JPH0210821A - Reduction projection aligner - Google Patents

Reduction projection aligner

Info

Publication number
JPH0210821A
JPH0210821A JP63161875A JP16187588A JPH0210821A JP H0210821 A JPH0210821 A JP H0210821A JP 63161875 A JP63161875 A JP 63161875A JP 16187588 A JP16187588 A JP 16187588A JP H0210821 A JPH0210821 A JP H0210821A
Authority
JP
Japan
Prior art keywords
exposure
wafer
resist
film thickness
reduction projection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63161875A
Other languages
Japanese (ja)
Inventor
Hiroshi Nozue
野末 寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63161875A priority Critical patent/JPH0210821A/en
Publication of JPH0210821A publication Critical patent/JPH0210821A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form pattern size at a constant value, and to supply a large number of low-cost integrated circuits having high performance by obtaining the thickness of resist films at every exposure section in a wafer and changing the optimal quantities of exposure at every exposure section on the basis of the values CONSTITUTION:When the upper section of a wafer 301 coated with a resist is exposed in order of exposure sections 1, 2, 3..., the resist film thickness of the exposure sections 1, 2, 3... is measured prior to exposure in a film- thickness measuring function section, and the quantities of exposure of each exposure section 1, 2, 3... are adjusted so that pattern size is kept constant in response to the measured data.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体集積回路などのパターンを半導体基板上
に縮小投影露光を行う縮小投影露光方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a reduction projection exposure method for performing reduction projection exposure of a pattern of a semiconductor integrated circuit or the like onto a semiconductor substrate.

〔従来の技術〕[Conventional technology]

近年、半導体集積回路の製造において、この半導体集積
回路を低価格に大量生産し、かつ高性能なものとすべく
、高集積化、微細化が推進され、超LSIなどと呼ばれ
ている高密度記憶回路装置が開発されている。超LSI
回路パターンを半導体基板上に形成するためには微細パ
ターンを正確に形成する必要があり、このため、縮小投
影露光装置いわゆるステッパーが用いられている。
In recent years, in the manufacturing of semiconductor integrated circuits, high integration and miniaturization have been promoted in order to mass produce semiconductor integrated circuits at low cost and achieve high performance. Memory circuit devices have been developed. Super LSI
In order to form a circuit pattern on a semiconductor substrate, it is necessary to form a fine pattern accurately, and for this reason, a reduction projection exposure apparatus, a so-called stepper, is used.

第6図は従来のステッパーの基本構成図である。FIG. 6 is a basic configuration diagram of a conventional stepper.

図において、防腐台108上に直交する2軸x、■方向
に移動可能なステージ107が設置されている。ステー
ジ107上には露光を必要とするウェハー105を載せ
るためのウェハー台106が設置されている。
In the figure, a stage 107 that is movable in two orthogonal axes x and {circle around (2)} directions is installed on a preservative table 108. A wafer stand 106 is installed on the stage 107 on which a wafer 105 that requires exposure is placed.

光源101から発生した光100はコンデンサレンズ1
02で平行光束となり、半導体集積回路パターンが実寸
よりもn倍に拡大され形成されているレティクル103
を通過する。レティクル像は縮小投影レンズ104によ
って1/nに即ち実寸に縮小されウェハー105上に結
像露光される。ところで、縮小投影レンズ104を用い
て一度に露光可能な面積は通常5〜15III1口程度
であり、それに対し用いられるウェハーは100画〜2
00 nmφ程度で、ウェハー全面に−度に露光するこ
とは不可能である。そこで、ある部位を露光した後、ス
テージ107を移動させて他の部位を露光し、再びステ
ージの移動、露光を繰り返し行ってウェハー全面を露光
させており、それぞれ露光量は一定に保たれている。
Light 100 generated from a light source 101 passes through a condenser lens 1
The reticle 103 has a parallel light beam at 02, and has a semiconductor integrated circuit pattern enlarged to n times its actual size.
pass through. The reticle image is reduced to 1/n, that is, to the actual size, by the reduction projection lens 104, and is imaged and exposed onto the wafer 105. By the way, the area that can be exposed at one time using the reduction projection lens 104 is usually about 5 to 15 III, whereas the wafer used is about 100 to 2.
With a diameter of about 0.00 nmφ, it is impossible to expose the entire wafer at once. Therefore, after exposing a certain area, the stage 107 is moved to expose another area, and the stage is moved and exposed again to expose the entire wafer, and the amount of exposure is kept constant in each case. .

第7図は露光されるウェハーの断面図である。FIG. 7 is a cross-sectional view of the wafer being exposed.

ウェハー301上にはパターン転写のためのレジスト3
02が塗布されている。ところで、このレジスト302
がウェハー上に塗布される場合、従来、まずウェハー中
心部にレジストを滴下した後、ウェハーを回転すること
によってウェハー上でレジスト厚が均一になるように工
夫されている。しかしながら、レジスト厚を完全に均一
にするのは難しく、61φウエハーの場合、0.14程
度の膜厚差は存在する。
On the wafer 301 is a resist 3 for pattern transfer.
02 is applied. By the way, this resist 302
Conventionally, when a resist is applied onto a wafer, the resist is first dropped onto the center of the wafer and then the wafer is rotated to make the resist thickness uniform on the wafer. However, it is difficult to make the resist thickness completely uniform, and in the case of a 61φ wafer, there is a difference in film thickness of about 0.14.

第8図はレジスト膜厚と露光・現像後のパターン寸法の
関係を示した図である。ある露光量Q0で露光を行った
場合、レジスト膜厚t1ではパターン寸法がQいレジス
ト膜厚がt2ではパターン寸法が02となる。露光波長
λ。と膜厚とはλ。/4n=t2−t、 (nはレジス
トの屈折率)の関係がある。
FIG. 8 is a diagram showing the relationship between resist film thickness and pattern dimensions after exposure and development. When exposure is performed with a certain exposure amount Q0, the pattern size is Q when the resist film thickness is t1, and the pattern size is 02 when the resist film thickness is t2. Exposure wavelength λ. and film thickness is λ. There is a relationship: /4n=t2-t, (n is the refractive index of the resist).

従来、ステッパーでは水銀のg線あるいはi線等が用い
られており、g線の場合、λ。= 0.436p、λ、
/4n″:0.074(nは代表的なレジスト0FPR
800(東京応化)で1.64程度である。)である。
Conventionally, steppers use mercury g-line or i-line, and in the case of g-line, λ. = 0.436p, λ,
/4n″: 0.074 (n is a typical resist 0FPR
800 (Tokyo Ohka) is about 1.64. ).

しかるに、ウェハー内では0.1.程度の膜厚差があり
寸法バラツキがn、−Q工どなることがある。Q2−Q
、はステッパーやレジスト材料や現像方法によって異な
るが、115縮小、NA=0.35、g線ステッパーを
用い。
However, within the wafer, 0.1. There is a slight difference in film thickness, and the dimensional variation may be n, -Q, etc. Q2-Q
, which differs depending on the stepper, resist material, and development method, uses a 115 reduction, NA = 0.35, and a g-line stepper.

Siウェハー上に塗布した0FPR800レジストに1
−寸法のパターンを露光し、パドル現像を行った場合、
Q、−111,>0.14となることもある。代表的な
IMビットDRAMなどではトランジスタのゲート長は
0.1.未満の寸法精度で制御される必要があり、これ
を超えるとトランジスタの性能劣化を招いてしまう。
1 on the 0FPR800 resist coated on the Si wafer.
- When a pattern of dimensions is exposed and paddle development is performed,
Q, -111,>0.14 in some cases. In a typical IM bit DRAM, the gate length of the transistor is 0.1. It needs to be controlled with a dimensional accuracy of less than or equal to 100%, and if it exceeds this, the performance of the transistor will deteriorate.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の縮小投影露光法ではウェハー上で繰り返
し露光する際の露光量は一定に保たれるため、ウェハー
上のレジスト厚が均一でない場合。
In the conventional reduction projection exposure method described above, the exposure amount is kept constant during repeated exposure on the wafer, so when the resist thickness on the wafer is not uniform.

パターンの寸法が正確に制御されず、集積回路装置の性
能が劣化し、また歩留りが低下する等の影響があり、高
品質集積回路装置を低価格で大量に安定供給することが
できないという欠点がある。
The disadvantage is that the pattern dimensions are not accurately controlled, the performance of the integrated circuit device deteriorates, and the yield rate decreases, making it impossible to stably supply high-quality integrated circuit devices in large quantities at low prices. be.

本発明の目的は前記課題を解決した縮小投影露光方法を
提供することにある。
An object of the present invention is to provide a reduction projection exposure method that solves the above problems.

〔発明の従来技術に対する相違点〕[Differences between the invention and the prior art]

上述した従来の縮小投影露光方法に対し、本発明はウェ
ハー上の縮小投影露光される各部のレジスト厚をそれぞ
れ測定し、その測定値に基づいてパターン寸法が一定と
なるべく露光量を調整するという相違点を有する。
In contrast to the conventional reduction projection exposure method described above, the present invention differs in that the resist thickness of each part of the wafer to be subjected to reduction projection exposure is measured, and the exposure amount is adjusted based on the measured values so that the pattern dimensions are constant. Has a point.

(211gを解決するための手段〕 前記目的を達成するため、本発明は紫外光の照射を行い
、ガラス基板上に形成されているパターンを光感光性有
機膜の塗布された半導体基板上に順次縮小投影露光を行
う縮小投影露光方法において、予め前記半導体基板上で
の前記光感光性有機膜の膜厚分布を測定し、その膜厚分
布に応じて前記半導体基板内での各露光毎に露光量を変
化させるものである。
(Means for Solving 211g) In order to achieve the above object, the present invention irradiates with ultraviolet light and sequentially transfers a pattern formed on a glass substrate onto a semiconductor substrate coated with a photosensitive organic film. In a reduction projection exposure method that performs reduction projection exposure, the film thickness distribution of the photosensitive organic film on the semiconductor substrate is measured in advance, and exposure is performed for each exposure within the semiconductor substrate according to the film thickness distribution. It changes the amount.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

(実施例1) 第1図は本発明を実施するためのステッパーを示す模式
図である。
(Example 1) FIG. 1 is a schematic diagram showing a stepper for implementing the present invention.

本発明はレジスト膜厚を測定するための膜厚測定機能を
有しており、該膜厚測定機能は、光源201、ハーフミ
ラ−202,レンズ系203.検出器204より構成さ
れる。ステージ107は縮小投影レンズ104とレンズ
系203の下方位置で直交する2軸XY方向に移動可能
となっている。その他の構成は従来と同じである。
The present invention has a film thickness measurement function for measuring the resist film thickness, and the film thickness measurement function includes a light source 201, a half mirror 202, a lens system 203. It is composed of a detector 204. The stage 107 is movable in two orthogonal axes X and Y directions below the reduction projection lens 104 and the lens system 203. Other configurations are the same as before.

第2図はウェハーを示す正面図である。レジストの塗布
されたウェハー301上に露光部■、■、■・・・の順
に露光を行う場合、第1図における膜厚測定機能部にお
いて、露光部■、■、■・・・のレジスト膜厚を露光に
先たち測定し、その測定データに応じて各露光部■、■
、■・・・の露光量をパターン寸法が一定になるべく調
整する。
FIG. 2 is a front view of the wafer. When exposing the wafer 301 coated with resist in the order of exposed areas ■, ■, ■, etc., in the film thickness measurement function section in FIG. The thickness is measured prior to exposure, and the thickness of each exposed area is measured depending on the measured data.
, . . . are adjusted as much as possible so that the pattern dimensions are constant.

第3図は露光量と現像後のパターン寸法との関係を示し
た図である。レジスト膜厚がt3のとき、露光量Q1で
はパターン寸法らが得られる。レジスト膜厚がt4のと
き、露光量Q、ではパターン寸法Q4となり、Q、と異
なってしまう。この場合、露光量を04とすると、パタ
ーン寸法Q3が得られる。第4図はパターン寸法Q、を
得るときのレジスト膜厚と露光量との関係を示したもの
である。各露光部の膜厚測定結果からこのグラフをもと
に作業者が露光量を求めても良いが、予め第4図のデー
タを本発明に係るステッパーに入力しておき、膜厚測定
結果からステッパー内のCPUにより、自動的に必要露
光量を算出し、それに従って露光される方法が最も有効
である。
FIG. 3 is a diagram showing the relationship between the exposure amount and the pattern size after development. When the resist film thickness is t3, pattern dimensions etc. can be obtained with the exposure amount Q1. When the resist film thickness is t4, the exposure amount Q results in a pattern dimension Q4, which is different from Q. In this case, if the exposure amount is 04, pattern dimension Q3 is obtained. FIG. 4 shows the relationship between the resist film thickness and the exposure amount when obtaining the pattern dimension Q. Although the operator may calculate the exposure amount based on this graph from the film thickness measurement results of each exposed area, it is possible to calculate the exposure amount by inputting the data shown in Fig. 4 into the stepper according to the present invention in advance, and The most effective method is to automatically calculate the required exposure amount using the CPU in the stepper and perform exposure accordingly.

ここで、膜厚測定は全露光部について行うばかりでなく
、何箇所かを選択測定し、他の露光部はそれらの測定結
果をもとに近似しても良い。
Here, the film thickness may be measured not only for the entire exposed area, but also for selectively measuring several locations, and approximating the other exposed areas based on the measurement results.

(実施例2) 第5図は本発明の実施例2を説明するためのフローチャ
ートである。実施例1ではパターン寸法制御を高精度で
行うため、全ウェハーについてレジスト膜厚81り定を
行っており、測定に時間を要する。そこで、本発明の実
施例2ではロット内から予め何枚かのウェハーを抜き取
り、例えば25枚のウェハーで構成されるロットから5
枚を抜き取り、その5枚について実施例1と同様に各露
光部のレジスト膜厚測定を行う。次に、これら5枚分の
データから各露光部ごとの平均膜厚を求め、この平均膜
厚からさらに各露光部ごとの露光量を求め、これに従っ
て25枚分全部の露光を行うものである。
(Embodiment 2) FIG. 5 is a flowchart for explaining Embodiment 2 of the present invention. In Example 1, in order to control the pattern dimensions with high precision, the resist film thickness 81 is determined for all wafers, which requires time to measure. Therefore, in Embodiment 2 of the present invention, some wafers are extracted from a lot in advance, and for example, 5 wafers are extracted from a lot consisting of 25 wafers.
The resist film thickness of each exposed portion of the five sheets was measured in the same manner as in Example 1. Next, the average film thickness for each exposed area is determined from the data for these 5 sheets, and the exposure amount for each exposed area is determined from this average film thickness, and all 25 sheets are exposed accordingly. .

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明はウェハー内の露光部ごとの
レジスト膜厚を求め、それをもとに露光部ごとに最適露
光量を変化させることにより、ウェハー上にレジストが
均一膜厚で塗布されない場合でも、パターン寸法を一定
に形成でき、高性能。
As explained above, the present invention calculates the resist film thickness for each exposed area on the wafer and changes the optimum exposure amount for each exposed area based on the thickness, so that the resist is not coated with a uniform thickness on the wafer. Even if the pattern size is constant, it can be formed with high performance.

低価格の集積回路が多量に安価に供給できるという効果
がある。
This has the effect that low-cost integrated circuits can be supplied in large quantities at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1の模式図、第2図は実施例1
を説明するための正面図、第3図は露光量とパターン寸
法の関係図、第4図はレジスト膜厚と露光量との関係図
、第5図は実施例2を説明するためのフローチャート、
第6図は従来のステッパーの模式図、第7図は従来例を
説明するための断面図、第8図はレジスト膜厚とパター
ン寸法との関係図である。 100・・・紫外光 102・・・コンデンサレンズ 104・・・縮小投影レンズ 106・・・ウェハー台 108・・・防諜台 202・・・ハーフミラ− 204・・・検出器 Lot、201・・・光源 103・・・レティクル 105.301・・・ウェハー 107・・・ステージ 200・・・光 203・・・レンズ系 302・・・レジスト 第1図
Figure 1 is a schematic diagram of Example 1 of the present invention, Figure 2 is Example 1
3 is a diagram showing the relationship between exposure amount and pattern dimension, FIG. 4 is a diagram showing the relationship between resist film thickness and exposure amount, and FIG. 5 is a flowchart for explaining Example 2.
FIG. 6 is a schematic diagram of a conventional stepper, FIG. 7 is a sectional view for explaining the conventional example, and FIG. 8 is a diagram showing the relationship between resist film thickness and pattern dimensions. 100... Ultraviolet light 102... Condenser lens 104... Reduction projection lens 106... Wafer stand 108... Counterintelligence stand 202... Half mirror 204... Detector Lot, 201... Light source 103...Reticle 105.301...Wafer 107...Stage 200...Light 203...Lens system 302...Resist Fig. 1

Claims (1)

【特許請求の範囲】[Claims] (1)紫外光の照射を行い、ガラス基板上に形成されて
いるパターンを光感光性有機膜の塗布された半導体基板
上に順次縮小投影露光を行う縮小投影露光方法において
、予め前記半導体基板上での前記光感光性有機膜の膜厚
分布を測定し、その膜厚分布に応じて前記半導体基板内
での各露光毎に露光量を変化させることを特徴とする縮
小投影露光方法。
(1) In a reduction projection exposure method in which a pattern formed on a glass substrate is sequentially reduced and projected exposed onto a semiconductor substrate coated with a photosensitive organic film by irradiation with ultraviolet light, A reduction projection exposure method characterized in that the film thickness distribution of the photosensitive organic film is measured, and the exposure amount is changed for each exposure within the semiconductor substrate according to the film thickness distribution.
JP63161875A 1988-06-29 1988-06-29 Reduction projection aligner Pending JPH0210821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63161875A JPH0210821A (en) 1988-06-29 1988-06-29 Reduction projection aligner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63161875A JPH0210821A (en) 1988-06-29 1988-06-29 Reduction projection aligner

Publications (1)

Publication Number Publication Date
JPH0210821A true JPH0210821A (en) 1990-01-16

Family

ID=15743638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63161875A Pending JPH0210821A (en) 1988-06-29 1988-06-29 Reduction projection aligner

Country Status (1)

Country Link
JP (1) JPH0210821A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997037380A1 (en) * 1996-03-29 1997-10-09 Advanced Micro Devices, Inc. Method of processing a semiconductor wafer for controlling drive current
JP2005292271A (en) * 2004-03-31 2005-10-20 Hoya Corp Laser drawing apparatus, laser drawing method and method for manufacturing photomask

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997037380A1 (en) * 1996-03-29 1997-10-09 Advanced Micro Devices, Inc. Method of processing a semiconductor wafer for controlling drive current
US5943550A (en) * 1996-03-29 1999-08-24 Advanced Micro Devices, Inc. Method of processing a semiconductor wafer for controlling drive current
JP2005292271A (en) * 2004-03-31 2005-10-20 Hoya Corp Laser drawing apparatus, laser drawing method and method for manufacturing photomask

Similar Documents

Publication Publication Date Title
JP2854551B2 (en) Manufacturing method of exposure mask
US6262435B1 (en) Etch bias distribution across semiconductor wafer
JP2005510058A (en) Process-sensitive lithographic feature manufacturing method and apparatus
US20110003256A1 (en) Lithographic Apparatus and Device Manufacturing Method
US4500615A (en) Wafer exposure method and apparatus
JP4408876B2 (en) Focus determination method, device manufacturing method, and mask
JP2004200680A (en) Inspection method and device manufacturing method
US6741334B2 (en) Exposure method, exposure system and recording medium
JPS60249327A (en) Method of detecting resist pattern
US7433039B1 (en) Apparatus and methods for reducing tool-induced shift during overlay metrology
TW202013060A (en) Metrology apparatus
JP3267272B2 (en) Measurement method of aberration amount of projection optical system
JPH0210821A (en) Reduction projection aligner
JP3651630B2 (en) Projection exposure method and projection exposure apparatus
JPH0242214B2 (en)
Grassmann et al. Contrast transfer function measurements of deep ultraviolet steppers
JPS60177623A (en) Exposure device
JP2003243280A (en) Manufacturing system of semiconductor device and manufacturing method therefor
JPH0620913A (en) Exposure method and device
JP2002015992A (en) Lithographic process, evaluating method for lithography system, adjusting method for substrate-processing apparatus, lithography system, method and apparatus for exposure, and method for measuring condition of photosensitive material
JPH01257948A (en) Photomask for semiconductor integrated circuit
JPH0955352A (en) Apparatus and method for exposure
KR20230127786A (en) Semiconductor device manufacturing method using thereof
JP2000195771A (en) Method and device for exposure
JPH0864520A (en) Reticle for revolution error measurement of reticle and its method