°C.
2 It is also possible to perform heat treatment in an atmosphere as described in Japanese Patent Application Laid-Open No. 54-6979.
5 is proposed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら本発明者らが種々実験検討を加えた結果、
熱間静水圧プレス後、フェライトの熱処理に関しては、
その温度のみならず雰囲気にも特に留意しなければなら
ないことが判明した。
However, as a result of various experimental studies conducted by the present inventors,
Regarding heat treatment of ferrite after hot isostatic pressing,
It has been found that special attention must be paid not only to the temperature but also to the atmosphere.

すなわち熱処理を900℃以上という高い温度で行うと
、熱間静水圧プレス処理に依り高密度化を図っているに
もかかわらず、その後の熱処理により、空孔が復帰して
しまうことがある。一方、400℃以下の低温で行うと
、内部歪が除去されず、加工時の欠け、割れが多く発生
する。また、熱処理を空気中あるいは、酸化雰囲気中で
行うと、フェライト焼結体の表面付近のみが酸化され、
フェライト焼結体の表面付近では磁気特性が劣化し、焼
結体の内部とで磁気特性の不均一が生ずる。更に、酸化
が過度に行われると、焼結体表面付近に、α−FezO
zの異相が析出し問題となることも判明しそれ故に、本
発明の方法は熱処理により内部歪を除去し、しかも空孔
の復帰もなく、加えて、フェライトの焼結体表面付近で
の磁気特性の劣化がなく、異相の析出もない高密度Mn
 −Znフェライトの製造方法を提供するものである。
That is, if the heat treatment is performed at a high temperature of 900° C. or higher, the pores may return due to the subsequent heat treatment, even though densification is achieved by hot isostatic pressing. On the other hand, if processing is carried out at a low temperature of 400° C. or lower, internal strains will not be removed and many chips and cracks will occur during processing. Additionally, if heat treatment is performed in air or in an oxidizing atmosphere, only the surface area of the ferrite sintered body will be oxidized.
The magnetic properties deteriorate near the surface of the ferrite sintered body, and the magnetic properties become non-uniform with respect to the inside of the sintered body. Furthermore, if oxidation is excessive, α-FezO is formed near the surface of the sintered body.
It has also been found that a different phase of z precipitates and causes a problem.Therefore, the method of the present invention eliminates the internal strain by heat treatment, does not restore the pores, and in addition, reduces the magnetic field near the surface of the ferrite sintered body. High-density Mn with no deterioration of properties and no precipitation of foreign phases
- A method for manufacturing Zn ferrite is provided.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、高密度Mn −Znnフシイ[・の製造方法
において、フェライト材を一次焼結した後、熱間静水圧
プレスを行い、その後、N2雰囲気中で、400℃〜9
00℃の温度で熱処理を行うことを特徴とする高密度M
n−Znフェライトの製造方法である。
The present invention is a method for producing high-density Mn-Znn steel.After primary sintering of ferrite material, hot isostatic pressing is carried out, and then in an N2 atmosphere, 400°C to 90°C
High-density M characterized by heat treatment at a temperature of 00°C
This is a method for manufacturing n-Zn ferrite.

本発明の方法により高密度フェライトを製造するには、
酸化鉄を50〜60molχ、酸化亜鉛を5〜25mo
lχ残りを酸化マンガンから成る様に秤量し、それに副
成分として、例えばCaOを0.5wt%以下含有せし
め、ボールミルにて混合し、スビ名ル化が40〜80χ
程度に進行する様な温度で仮焼し、その後、−次焼結を
行う。−次焼結に際しては、その温度と雰囲気を適切に
選ぶ必要がある。温度が1100℃以下であると、焼結
密度が理論密度に対し90%以下となり、かつオープン
ボアを生ずる。これに対し、温度が1300°Cを越え
ると、異常粒成長をおこし、加工時に大きな欠けを生じ
やすい。また、−次焼結の雰囲気は、酸素分圧を適当に
選ぶことが重要であり、酸素分圧が必要以上に高いと・
焼結時にα−FezO:iが析出し、酸素分圧が必要以
上に低すぎると、フェライトにクラックを生しやすい。
To produce high-density ferrite by the method of the present invention,
50 to 60 mol χ of iron oxide, 5 to 25 mo of zinc oxide
Weigh the remaining lχ so that it consists of manganese oxide, add 0.5 wt% or less of CaO as a subcomponent, mix it in a ball mill, and make it 40 to 80 x
Calcination is performed at such a temperature that the sintering progresses to a certain degree, and then -subsequent sintering is performed. - For the next sintering, it is necessary to select the temperature and atmosphere appropriately. If the temperature is 1100° C. or less, the sintered density will be 90% or less of the theoretical density, and open bores will occur. On the other hand, if the temperature exceeds 1300°C, abnormal grain growth occurs and large chips are likely to occur during processing. In addition, it is important to select an appropriate oxygen partial pressure in the atmosphere for secondary sintering, and if the oxygen partial pressure is higher than necessary,
α-FezO:i precipitates during sintering, and if the oxygen partial pressure is lower than necessary, cracks are likely to occur in the ferrite.

この−次焼結により得られたフェライト焼結体には、熱
間静水圧プレスを施し高密度化する。
The ferrite sintered body obtained by this secondary sintering is subjected to hot isostatic pressing to increase its density.

その際にも、温度が重要であり、−次焼結の温度をはる
かに越える温度で行うと、粒成長を起こす。
Temperature is also important in this case, and grain growth will occur if the temperature is much higher than the temperature for secondary sintering.

また圧力も300〜2000気圧が望ましく、300気
圧以下では高密度化が図れない。この熱間静水圧プレス
処理後に熱処理を行なうが、この熱処理については前記
のごとく、その温度と雰囲気が非常に重要である。温度
が400℃以下では、内部歪が完全に除去されず、加工
時に欠け、割れが多く発生する。温度が400℃〜60
0℃の範囲であると、欠は割れはかなり改善されるが、
若干発生するため最適な温度は600℃以−トである。
Further, the pressure is preferably 300 to 2000 atm, and if it is less than 300 atm, high density cannot be achieved. After this hot isostatic pressing treatment, heat treatment is performed, and as mentioned above, the temperature and atmosphere are very important for this heat treatment. If the temperature is below 400°C, internal strain will not be completely removed and many chips and cracks will occur during processing. Temperature is 400℃~60℃
If the temperature is in the 0℃ range, the cracking will be considerably improved, but
The optimum temperature is 600° C. or higher because some amount of heat is generated.

しかし900℃以トとなると内部歪は完全に除去される
が、空孔の復帰が、急激に進む。従って熱処理の温度と
しては400℃以上900℃未満が望ましい。また、熱
処理時の雰囲気に関しては、熱処理を、空気中あるいは
酸化雰囲気中で行うと、フェライト焼結体の表面付近が
酸化され、焼結体の表面での磁気特性が、焼結体内部に
比し、大きく劣化してしまう。
However, when the temperature reaches 900° C. or higher, the internal strain is completely removed, but the pores rapidly recover. Therefore, the temperature of the heat treatment is preferably 400°C or more and less than 900°C. Regarding the atmosphere during heat treatment, if heat treatment is performed in air or an oxidizing atmosphere, the vicinity of the surface of the ferrite sintered body will be oxidized, and the magnetic properties at the surface of the sintered body will be different from those inside the sintered body. However, it deteriorates significantly.

また、酸化が過度に行われた場合には、形状にも依るが
焼結体表面から約31程度までα−Fe、O:Jの異相
が析出する。この様な現象は、酸素分圧を1%程度まで
下げても同様であり、熱処理時の雰囲気は、酸素分圧が
0.5%以下かあるいはN2雰囲気中が望ましい。また
真空中でも、同様な効果が得られることも判明している
Further, if oxidation is excessively performed, different phases of α-Fe and O:J are precipitated from the surface of the sintered body to about 31 mm, although it depends on the shape. This phenomenon remains the same even when the oxygen partial pressure is lowered to about 1%, and the atmosphere during the heat treatment is preferably an oxygen partial pressure of 0.5% or less or an N2 atmosphere. It has also been found that similar effects can be obtained even in a vacuum.

以上の工程を経ることにより、内部歪がなく、しかも空
孔の復帰もなく、加えて焼結体表面付近での磁気特性の
劣化がなく、異相の析出もない、高密度Mn−Znフェ
ライトを製造することができ、精密加工性及び磁気特性
を大幅に向上することができる。
By going through the above steps, we can produce high-density Mn-Zn ferrite that has no internal strain, no return of pores, no deterioration of magnetic properties near the surface of the sintered body, and no precipitation of foreign phases. The precision processability and magnetic properties can be greatly improved.

C実施例〕 (実施例1) FezO1,:53.5mo1χ、ZnO:15.5m
olχ、 MnO:31.01lloHとなる様に原料
を秤量し、混合仮焼した後、1250℃で一次焼結を行
い、更に針ガス中で1200℃1000気圧で熱間静水
圧プレスをした。
Example C] (Example 1) FezO1: 53.5mol1χ, ZnO: 15.5m
The raw materials were weighed so that MnO: 31.01lloH, mixed and calcined, and then primary sintered at 1250°C, and then hot isostatically pressed at 1200°C and 1000 atm in needle gas.

その後、500℃〜1100℃NZ雰囲気で熱処理をし
た。得られた焼結体の単位面積当りの1μm以上の空孔
の数を第1図に示す。熱処理温度が900℃以下では1
μm以上の空孔は、はとんど存在せず、900℃以下で
あれば、空孔の数は温度に依らない。
Thereafter, heat treatment was performed at 500°C to 1100°C in a NZ atmosphere. The number of pores of 1 μm or more per unit area of the obtained sintered body is shown in FIG. 1 when the heat treatment temperature is below 900℃
There are hardly any pores larger than μm, and the number of pores does not depend on the temperature as long as it is below 900°C.

それに対し、熱処理の温度が900 ’Cを越えると、
空孔は急激に増加する傾向にある。従って空孔の復帰を
おさえるには、900℃以下が望ましい。
On the other hand, when the heat treatment temperature exceeds 900'C,
The number of vacancies tends to increase rapidly. Therefore, in order to suppress the return of pores, the temperature is preferably 900° C. or lower.

(実施例2) FezOt:53.5molχ、ZnO:15.5mo
lχ、 MnO:31.Omolχとなる様に原料を秤
潰し、混合仮焼した後、1250℃で一次焼結を行い、
更にArガス中で1200°c1.000気圧で熱間静
水圧プレスをした。
(Example 2) FezOt: 53.5molχ, ZnO: 15.5mol
lχ, MnO: 31. After weighing and crushing the raw materials to obtain Omolχ, mixing and calcining, primary sintering is performed at 1250°C.
Further, hot isostatic pressing was performed at 1200°C and 1.000 atm in Ar gas.

その後、600°C〜1050°Cの/!A1変で、熱
処理時の雰囲気を変え、熱処理を行った。これにより得
られたフェライト焼結体の表面付近と中心部より外径8
φmm、 内径4φ1111.厚さ0.5msのリング
切り出しIMHz、5財2での透磁率を測定した。第1
表は、その測定結果である。熱処理時の雰囲気を、空気
中あるいは、酸化雰囲気中で行うと、焼結体表面での透
磁率が、焼結体内部に比べ低下するのに対し、Nt雰囲
気中で処理したものは、焼結体表面での透磁率の低下は
なく、焼結体内部で均一である。
After that, /! of 600°C to 1050°C! Heat treatment was performed by changing the atmosphere during heat treatment in A1 variation. The outer diameter of the ferrite sintered body thus obtained is 8
φmm, inner diameter 4φ1111. The magnetic permeability of a ring cut out with a thickness of 0.5 ms was measured at IMHz and 5 materials 2. 1st
The table shows the measurement results. If the heat treatment is carried out in air or an oxidizing atmosphere, the magnetic permeability at the surface of the sintered body will be lower than that inside the sintered body, but when the heat treatment is carried out in an Nt atmosphere, the sintered There is no decrease in magnetic permeability on the body surface, and it is uniform inside the sintered body.

以上の実施例より明らかな様に、熱間静水圧プレス後の
熱処理を400〜900′Cの温度で、しかもN、雰囲
気中で行うことにより、空孔の復帰もなく焼結体表面で
の透磁率の劣化もな(、さらに異相の析出もない高密度
フェライトが得られる。
As is clear from the above examples, by performing the heat treatment after hot isostatic pressing at a temperature of 400 to 900'C in a N atmosphere, no pores return and the surface of the sintered body is High-density ferrite with no deterioration in magnetic permeability (and no precipitation of foreign phases) can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に、本発明の製造方法による高密度Mn
 −Znフェライトは、内部歪のために加工時の欠は割
れも少なく、しかも空孔の復帰もなく、加えて成形体表
面付近での磁気特性の劣化がなく、また焼結体表面付近
での異相の析出もなく、従来の製造方法と比して、t#
密加工性及び磁気特性が大幅に向上している。
As explained above, high-density Mn by the manufacturing method of the present invention
-Zn ferrite has few cracks during processing due to internal strain, and there is no recovery of pores.In addition, there is no deterioration of magnetic properties near the surface of the compact, and there is no deterioration of the magnetic properties near the surface of the sintered compact. There is no precipitation of foreign phases, and compared to conventional manufacturing methods, t#
Dense workability and magnetic properties are significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、熱処理の温度と空孔数の関係を示すグラフで
ある。
FIG. 1 is a graph showing the relationship between the heat treatment temperature and the number of pores.

Claims (1)

【特許請求の範囲】[Claims] フェライト材を一次焼結した後、熱間静水圧プレスを行
い、その後、熱処理を行う高密度Nn−Znフェライト
の製造方法において、上記熱処理を、N_2雰囲気中で
、400℃〜900℃の温度で行うことを特徴とする高
密度Mn−Znフェライトの製造方法。
In a method for producing high-density Nn-Zn ferrite in which a ferrite material is primarily sintered, hot isostatic pressing is performed, and then heat treatment is performed, the above heat treatment is performed at a temperature of 400°C to 900°C in an N_2 atmosphere. A method for producing high-density Mn-Zn ferrite, characterized by carrying out the following steps.
JP63261733A 1988-10-18 1988-10-18 Manufacture of mn-zn ferrite for magnetic head core Pending JPH02109306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63261733A JPH02109306A (en) 1988-10-18 1988-10-18 Manufacture of mn-zn ferrite for magnetic head core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63261733A JPH02109306A (en) 1988-10-18 1988-10-18 Manufacture of mn-zn ferrite for magnetic head core

Publications (1)

Publication Number Publication Date
JPH02109306A true JPH02109306A (en) 1990-04-23

Family

ID=17365956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63261733A Pending JPH02109306A (en) 1988-10-18 1988-10-18 Manufacture of mn-zn ferrite for magnetic head core

Country Status (1)

Country Link
JP (1) JPH02109306A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302306A (en) * 1991-03-15 1994-04-12 Sony Corporation Process for preparing polycrystalline ferrite materials and composites containing them

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302306A (en) * 1991-03-15 1994-04-12 Sony Corporation Process for preparing polycrystalline ferrite materials and composites containing them

Similar Documents

Publication Publication Date Title
EP1101736B1 (en) Mn-Zn ferrite and production thereof
CN106915956A (en) MnZnLi based ferrites, magnetic core and transformer
EP0623938B1 (en) Ferrite containing magnetic material and method of manufacture of ferrite by sintering
JPH02109306A (en) Manufacture of mn-zn ferrite for magnetic head core
JPH08169756A (en) Low loss manganese-zinc ferrite core and its production
JPH08259316A (en) Production of manganese-zinc-based ferrite
JPH06333726A (en) Manufacture of high-density mn-zn ferrite
JP2561815B2 (en) High-density ferrite manufacturing method
JP3636729B2 (en) Mn-Zn ferrite
TWI761760B (en) Manganese-zinc-based fertilizer granulated iron and method for producing the same
JP4071783B2 (en) Method for producing Mn-Zn ferrite
JP2662810B2 (en) Ni-Cu-Zn oxide magnetic material for rotary transformer core and method for producing the same
JPH10326706A (en) Manganese-nickel-based ferrite material
JP2000077224A (en) MANUFACTURE OF Man/Zn FERRITE
JPH09306718A (en) Ferrite magnetic material and method of fabricating the same
JP2000138117A (en) Manufacture of ferrite material for power source
JPH08259315A (en) Production of ferrite sintered compact
KR970009415B1 (en) High density ferrite processing method
JPS63157407A (en) Manufacture of high-density ferrite
JPH01253210A (en) Polycrystalline ferrite material and manufacture thereof
JPH0729718A (en) Manufacture of ferrite of high density
EP4342869A1 (en) Mnznco-based ferrite
JPH08162314A (en) Low loss oxide magnetic material
JPH0547542A (en) Ferrite magnetic material and manufacture thereof
JP2005277179A (en) Method for manufacturing ferrite cores