JPH021090B2 - - Google Patents

Info

Publication number
JPH021090B2
JPH021090B2 JP2774682A JP2774682A JPH021090B2 JP H021090 B2 JPH021090 B2 JP H021090B2 JP 2774682 A JP2774682 A JP 2774682A JP 2774682 A JP2774682 A JP 2774682A JP H021090 B2 JPH021090 B2 JP H021090B2
Authority
JP
Japan
Prior art keywords
silica
powdered
solvent
water
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2774682A
Other languages
Japanese (ja)
Other versions
JPS58145614A (en
Inventor
Jusaku Arima
Sumio Saito
Hiroyasu Nishida
Takashi Harada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2774682A priority Critical patent/JPS58145614A/en
Publication of JPS58145614A publication Critical patent/JPS58145614A/en
Publication of JPH021090B2 publication Critical patent/JPH021090B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は有機溶剤に均質に分散可能な粉末状シ
リカとその製造方法に関する。 本明細書に於て、「有機溶剤」とは親水性有機
溶剤並びに疎水性有機溶剤の両者を包含し、「有
機溶剤に均質に分散可能」とは、有機溶剤100c.c.
に10gの粉末状シリカを添加混合した際に、透明
乃至半透明の分散液が形成され、しかもその分散
液を遠心分離機にて3000r.p.m.で5分間処理した
場合に、シリカの沈澱量が1g以下であることを
言う。 エステルシルと呼ばれる粉末状の疎水性シリカ
は、エラストマー、プラスチツクス、ワツクスな
どの増強剤として、あるいはまた液状樹脂、塗料
などの濃化剤乃至は粘度調整剤として従来から知
られている。この疎水性シリカ粉末はシリカ粒子
表面のシラノール基を一価のアルコールにてエス
テル化したものであつて、このエステル化には従
来次のような手段が採用されて来た。その一つは
四塩化珪素を水素炎中で熱分解してシリカ(ポリ
珪酸)を生成させ、引続きこのシリカにアルコー
ル蒸気を接触させることにより、シリカ表面のの
シラノール基をエステル化する方法である。他の
一つは水に分散したコロイド次元のシリカ粒子を
凝集させ、この凝集粒子をアルコールと共に加熱
するなどの処理によりシリカ表面のシラノール基
をエステル化する方法である。 しかしながら、従来の疎水性シリカ粉末は何れ
も有機溶剤に均質に分散させることが不可能であ
つて、例えばトルエンに添加混合した場合には、
比較的短時間でシリカの沈澱が生起する。つま
り、従来の疎水性シリカ粉末はその分散媒が比較
的粘度の高い液体である場合はともかく、そうで
ない場合は疎水性シリカ粉末の分散状態を安定に
保持することができない。 一方、オルガノシリカゾルの製造方法として
は、米国特許第2285446〜第2285449号に教示され
ている如く、水と共沸混合物を形成する極性有機
溶剤とシリカヒドロゾルを混合し、これを蒸留し
て共沸により水を極性有機溶剤に置換させる方法
が知られているほか、特公昭53−799号に教示さ
れる如く、水ガラスの中和水溶液からシロキシシ
ラノールを極性有機溶剤で抽出分離した後、残液
中にオルガノシリル化剤を添加して反応させる方
法が知られている。しかし、前者の方法で得られ
るオルガノシリカゾルはその分散媒が極性有機溶
剤であるため、非極性有機溶剤との相溶性が不充
分であり、用途が限られてしまう欠点がある。ま
た、後者の方法で得られるオルガノゾルは水分の
残存量が比較的多く、しかも低分子量シリカであ
るため安定性に欠ける憾みがある。加えて後者の
方法ではシロキシシラノールを抽出分離してしま
うため、原料水ガラスからみたシリカの利用率が
低いという欠点もある。 本発明は有機溶剤に均質に分散可能な粉末状シ
リカとその製造法を提案するものであつて、本発
明の粉末状シリカは炭素数1〜36のシリル基で被
われたコロイド次元のシリカ粒子からなり、シリ
カ表面10平方ミリミクロン当り1〜100個のシリ
ル基がシリカに化学的に結合していることで特徴
付けられる。そして本発明の粉末状シリカは次の
ような物理的特性を備えている。 嵩密度 0.6〜1.0g/ml 吸油量 50g/100ml以下 粉末粒子径(90%) 0.01〜3.0mm トルエン分散液(濃度10wt%) 粘 度 10cps以下 透明度 80%以上(500mμフイルター使用) 本発明による粉末シリカは、シリカ粒子がコロ
イド次元のままシリル化されているために、粉末
自体が凝集していても、有機溶剤に添加すれば簡
単にコロイド次元のシリカ粒子として均一に分散
する。 一般にコロイド次元の粒子とは直径1〜100ミ
リミクロン程度の大きさの粒子を指すが、本発明
に於てシリル基が化学的に結合するシリカ粒子は
その粒径が4〜100ミリミクロンの範囲であるこ
とを可とし、好ましくは5〜30ミリミクロンの範
囲にある。このシリカ粒子は本発明によればその
表面に化学的に結合した炭素数1〜36のシリル基
で被われるが、そのシリル基の数はシリカ表面10
平方ミリミクロン当り1〜100個であることを可
とする。ここで、「シリル基がシリカ表面に化学
的に結合している」とは、シリカ表面のシラノー
ル基(−SiOH)の珪素原子にシリル基が直接結
合していることを意味する。 コロイド次元のシリカ粒子にシリル基が化学的
に結合した粉末状シリカに於て、その粉末状シリ
カを有機溶剤に均質に分散可能ならしめるのに必
要なシリル基の数は、厳密には当該シリル基の鎖
長に依存する。一般的に言えば、鎖長の長いシリ
ル基を有する粉末状シリカは、鎖長の短かいシリ
ル基を有する粉末状シリカよりも、化学的に結合
したシリル基が少なくても有機溶剤に均質に分散
可能となる。ちなみに、コロイド次元のシリカ粒
子にシリル基が化学的に結合した粉末状シリカに
於て、その粉末状シリカを有機溶剤に均質に分散
可能ならしめるのに必要なシリル基の数と化学的
に結合可能なシリル基の最大個数を、シリル基の
炭素数との関係で示せば次の通りである。
The present invention relates to powdered silica homogeneously dispersible in organic solvents and a method for producing the same. In this specification, "organic solvent" includes both hydrophilic organic solvents and hydrophobic organic solvents, and "uniformly dispersible in organic solvent" refers to organic solvents of 100 c.c.
When 10 g of powdered silica was added and mixed, a transparent to semi-transparent dispersion was formed, and when the dispersion was processed in a centrifuge at 3000 rpm for 5 minutes, the amount of silica precipitated was It means less than 1g. Powdered hydrophobic silica called estersil has been known as a reinforcing agent for elastomers, plastics, waxes, etc., or as a thickening agent or viscosity modifier for liquid resins, paints, etc. This hydrophobic silica powder is obtained by esterifying the silanol groups on the surface of silica particles with a monohydric alcohol, and the following methods have conventionally been adopted for this esterification. One method is to thermally decompose silicon tetrachloride in a hydrogen flame to produce silica (polysilicic acid), and then contact this silica with alcohol vapor to esterify the silanol groups on the silica surface. . The other method is to aggregate colloidal silica particles dispersed in water and esterify the silanol groups on the silica surface by heating the aggregated particles with alcohol. However, it is impossible to homogeneously disperse conventional hydrophobic silica powders in organic solvents; for example, when mixed with toluene,
Silica precipitation occurs in a relatively short period of time. In other words, the conventional hydrophobic silica powder cannot stably maintain the dispersed state of the hydrophobic silica powder, unless the dispersion medium is a relatively high viscosity liquid. On the other hand, as a method for producing organosilica sol, as taught in U.S. Pat. In addition to the method of replacing water with a polar organic solvent by boiling, as taught in Japanese Patent Publication No. 53-799, siloxysilanol is extracted and separated from a neutralized aqueous solution of water glass with a polar organic solvent, and then the remaining A method is known in which an organosilylating agent is added to a liquid and reacted. However, since the organosilica sol obtained by the former method uses a polar organic solvent as its dispersion medium, it has insufficient compatibility with non-polar organic solvents, and has the disadvantage that its uses are limited. Furthermore, the organosol obtained by the latter method has a relatively large amount of residual water and is low in molecular weight silica, so it lacks stability. In addition, in the latter method, siloxysilanol is extracted and separated, so there is a drawback that the utilization rate of silica from the viewpoint of raw material water glass is low. The present invention proposes powdered silica that can be homogeneously dispersed in an organic solvent and a method for producing the same. It is characterized by having 1 to 100 silyl groups chemically bonded to the silica per 10 square millimeters of silica surface. The powdered silica of the present invention has the following physical properties. Bulk density 0.6 to 1.0 g/ml Oil absorption 50 g/100 ml or less Powder particle size (90%) 0.01 to 3.0 mm Toluene dispersion (concentration 10 wt%) Viscosity 10 cps or less Transparency 80% or more (using 500 mμ filter) Powder according to the present invention Silica is silylated while the silica particles remain colloidal, so even if the powder itself is agglomerated, it can be easily dispersed uniformly as colloidal silica particles when added to an organic solvent. In general, colloidal particles refer to particles with a diameter of about 1 to 100 millimicrons, but in the present invention, silica particles to which silyl groups are chemically bonded have a particle size in the range of 4 to 100 millimicrons. It is preferably in the range of 5 to 30 millimicrons. According to the present invention, the silica particles are covered with silyl groups having 1 to 36 carbon atoms chemically bonded to the surface, and the number of silyl groups is 10 to 10 on the silica surface.
It is allowed to be 1 to 100 pieces per square millimicron. Here, "the silyl group is chemically bonded to the silica surface" means that the silyl group is directly bonded to the silicon atom of the silanol group (-SiOH) on the silica surface. In powdered silica in which silyl groups are chemically bonded to colloidal silica particles, strictly speaking, the number of silyl groups required to make the powdered silica homogeneously dispersible in an organic solvent is Depends on the chain length of the group. Generally speaking, powdered silica with long-chain silyl groups is more homogeneous in organic solvents than powdered silica with short-chain silyl groups, even if there are fewer chemically bonded silyl groups. It becomes possible to disperse. By the way, in powdered silica in which silyl groups are chemically bonded to colloidal silica particles, the number of silyl groups chemically bonded to make the powdered silica homogeneously dispersible in an organic solvent. The maximum number of possible silyl groups in relation to the number of carbon atoms in the silyl group is as follows.

【表】 進んで本発明に係る粉末状シリカの製造法につ
いて説明する。本発明の粉末状シリカはその核と
なるシリカ粒子がコロイド次元でなければならな
いため、シリカヒドロゾルが出発原料として使用
されるが、そのシリカヒドロゾルはSiO2濃度
20wt%での粘度が100センチポイズ以下のもので
なければならない。この種のシリカヒドロゾルは
水ガラスを陽イオン交換樹脂で脱アルカリし、得
られたケイ酸液をアルカリ性雰囲気で重合させる
方法(イオン交換法と通称される)、水ガラスを
酸で中和してゲル化させた後、塩を水で洗い流し
て得られるゲルをオートクレーブで解膠させる方
法(解膠法と通称される)、さらにはエチルシリ
ケートを酸で加水分解して得られるケイ酸液を加
熱熟成する方法などで一般に製造することができ
る。 ちなみに、アロエジル、ホワイトカーボンなど
の粉状シリカを20wt%濃度で水に分散させた場
合の粘度は数万センチポイドと極端に高い点で本
発明のシリカヒドロゾルと区別される。また水ガ
ラスを酸で中和したり、陽イオン交換樹脂で脱ア
ルカリしただけの低重合のケイ酸液や有機ケイ素
化合物を加水分解しただけのケイ酸液もシリカヒ
ドロゾルと通称されているが、これらもSiO2
度20wt%での粘度が数万センチポイズと高く、
経時ゲル化してしまうことで、本発明のシリカヒ
ドロゾルと明確に区別される。 出発原料たるシリカヒドロゾルのSiO2濃度は
任意に選ぶことができるが、一般にはSiO2濃度
を50wt%以下とすることが好ましい。 本発明によれば、シリカヒドロゾルはまず溶媒
置換によつてオルガノシリカゾルに変換せしめら
れる。この溶媒置換はシリカヒドロゾルに任意の
割合で相互溶解する親水性有機溶剤を混合し、
徐々にシリカヒドロゾルの分散媒たる水を有機溶
剤と置換することを内容とする。この場合前記の
親水性有機溶剤には、これと相互溶解する疎水性
有機溶剤を併用することができる。溶媒の置換方
法としては、例えば蒸留によつて水を留去させる
方法、限外濾過膜を用い、徐々に溶媒を水から有
機溶媒へ置換する方法、モレキユラーシーブ等の
脱水剤を用い、水のみを除去する方法などを採用
することができる。ちなみに、アセトンなどの水
より低沸点溶媒については、限外濾過やモレキユ
ラーシーブを用いるのが有利である。n−ブチル
アルコールやn−オクチルアルコールのような分
子量のより大きいアルコール類、メチルエチルケ
トン等のケトン類、酢酸イソブチル等のエステル
類で溶媒置換したい場合には、原料のシリカヒド
ロゾルとの相溶性に劣るため、予めメチルアルコ
ール等で水を溶媒置換した後に、再び溶媒置換を
行うのがよい。エチルグリコール等のエーテル
類、エチレングリコール等の多価アルコール類、
N,N−ジメチルホルムアマイド(DMF)等の
アルキルアマイド類は直接蒸留法で水と置換する
ことが可能である。但し、炭素数3以下のアルコ
ールは後工程で用いるシリル化剤と直接反応し易
いため望ましくない。 このようにして、溶媒置換されたオルガノシリ
カゾルは、その溶媒置換の方法による差はあつて
も多少の水を含有する。しかし、本発明にあつて
はオルガノシリカゾル中に残存する水の量は
10wt%以下、好ましくは5wt%以下でなければな
らない。10wt%を超える水が存在すると次工程
でのシリル化剤の加水分解速度が早く、シリル化
剤同志の反応が促進され、コロイド表面への選択
的な反応がほとんど期待できない。もつとも、シ
リカゾルを非常に低濃度とし、シリル化剤を低濃
度で長時間かけて添加する等の特別な工夫を凝ら
せばある程度コロイド表面への反応を期待できる
が、実用的ではない。水分が5wt%以下では高濃
度シリカでシリル化剤を一挙に混合してもコロイ
ド粒子表面への選択的な反応が起り、目的とした
ものが得られる。 溶媒置換によつて得られたオルガノシリカゾル
は、次に、シリル化処理に供され、表面シラノー
ルとシリル化剤との化学反応によりシリカ表面は
コロイド状態を保つたままで親油性に改質され
る。 本発明に用いられるシリル化剤としては、メチ
ルトリクロルシラン、ジメチルジクロルシラン、
トリメチルクロルシラン、エチルトリクロルシラ
ン、ジエチルジクロルシラン、トリエチルクロル
シラン、ビニールトリクロルシラン、ステアリル
トリクロルシラン、ジヘキシルジクロルシラン、
ジフエニルジクロルシラン、トリフエニルクロル
シラン、n−アミルトリクロルシラン等のクロル
シラン類、メチルトリメトキシシラン、メチルト
リエトキシシラン、ビニールトリメトキシシラ
ン、n−アミルトリエトキシシラン、ベンジルト
リメトキシシラン等のアルコキシシラン類、ヘキ
サメチルジシラザン等のシラザン類やこれらを加
水分解して得られるヒドロキシシラン類のいずれ
もが使用可能である。 クロルシラン類を用いる場合は、反応により塩
化水素(塩酸)が、アルコキシシラン類を用いる
場合はアルコールがそれぞれ副生するが、いずれ
の場合も、反応後の脱溶媒操作時に溶媒と供に除
去されるので問題はない。ヒドロキシシランの場
合は、不安定で重合し易いため、実際的にはクロ
ルシランを使用直前に冷却しながら加水分解し、
油層のヒドロキシシランをすばやく本発明に用い
るのが効果的である。 本発明に於て、シリカ表面に反応するシリル基
の最大個数はシリル基の炭素数に依存し、前掲の
第1表に示すとおり、シリル基の炭素数が増大す
るにつれて減少する。従つて、シリル化処理に当
つては、シリカの比表面積と前掲の第1表とから
シリル基の炭素数に応じて必要なシリル化剤量と
最大シリル化剤量を算出し、その必要量と最大量
の範囲内に収まる量のシリル化剤を用いなければ
ならない。この範囲以下では次工程の粉末化に当
つて、未反応の表面シラノール基による隣接コロ
イド粒子間の反応が起り、再分散性に劣る粉末し
か得られない。また上記の範囲以上では余剰シリ
ル化剤同志の反応で不揮発成分が生成し、粉末化
が困難となる。 シリル化に当つては、シリル化剤とオルガノシ
リカゾルを混合するだけでも十分であるが、反応
を完全ならしめるために、混合液を加熱処理する
のが好ましい。特にシリル化剤の炭素数が大きい
場合は加熱による反応完結が重要となる。シリル
化反応終了後の反応混合物は、シリル化されたコ
ロイド次元のシリカ粒子がシリル化に際して副生
する塩酸、アルコール、水を含んだ有機媒体に分
散した状態にある。従つてこの反応混合物から液
相成分を留出させることにより本発明の粉末状シ
リカを得ることが出来る。 粉末化工程はシリル化工程に引続いて行われる
のが好ましい。粉末化に際しては200℃以下での
液相留出が好ましく、200℃以上ではシリル基の
有機成分が燃焼し、分散のよい粉末が得られない
おそれがある。150℃以下で必要ならば減圧下で
の粉末化が最も好ましい。このようにして得られ
た粉末状シリカは通常白色を呈し、アルコール、
ケトン、エーテル、芳香族炭化水素、脂肪族炭化
水素などほとんどの有機溶剤に均質に分散する。 比較例 1 滴下口及び留出口を具えた1の三ツ口フラス
コに、平均粒子径12mμ(比表面積230m2/SiO2
g)、SiO2濃度20%のシリカヒドロゾル150mlを
入れ、されに同量のi−プロピルアルコールを加
える。次いで減圧蒸留させながら滴下口よりi−
プロピルアルコールを徐々に加えると共に、留出
口より水とアルコールを留出させた。この操作を
SiO2濃度20%、水分2.0%のi−プロピルアルコ
ールゾルが得られるまで続行した。 次に、上記i−プロピルアルコールゾルにn−
ブチルアルコール200mlを加え、減圧下でi−プ
ロピルアルコール、水、n−ブチルアルコールを
留出させて、150mlのn−ブチルアルコールを分
散媒とするオルガノシリカゾルを得た。このゾル
のSiO2濃度は21.4%、水分1.5%、粘度は7セン
チポイズであつた。 このn−ブチルアルコールを分散媒とするオル
ガノシリカゾル100gにトリメチルクロルシラン
0.05g(0.02×10-3モル/SiO2g)を添加し、加
熱により50℃で10分間撹拌した後、減圧下で溶媒
と副生物を蒸発させ、粉末状のシリカを得た。 比較例 2 比較例1と同様な方法でn−ブチルアルコール
を分散媒とするオルガノシリカゾルを得た。ただ
し、溶媒置換時のn−ブチルアルコール量を70ml
に制限した。 得られたn−ブチルアルコールを分散媒とする
ゾルはSiO2濃度20.3%、水分20.3%、粘度5セン
チポイズであつた。 このn−ブチルアルコールを分散媒とするゾル
100gにトリメチルクロルシラン2.8g(1.3×10-3
モル/SiO2g)を添加し、加熱により50℃で10
分間撹拌した後、減圧下で溶媒と副生物を蒸発さ
せ、粉末状シリカを得た。 実施例 1 滴下口及び留出口を具えた1の三ツ口フラス
コに、平均粒子径12mμ(比表面積230m2/SiO2
g)、SiO2濃度20%のシリカヒドロゾル150mlを
入れ、さらにこれと同量のi−プロピルアルコー
ルを加える。次いで減圧蒸留させながら滴下口よ
りi−プロピルアルコールを徐々に加えると共
に、留出口より水とアルコールを留出させた。こ
の操作をSiO2濃度20.5%、水分3.0%のi−プロ
ピルアルコールゾルが得られるまで続けた。 次に上記i−プロピルアルコールゾルにn−ブ
チルアルコール200mlを加え、減圧下でi−プロ
ピルアルコール、水、n−ブチルアルコールを留
出させて150mlのn−ブチルアルコールを分散媒
とするオルガノシリカゾルを得た。このゾルの
SiO2濃度は20.1%、水分2.0%、粘度6センチポ
イズであつた。 このn−ブチルアルコールを分散媒とするオル
ガノシリカゾル100gにトリメチルクロルシラン
2.8g(1.3×10-3モル/SiO2g)を添加し、加熱
により50℃で10分間撹拌した後、減圧下で溶媒と
副生物を蒸発させ、粉末状のシリカを得た。 実施例 2〜7 シリル化剤としてのトリメチルクロルシランを
第2表に示すものに代え、さらにシリル化剤の添
加量とシリル化処理時の加熱温度を第2表に示す
通りに変更した以外は実施例1と全く同様にして
各種の粉末状シリカを得た。
[Table] Next, the method for producing powdered silica according to the present invention will be explained. Since the powdered silica of the present invention requires that the core silica particles have a colloidal dimension, a silica hydrosol is used as a starting material, and the silica hydrosol has a low SiO 2 concentration.
The viscosity at 20wt% must be less than 100 centipoise. This type of silica hydrosol can be produced by dealkalizing water glass with a cation exchange resin and polymerizing the resulting silicic acid solution in an alkaline atmosphere (commonly known as the ion exchange method), or by neutralizing water glass with acid. There is a method in which the salt is washed away with water and the resulting gel is peptized in an autoclave (commonly known as the peptization method), and a silicate solution obtained by hydrolyzing ethyl silicate with acid. It can generally be produced by a method such as heating and aging. Incidentally, when powdered silica such as aloesil or white carbon is dispersed in water at a concentration of 20 wt%, it is distinguished from the silica hydrosol of the present invention in that it has an extremely high viscosity of tens of thousands of centipoids. In addition, low-polymerized silicic acid liquids made by neutralizing water glass with acid or dealkalized with cation exchange resins, and silicic acid liquids made by hydrolyzing organosilicon compounds, are also commonly called silica hydrosols. , these also have a high viscosity of tens of thousands of centipoise at a SiO 2 concentration of 20 wt%.
It is clearly distinguished from the silica hydrosol of the present invention by gelling over time. Although the SiO 2 concentration of the silica hydrosol as a starting material can be arbitrarily selected, it is generally preferable that the SiO 2 concentration is 50 wt% or less. According to the invention, a silica hydrosol is first converted into an organosilica sol by solvent displacement. This solvent substitution involves mixing a mutually soluble hydrophilic organic solvent in an arbitrary ratio with the silica hydrosol.
The content is to gradually replace water, which is the dispersion medium of silica hydrosol, with an organic solvent. In this case, the hydrophilic organic solvent may be used in combination with a hydrophobic organic solvent that is mutually soluble therein. Methods for replacing the solvent include, for example, removing water by distillation, using an ultrafiltration membrane to gradually replace the solvent with an organic solvent, using a dehydrating agent such as a molecular sieve, A method of removing only water can be adopted. Incidentally, for solvents with a boiling point lower than water, such as acetone, it is advantageous to use ultrafiltration or molecular sieves. If you want to replace the solvent with alcohols with larger molecular weights such as n-butyl alcohol and n-octyl alcohol, ketones such as methyl ethyl ketone, or esters such as isobutyl acetate, these alcohols have poor compatibility with the raw material silica hydrosol. Therefore, it is preferable to replace the water with methyl alcohol or the like beforehand, and then perform the solvent replacement again. Ethers such as ethyl glycol, polyhydric alcohols such as ethylene glycol,
Alkylamides such as N,N-dimethylformamide (DMF) can be replaced with water by direct distillation. However, alcohols having 3 or less carbon atoms are undesirable because they tend to react directly with the silylating agent used in the subsequent step. In this manner, the solvent-substituted organosilica sol contains some water, although it differs depending on the method of solvent substitution. However, in the present invention, the amount of water remaining in the organosilica sol is
It should be less than 10wt%, preferably less than 5wt%. If more than 10 wt% of water is present, the rate of hydrolysis of the silylating agent in the next step will be rapid, the reaction between the silylating agents will be accelerated, and a selective reaction to the colloid surface can hardly be expected. However, if special measures are taken, such as using a very low concentration of silica sol and adding a silylating agent at a low concentration over a long period of time, a reaction on the colloid surface can be expected to some extent, but this is not practical. When the water content is less than 5 wt%, even if the silylating agent is mixed all at once with high-concentration silica, a selective reaction will occur on the colloid particle surface, and the desired product will be obtained. The organosilica sol obtained by solvent substitution is then subjected to silylation treatment, and the silica surface is modified to be lipophilic while maintaining its colloidal state through a chemical reaction between the surface silanol and the silylation agent. The silylating agents used in the present invention include methyltrichlorosilane, dimethyldichlorosilane,
Trimethylchlorosilane, ethyltrichlorosilane, diethyldichlorosilane, triethylchlorosilane, vinyltrichlorosilane, stearyltrichlorosilane, dihexyldichlorosilane,
Chlorosilanes such as diphenyldichlorosilane, triphenylchlorosilane, and n-amyltrichlorosilane; alkoxy compounds such as methyltrimethoxysilane, methyltriethoxysilane, vinyltrimethoxysilane, n-amyltriethoxysilane, and benzyltrimethoxysilane; Any of silanes, silazane such as hexamethyldisilazane, and hydroxysilanes obtained by hydrolyzing these can be used. When using chlorosilanes, hydrogen chloride (hydrochloric acid) is produced as a by-product, and when using alkoxysilanes, alcohol is produced as a by-product, but in both cases, they are removed along with the solvent during the desolvation operation after the reaction. So there is no problem. In the case of hydroxysilane, it is unstable and easily polymerizes, so in practice, chlorosilane is hydrolyzed while cooling immediately before use.
It is effective to immediately use the hydroxysilane in the oil layer in the present invention. In the present invention, the maximum number of silyl groups that react on the silica surface depends on the number of carbon atoms in the silyl group, and decreases as the number of carbon atoms in the silyl group increases, as shown in Table 1 above. Therefore, in silylation treatment, calculate the required amount of silylating agent and maximum amount of silylating agent according to the number of carbon atoms in the silyl group from the specific surface area of silica and Table 1 above, and calculate the required amount. and the maximum amount of silylating agent must be used. Below this range, during the next step of powdering, unreacted surface silanol groups cause reactions between adjacent colloid particles, resulting in a powder with poor redispersibility. Further, if the amount exceeds the above range, non-volatile components will be generated due to the reaction of the excess silylating agent with each other, making it difficult to powderize. For silylation, it is sufficient to simply mix the silylating agent and organosilica sol, but in order to complete the reaction, it is preferable to heat the mixed solution. Particularly when the silylating agent has a large number of carbon atoms, it is important to complete the reaction by heating. The reaction mixture after the silylation reaction is in a state in which silylated colloidal silica particles are dispersed in an organic medium containing hydrochloric acid, alcohol, and water, which are by-produced during silylation. Therefore, the powdered silica of the present invention can be obtained by distilling off the liquid phase component from this reaction mixture. Preferably, the powdering step is carried out subsequent to the silylation step. When powdering, liquid phase distillation is preferably carried out at a temperature of 200°C or lower; at a temperature of 200°C or higher, the organic components of the silyl group may burn and a well-dispersed powder may not be obtained. Powdering at 150° C. or below and under reduced pressure if necessary is most preferred. The powdered silica obtained in this way is usually white in color and contains alcohol,
Homogeneously disperses in most organic solvents such as ketones, ethers, aromatic hydrocarbons, and aliphatic hydrocarbons. Comparative Example 1 In a three-necked flask equipped with a dropping port and a distillation port, an average particle size of 12 mμ (specific surface area of 230 m 2 /SiO 2
g) Pour 150 ml of silica hydrosol with a SiO 2 concentration of 20%, and add the same amount of i-propyl alcohol. Then, while distilling under reduced pressure, i-
Propyl alcohol was gradually added, and water and alcohol were distilled out from the distillation port. This operation
The process was continued until an i-propyl alcohol sol with a SiO 2 concentration of 20% and a water content of 2.0% was obtained. Next, the above i-propyl alcohol sol was added with n-
200 ml of butyl alcohol was added, and i-propyl alcohol, water, and n-butyl alcohol were distilled off under reduced pressure to obtain 150 ml of organosilica sol using n-butyl alcohol as a dispersion medium. This sol had a SiO 2 concentration of 21.4%, a water content of 1.5%, and a viscosity of 7 centipoise. Add trimethylchlorosilane to 100g of this organosilica sol using n-butyl alcohol as a dispersion medium.
After adding 0.05 g (0.02×10 −3 mol/SiO 2 g) and stirring at 50° C. for 10 minutes, the solvent and by-products were evaporated under reduced pressure to obtain powdered silica. Comparative Example 2 An organosilica sol using n-butyl alcohol as a dispersion medium was obtained in the same manner as in Comparative Example 1. However, the amount of n-butyl alcohol when replacing the solvent should be 70ml.
limited to. The resulting sol using n-butyl alcohol as a dispersion medium had a SiO 2 concentration of 20.3%, a water content of 20.3%, and a viscosity of 5 centipoise. A sol using this n-butyl alcohol as a dispersion medium
2.8g of trimethylchlorosilane (1.3×10 -3 per 100g)
mol/g of SiO 2 ) and heated to 50 °C for 10
After stirring for a minute, the solvent and by-products were evaporated under reduced pressure to obtain powdered silica. Example 1 Into a three-necked flask equipped with a dropping port and a distillation port, particles with an average particle diameter of 12 mμ (specific surface area of 230 m 2 /SiO 2
g) Add 150 ml of silica hydrosol with a SiO 2 concentration of 20%, and add the same amount of i-propyl alcohol. Next, i-propyl alcohol was gradually added through the dropping port while distilling under reduced pressure, and water and alcohol were distilled out from the distillation port. This operation was continued until an i-propyl alcohol sol with a SiO 2 concentration of 20.5% and a water content of 3.0% was obtained. Next, 200 ml of n-butyl alcohol was added to the above i-propyl alcohol sol, and the i-propyl alcohol, water, and n-butyl alcohol were distilled off under reduced pressure to form an organosilica sol using 150 ml of n-butyl alcohol as a dispersion medium. Obtained. of this sol
The SiO 2 concentration was 20.1%, the moisture was 2.0%, and the viscosity was 6 centipoise. Add trimethylchlorosilane to 100g of this organosilica sol using n-butyl alcohol as a dispersion medium.
After adding 2.8 g (1.3×10 −3 mol/SiO 2 g) and stirring at 50° C. for 10 minutes, the solvent and by-products were evaporated under reduced pressure to obtain powdered silica. Examples 2 to 7 Except that trimethylchlorosilane as the silylating agent was replaced with that shown in Table 2, and the amount of the silylating agent added and the heating temperature during the silylation treatment were changed as shown in Table 2. Various powdered silicas were obtained in exactly the same manner as in Example 1.

【表】 ラン
[Table] Orchid

Claims (1)

【特許請求の範囲】 1 炭素数1〜36のシリル基で被われたコロイド
次元のシリカ粒子からなり、シリカの表面10平方
ミリミクロン当り1〜100個のシリル基がシリカ
に化学的に結合した有機溶剤に均質に分散可能な
粉末状シリカ。 2 コロイド次元のシリカ粒子が粒径5〜30ミリ
ミクロンのシリカ粒子である特許請求の範囲第1
項記載の粉末状シリカ。 3 SiO2濃度20wt%で測定した粘度が100センチ
ポイズ以下であるシリカヒドロゾルを溶媒置換さ
せて水分量10wt%以下のオルガノシリカゾルを
調製し、このオルガノシリカゾルを炭素数1〜36
のオルガノシリル化剤と反応させてシリカ表面を
シリル化処理した後、得られた反応混合物から液
層成分を除去することからなる有機溶剤に均質に
分散可能な粉末状シリカの製造法。 4 オルガノシリカゾル中の水分量が5wt%以下
である特許請求の範囲第3項記載の方法。
[Claims] 1 Consisting of colloidal silica particles covered with silyl groups having 1 to 36 carbon atoms, with 1 to 100 silyl groups chemically bonded to the silica per 10 square millimeters of the silica surface. Powdered silica that can be homogeneously dispersed in organic solvents. 2. Claim 1, wherein the colloidal silica particles are silica particles with a particle size of 5 to 30 millimicrons.
Powdered silica as described in section. 3 A silica hydrosol with a viscosity of 100 centipoise or less measured at a SiO 2 concentration of 20 wt% is replaced with a solvent to prepare an organosilica sol with a water content of 10 wt% or less.
A method for producing powdered silica homogeneously dispersible in an organic solvent, which comprises silylating the silica surface by reacting it with an organosilylating agent, and then removing a liquid phase component from the resulting reaction mixture. 4. The method according to claim 3, wherein the water content in the organosilica sol is 5 wt% or less.
JP2774682A 1982-02-23 1982-02-23 Powdery silica dispersible uniformly into organic solvent and its preparation Granted JPS58145614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2774682A JPS58145614A (en) 1982-02-23 1982-02-23 Powdery silica dispersible uniformly into organic solvent and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2774682A JPS58145614A (en) 1982-02-23 1982-02-23 Powdery silica dispersible uniformly into organic solvent and its preparation

Publications (2)

Publication Number Publication Date
JPS58145614A JPS58145614A (en) 1983-08-30
JPH021090B2 true JPH021090B2 (en) 1990-01-10

Family

ID=12229591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2774682A Granted JPS58145614A (en) 1982-02-23 1982-02-23 Powdery silica dispersible uniformly into organic solvent and its preparation

Country Status (1)

Country Link
JP (1) JPS58145614A (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS636062A (en) * 1986-06-25 1988-01-12 Toray Silicone Co Ltd Method of modifying surface of fine silica powder
JP2584109B2 (en) * 1990-06-11 1997-02-19 松下冷機株式会社 Paint for water-repellent coating and heat exchanger coated with the paint
JP2646150B2 (en) * 1990-08-27 1997-08-25 出光興産 株式会社 Water repellent silica sol and method for producing the same
EP0881192B1 (en) * 1997-05-26 2002-03-27 Nissan Chemical Industries, Ltd. Process of producing hydrophobic organosilica sol
JP4631119B2 (en) * 2000-01-28 2011-02-16 Jsr株式会社 Method for producing hydrophobized colloidal silica
US7737187B2 (en) 2003-12-19 2010-06-15 Nissan Chemical Industries, Ltd. Process for producing inorganic oxide organosol
JP4736332B2 (en) * 2004-03-03 2011-07-27 Nok株式会社 Rubber-metal laminated gasket material
US20060112860A1 (en) 2004-11-16 2006-06-01 Nissan Chemical Industries, Ltd. Process for producing hydrophobic silica powder
JP2006299248A (en) * 2005-03-22 2006-11-02 Fuji Photo Film Co Ltd Composition comprising inorganic fine particles, optical film, antireflection film, and polarizing plate and display device using the same
KR101302646B1 (en) 2005-07-04 2013-09-03 닛산 가가쿠 고교 가부시키 가이샤 Process for Producing Hydrophobic Silica Powder
JP2007063117A (en) 2005-08-02 2007-03-15 Nissan Chem Ind Ltd Silica sol dispersed in organic solvent and process for producing the same
KR100618129B1 (en) * 2006-01-11 2006-09-01 (주) 개마텍 Producing method of surface modified oxide organosol
US7999026B2 (en) 2007-02-02 2011-08-16 Nissan Chemical Industries, Ltd. Reactive monomer-dispersed silica sol and production method thereof, and curable composition and cured article thereof
JP4579265B2 (en) 2007-04-25 2010-11-10 信越化学工業株式会社 Hydrophobic spherical silica fine particles having high fluidity, method for producing the same, toner external additive for developing electrostatic image using the same, and organic resin composition containing the same
WO2009101974A1 (en) 2008-02-12 2009-08-20 Nissan Chemical Industries, Ltd. Colloidal silica particles, process for producing the same, and silica sol in organic solvent, silica sol in polymerizable compound, and silica sol in dicarboxylic anhydride each obtained from the same
JP5152656B2 (en) * 2008-03-26 2013-02-27 荒川化学工業株式会社 Method for producing surface-coated silica organosol, and method for producing surface-coated silica particle-containing epoxy resin composition
JP5197503B2 (en) * 2009-06-17 2013-05-15 花王株式会社 Method for producing glycerin monofatty acid ester
KR101733042B1 (en) * 2009-11-05 2017-05-08 아크조 노벨 케미칼즈 인터내셔널 비.브이. Aqueous silica dispersion
CN106573788A (en) * 2014-08-07 2017-04-19 日产化学工业株式会社 Silane-treated forsterite fine particles and production method therefor, and organic solvent dispersion of the silane-treated forsterite fine particles and production method therefor
JP5921663B2 (en) * 2014-12-25 2016-05-24 株式会社 菊星 Hair styling composition
US11549019B2 (en) 2020-07-07 2023-01-10 Nissan Chemical Corporation Inorganic oxide sol dispersed in hydrocarbon and production method therefor

Also Published As

Publication number Publication date
JPS58145614A (en) 1983-08-30

Similar Documents

Publication Publication Date Title
JPH021090B2 (en)
EP0881192B1 (en) Process of producing hydrophobic organosilica sol
JP4032503B2 (en) Method for producing hydrophobic organosilica sol
JP3319763B2 (en) Hydrophobic organosilicate modified silica gel
JP2646150B2 (en) Water repellent silica sol and method for producing the same
US9388314B2 (en) Surface modified silicon dioxide particles
US5708069A (en) Method for making hydrophobic silica gels under neutral conditions
JP4188462B2 (en) Method for producing hydrophobic precipitated silica
JP3891265B2 (en) Hydrophobic silica fine powder and method for producing the same
US6239243B1 (en) Method for preparing hydrophilic silica gels with high pore volume
JP2001504757A (en) Process for producing organically modified persistently hydrophobic erogels
US5942590A (en) Process for making hydrophobic silica with reduced surface area under neutral conditions
KR100689685B1 (en) Method for preparing a silica suspension in a potentially crosslinkable silicone material
JPH0798655B2 (en) Method for producing surface-modified silica
JPH0432697B2 (en)
US5789495A (en) Method for making hydrophobic organosilicate-modified silica gels under neutral conditions
US2801186A (en) Composition and process
US3904583A (en) Preparation of organosilicon polymers
JPH021089B2 (en)
JP808H (en) Powdery silica that can be homogeneously dispersed in organic solvent and its production method
JP3493109B2 (en) Method for producing organic group-containing silica fine particle dispersion sol
JP2001513066A (en) Hydrophobic silica gel with reduced surface area
WO1999036479A1 (en) Method of preparing organically modified silica
JPH07196348A (en) Reactive inorganic filler and its production
JP2003165719A (en) Method for producing hydrophobic, lightweight and porous silica gel