JP2005292271A - Laser drawing apparatus, laser drawing method and method for manufacturing photomask - Google Patents

Laser drawing apparatus, laser drawing method and method for manufacturing photomask Download PDF

Info

Publication number
JP2005292271A
JP2005292271A JP2004104082A JP2004104082A JP2005292271A JP 2005292271 A JP2005292271 A JP 2005292271A JP 2004104082 A JP2004104082 A JP 2004104082A JP 2004104082 A JP2004104082 A JP 2004104082A JP 2005292271 A JP2005292271 A JP 2005292271A
Authority
JP
Japan
Prior art keywords
light beam
film thickness
exposure
exposure light
resist film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004104082A
Other languages
Japanese (ja)
Other versions
JP4440688B2 (en
Inventor
Takahisa Tazoe
貴久 田添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2004104082A priority Critical patent/JP4440688B2/en
Priority to TW094109733A priority patent/TWI279829B/en
Priority to CNB2005100637720A priority patent/CN100465792C/en
Priority to KR1020050027335A priority patent/KR100650165B1/en
Publication of JP2005292271A publication Critical patent/JP2005292271A/en
Application granted granted Critical
Publication of JP4440688B2 publication Critical patent/JP4440688B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • G03F7/2053Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a laser
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70383Direct write, i.e. pattern is written directly without the use of a mask by one or multiple beams
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70608Monitoring the unpatterned workpiece, e.g. measuring thickness, reflectivity or effects of immersion liquid on resist
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser drawing apparatus in which the productivity is not decreased even for a large exposure object having a resist film (photosensitive resin film) formed on the surface such as a large photomask, the optimum exposure light quantity is set even when the thickness of a resist film is varied in a minute area and favorable drawing is performed without being affected by changes in the film thickness even for a drawing pattern including a fine pattern. <P>SOLUTION: The laser drawing apparatus is equipped with: a drawing head 1 to irradiate an exposure object 101 with an exposure beam; a scanning means 5 to move the irradiation position of the exposure beam R on the exposure object 101; a film thickness measuring means 24 to measure the thickness of a resist film 102 based on the reflected beam of the exposure beam R by the exposure object 101; and a modulation means 4 to modulate the intensity of the exposure beam based on a predetermined drawing pattern and the measurement result obtained by the film thickness measuring means 24. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体ウェハ、液晶表示装置(LCD)用またはフォトマスク用の基板、光ディスク用基板等の如きレジスト膜(感光性樹脂膜)が表面部に形成された露光対象物に露光用光束を照射して所定の描画パターンを描画するレーザ描画装置、レーザ描画方法及びフォトマスクの製造方法に関する。   The present invention provides an exposure light beam to an exposure object having a resist film (photosensitive resin film) formed on the surface thereof, such as a semiconductor wafer, a liquid crystal display (LCD) or photomask substrate, and an optical disk substrate. The present invention relates to a laser drawing apparatus that irradiates and draws a predetermined drawing pattern, a laser drawing method, and a photomask manufacturing method.

従来、半導体ウェハ、液晶表示装置(LCD)用またはフォトマスク用の基板、光ディスク用基板等の如きレジスト膜(感光性樹脂膜)が表面部に形成された露光対象物に所定の描画パターンを描画するためのレーザ描画装置が提案されている。   Conventionally, a predetermined drawing pattern is drawn on an exposure object on which a resist film (photosensitive resin film) such as a semiconductor wafer, a liquid crystal display (LCD) or photomask substrate, an optical disk substrate or the like is formed on the surface. A laser drawing apparatus has been proposed for this purpose.

そして、特許文献1には、大型フォトマスク等の基板にレーザ描画装置を用いて所定の描画パターンを描画するにあたって、描画パターンに発生するであろう歪みを予期するための情報を予め収集し、この情報に基づいて歪みを予測したうえで、この歪みを減らすための補正マップを作成し、この補正マップに基づいてパターン描画を行うようにしたレーザ描画装置が開示されている。   And in patent document 1, when drawing a predetermined drawing pattern on a substrate such as a large photomask using a laser drawing apparatus, information for anticipating distortion that would occur in the drawing pattern is collected in advance. There has been disclosed a laser drawing apparatus that predicts distortion based on this information, creates a correction map for reducing the distortion, and performs pattern drawing based on the correction map.

このレーザ描画装置において、描画パターンに発生する歪みを予期するための情報としては、レジスト膜の厚さのばらつきが収集される。レジスト膜の厚さのばらつきの測定は、接触式の膜厚測定機を用いて行われる。レジスト膜の厚さのばらつきの情報は、ダミー基板に対してレジストを塗布し、このダミー基板における複数箇所において、接触式の膜厚測定機によりレジスト膜の膜厚の測定を行うことによって収集される。   In this laser drawing apparatus, as information for anticipating the distortion generated in the drawing pattern, variations in the thickness of the resist film are collected. The variation in the thickness of the resist film is measured using a contact-type film thickness measuring machine. Information on the thickness variation of the resist film is collected by applying a resist to the dummy substrate and measuring the thickness of the resist film with a contact-type film thickness measuring device at multiple locations on the dummy substrate. The

ここで、レジスト膜の膜厚のばらつきが特定のレンジを超えた場合には、レジストコータ(レジスト塗布装置)を調整し、塗布条件を変更して、再びダミー基板に対してレジストを塗布し、膜厚のばらつきが特定のレンジ内に収まるようにする。   Here, if the film thickness variation of the resist film exceeds a specific range, adjust the resist coater (resist coating device), change the coating conditions, and apply the resist to the dummy substrate again, Ensure that the variation in film thickness is within a specific range.

そして、補正マップとしては、描画パターンの各所におけるレジスト膜の厚さのばらつきの情報に応じて、描画パターンにおける線幅を補正するため、描画パターンの各所における露光量(ドーズ量)の補正量を定めたものが作成される。   Then, as the correction map, in order to correct the line width in the drawing pattern according to the information on the variation in the thickness of the resist film in each part of the drawing pattern, the correction amount of the exposure amount (dose amount) in each part of the drawing pattern is A defined one is created.

実際に露光を行う基板に対しては、ダミー基板と同様の条件によってレジストを塗布し、補正マップに基づいて、露光量(ドーズ量)を補正しながら、所定の描画パターンに対応した露光を行う。   For the substrate to be actually exposed, a resist is applied under the same conditions as the dummy substrate, and exposure corresponding to a predetermined drawing pattern is performed while correcting the exposure amount (dose amount) based on the correction map. .

特表2003−500847公報Special table 2003-500847 gazette

ところで、上述のようなレーザ描画装置においては、実際に露光を行う基板とは別に、ダミー基板にレジストを塗布してレジスト膜の膜厚を測定しなければならず、その分、生産性が低下することとなる。特に、四角形基板のうち少なくとも一辺が300mm以上の大型フォトマスクについては、このフォトマスクの全面についてレジスト膜の膜厚の測定を行うことは、生産性を著しく低下させることとなる。   By the way, in the laser drawing apparatus as described above, it is necessary to apply a resist to a dummy substrate and measure the film thickness of the resist film separately from the substrate to be actually exposed, and the productivity is reduced accordingly. Will be. In particular, for a large-sized photomask having at least one side of 300 mm or more among rectangular substrates, measuring the film thickness of the resist film over the entire surface of the photomask significantly reduces productivity.

しかしながら、ダミー基板における数個所のみについてしかレジスト膜の膜厚測定を行わないとすると、露光量の補正の精度が低下することとなってしまう。この場合には、微小エリアにおけるレジスト膜の膜厚変動に対して最適な露光量が設定されず、微細なパターンを含む描画パターンについては、レジスト膜の膜厚変化に影響されて品質劣化が生ずることとなる。   However, if the thickness of the resist film is measured only at a few locations on the dummy substrate, the exposure correction accuracy will be reduced. In this case, the optimum exposure amount is not set for the film thickness variation of the resist film in the minute area, and the drawing pattern including a fine pattern is affected by the film thickness change of the resist film, resulting in quality deterioration. It will be.

そこで、本発明は、上述の実情に鑑みて提案されるものであって、レジスト膜(感光性樹脂膜)が表面部に形成された露光対象物が大型フォトマスク等のように大型のものである場合においても、生産性が低下することなく、かつ、微小エリアにおけるレジスト膜の膜厚変動に対しても最適な露光量が設定され、微細なパターンを含む描画パターンについてもレジスト膜の膜厚変化に影響されずに良好な描画パターンの描画を行うことができるレーザ描画装置、レーザ描画方法及びフォトマスクの製造方法を提供しようとするものである。   Therefore, the present invention has been proposed in view of the above-described circumstances, and an exposure object having a resist film (photosensitive resin film) formed on the surface is a large one such as a large photomask. Even in some cases, the optimum exposure dose is set for the resist film thickness variation in a minute area without reducing the productivity, and the resist film thickness for a drawing pattern including a fine pattern is also set. It is an object of the present invention to provide a laser drawing apparatus, a laser drawing method, and a photomask manufacturing method capable of drawing a good drawing pattern without being affected by changes.

上述の課題を解決するため、本発明に係る本発明に係るレーザ描画装置は、以下の構成を備える。   In order to solve the above-described problems, a laser drawing apparatus according to the present invention according to the present invention has the following configuration.

〔構成1〕
本発明に係るレーザ描画装置は、表面部にレジスト膜が形成された露光対象物に露光用光束を照射する描画ヘッドと、露光対象物上における露光用光束の照射位置を移動させる走査手段と、露光用光束の強度を変調させる変調手段と、露光対象物からの露光用光束の反射光束に基づいてレジスト膜の膜厚を測定する膜厚測定手段とを備え、変調手段は、予め設定された描画パターン及び膜厚測定手段による測定結果に基づいて、露光用光束の強度を変調させることを特徴とするものである。
[Configuration 1]
A laser drawing apparatus according to the present invention includes a drawing head that irradiates an exposure light beam on an exposure object having a resist film formed on the surface portion, a scanning unit that moves an irradiation position of the exposure light beam on the exposure object, A modulation unit that modulates the intensity of the exposure light beam; and a film thickness measurement unit that measures the film thickness of the resist film based on the reflected light beam of the exposure light beam from the exposure object. The intensity of the exposure light beam is modulated based on the drawing pattern and the measurement result by the film thickness measuring means.

〔構成2〕
本発明に係るレーザ描画装置は、表面部にレジスト膜が形成された露光対象物に露光用光束を照射する描画ヘッドと、露光対象物に膜厚測定用光束を照射する光学ヘッドと、露光対象物上における露光用光束及び膜厚測定用光束の照射位置を移動させる走査手段と、露光用光束の強度を変調させる変調手段と、露光対象物からの膜厚測定用光束の反射光束に基づいてレジスト膜の膜厚を測定する膜厚測定手段とを備え、膜厚測定用光束は、露光対象物において露光用光束が照射される位置にこの露光用光束に先行して照射され、変調手段は、予め設定された描画パターン及び膜厚測定手段による測定結果に基づいて、露光用光束の強度を変調させることを特徴とするものである。
[Configuration 2]
A laser drawing apparatus according to the present invention includes a drawing head for irradiating an exposure target with a resist film formed on the surface thereof, an optical head for irradiating the exposure target with a film thickness measuring beam, and an exposure target. Based on the scanning means for moving the irradiation position of the exposure light beam and the film thickness measurement light beam on the object, the modulation means for modulating the intensity of the exposure light beam, and the reflected light beam of the film thickness measurement light beam from the exposure object A film thickness measuring means for measuring the film thickness of the resist film, and the film thickness measuring light beam is irradiated prior to the exposure light beam at a position where the exposure light beam is irradiated on the object to be exposed; The intensity of the exposure light beam is modulated based on a preset drawing pattern and a measurement result by the film thickness measurement means.

〔構成3〕
本発明は、構成2記載のレーザ描画装置において、露光対象物上における露光用光束の照射位置と、露光対象物上における膜厚測定用光束の照射位置との間隔は、10mm以下となされていることを特徴とするものである。
[Configuration 3]
According to the present invention, in the laser drawing apparatus according to Configuration 2, the distance between the irradiation position of the exposure light beam on the exposure object and the irradiation position of the film thickness measurement light beam on the exposure object is 10 mm or less. It is characterized by this.

〔構成4〕
本発明に係るレーザ描画方法は、表面部にレジスト膜が形成された露光対象物に描画ヘッドにより露光用光束を照射し、露光対象物上における露光用光束の照射位置を移動させ、露光対象物からの露光用光束の反射光束に基づいてレジスト膜の膜厚を測定し、予め設定された描画パターン及びレジスト膜の膜厚の測定結果に基づいて露光用光束の強度を変調させることを特徴とするものである。
[Configuration 4]
The laser drawing method according to the present invention irradiates an exposure object having a resist film formed on the surface thereof with an exposure light beam by a drawing head, moves the exposure position of the exposure light beam on the exposure object, and exposes the exposure object. The thickness of the resist film is measured based on the reflected light flux of the exposure light beam from, and the intensity of the exposure light beam is modulated based on the measurement result of the preset drawing pattern and the thickness of the resist film. To do.

〔構成5〕
本発明に係るレーザ描画方法は、表面部にレジスト膜が形成された露光対象物に描画ヘッドにより露光用光束を照射するとともに、露光対象物に膜厚測定用光束を照射し、露光対象物上において膜厚測定用光束が露光用光束が照射される位置にこの露光用光束に先行して照射されるように露光対象物上における露光用光束及び膜厚測定用光束の照射位置を移動させ、露光対象物からの膜厚測定用光束の反射光束に基づいてレジスト膜の膜厚を測定し、予め設定された描画パターン及びレジスト膜の膜厚の測定結果に基づいて露光用光束の強度を変調させることを特徴とするものである。
[Configuration 5]
The laser drawing method according to the present invention irradiates an exposure object having a resist film formed on the surface thereof with an exposure light beam by a drawing head, and also irradiates the exposure object with a film thickness measurement light beam. Moving the exposure position of the exposure light beam and the film thickness measurement light beam on the exposure object so that the film thickness measurement light beam is irradiated prior to the exposure light beam to the position where the exposure light beam is irradiated. The film thickness of the resist film is measured based on the reflected light beam of the film thickness measurement light beam from the exposure object, and the intensity of the light beam for exposure is modulated based on the measurement result of the preset drawing pattern and the film thickness of the resist film. It is characterized by making it.

〔構成6〕
本発明に係るフォトマスクの製造方法は、表面部にレジスト膜を有するフォトマスクブランクに描画ヘッドにより露光用光束を照射し、フォトマスクブランク上における露光用光束の照射位置を移動させ、フォトマスクブランクからの露光用光束の反射光束に基づいてレジスト膜の膜厚を測定し、予め設定された描画パターン及びレジスト膜の膜厚の測定結果に基づいて露光用光束の強度を変調させることを特徴とするものである。
[Configuration 6]
In the photomask manufacturing method according to the present invention, a photomask blank having a resist film on the surface portion is irradiated with an exposure light beam by a drawing head, and the irradiation position of the exposure light beam on the photomask blank is moved. The thickness of the resist film is measured based on the reflected light flux of the exposure light beam from, and the intensity of the exposure light beam is modulated based on the measurement result of the preset drawing pattern and the thickness of the resist film. To do.

〔構成7〕
本発明に係るフォトマスクの製造方法は、表面部にレジスト膜を有するフォトマスクブランクに描画ヘッドにより露光用光束を照射するとともにフォトマスクブランクに膜厚測定用光束を照射し、フォトマスクブランク上において膜厚測定用光束が露光用光束が照射される位置にこの露光用光束に先行して照射されるようにフォトマスクブランク上における露光用光束及び膜厚測定用光束の照射位置を移動させ、フォトマスクブランクからの膜厚測定用光束の反射光束に基づいてレジスト膜の膜厚を測定し、予め設定された描画パターン及びレジスト膜の膜厚の測定結果に基づいて露光用光束の強度を変調させることを特徴とするものである。
[Configuration 7]
The photomask manufacturing method according to the present invention irradiates a photomask blank having a resist film on the surface with an exposure light beam by a drawing head and irradiates the photomask blank with a film thickness measurement light beam. The exposure position of the exposure light beam and the film thickness measurement light beam on the photomask blank is moved so that the film thickness measurement light beam is irradiated prior to the exposure light beam to the position where the exposure light beam is irradiated. The film thickness of the resist film is measured based on the reflected light flux of the film thickness measurement light beam from the mask blank, and the intensity of the exposure light beam is modulated based on the measurement result of the preset drawing pattern and the resist film thickness. It is characterized by this.

本発明に係るレーザ描画装置においては、表面部にレジスト膜が形成された露光対象物に対して描画ヘッドにより照射される露光用光束の強度を変調させる変調手段は、予め設定された描画パターン、及び、露光対象物からの露光用光束の反射光束に基づいてレジスト膜の膜厚を測定する膜厚測定手段による測定結果に基づいて、露光用光束の強度を変調させるので、ダミー基板を用いることなく、露光用光束に基づいてリアルタイムにレジスト膜の膜厚が測定されるとともに、露光用光束により描画が行われる。   In the laser drawing apparatus according to the present invention, the modulation means for modulating the intensity of the exposure light beam irradiated by the drawing head to the exposure object having the resist film formed on the surface portion is a preset drawing pattern, And, since the intensity of the exposure light beam is modulated based on the measurement result by the film thickness measuring means for measuring the film thickness of the resist film based on the reflected light beam of the exposure light beam from the exposure object, a dummy substrate is used. Rather, the film thickness of the resist film is measured in real time based on the exposure light beam, and drawing is performed with the exposure light beam.

したがって、このレーザ描画装置においては、描画前に膜厚測定作業をする必要がなく、描画作業に要する時間を短縮することができる。また、このレーザ描画装置においては、露光用光束を使用してレジスト膜の膜厚を測定するので、別個のレーザ光源を搭載する必要がなく、構造を簡素化することができる。   Therefore, in this laser drawing apparatus, it is not necessary to perform the film thickness measurement work before drawing, and the time required for the drawing work can be shortened. Further, in this laser drawing apparatus, since the film thickness of the resist film is measured using the exposure light beam, it is not necessary to mount a separate laser light source, and the structure can be simplified.

そして、本発明に係るレーザ描画装置においては、表面部にレジスト膜が形成された露光対象物に対して描画ヘッドにより照射される露光用光束の強度を変調させる変調手段は、予め設定された描画パターン、及び、露光対象物からの膜厚測定用光束の反射光束に基づいてレジスト膜の膜厚を測定する膜厚測定手段による測定結果に基づいて、露光用光束の強度を変調させるので、ダミー基板を用いることなく、露光用光束に基づいてリアルタイムにレジスト膜の膜厚が測定されるとともに、露光用光束により描画が行われる。   In the laser drawing apparatus according to the present invention, the modulation means for modulating the intensity of the exposure light beam irradiated by the drawing head onto the exposure object having the resist film formed on the surface portion is a preset drawing. Since the intensity of the exposure light beam is modulated based on the pattern and the measurement result by the film thickness measuring means that measures the film thickness of the resist film based on the reflected light beam of the film thickness measurement light beam from the exposure object, the dummy Without using a substrate, the film thickness of the resist film is measured in real time based on the exposure light beam, and drawing is performed with the exposure light beam.

したがって、このレーザ描画装置においては、描画前に膜厚測定作業をする必要がなく、描画作業に要する時間を短縮することができる。   Therefore, in this laser drawing apparatus, it is not necessary to perform the film thickness measurement work before drawing, and the time required for the drawing work can be shortened.

また、このレーザ描画装置において、露光対象物上における露光用光束の照射位置と、露光対象物上における膜厚測定用光束の照射位置との間隔を、10mm以下とすることにより、露光用光束による描画が行われる個所についての正確なレジスト膜の膜厚測定を行うことができる。   Further, in this laser drawing apparatus, the distance between the irradiation position of the exposure light beam on the exposure object and the irradiation position of the film thickness measurement light beam on the exposure object is set to 10 mm or less, so that the exposure light beam It is possible to accurately measure the film thickness of the resist film at a location where drawing is performed.

すなわち、本発明は、レジスト膜(感光性樹脂膜)が表面部に形成された露光対象物が大型フォトマスク等のように大型のものである場合においても、生産性が低下することなく、かつ、微小エリアにおけるレジスト膜の膜厚変動に対しても最適な露光量が設定され、微細なパターンを含む描画パターンについてもレジスト膜の膜厚変化に影響されずに良好な描画パターンの描画を行うことができるレーザ描画装置を提供することができるものである。   That is, the present invention does not decrease the productivity even when the exposure object on which the resist film (photosensitive resin film) is formed on the surface is a large object such as a large photomask. The optimum exposure amount is set for the resist film thickness variation in the minute area, and the drawing pattern including the fine pattern is drawn without being affected by the change in the resist film thickness. It is possible to provide a laser drawing apparatus capable of performing the above.

以下、本発明の実施の形態を図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

〔レーザ描画装置の第1の実施の形態〕
本発明に係るレーザ描画装置は、フォトマスク等を製造する際にレジスト上に所望のパターンを描画する装置である。
[First Embodiment of Laser Drawing Apparatus]
The laser drawing apparatus according to the present invention is an apparatus for drawing a desired pattern on a resist when manufacturing a photomask or the like.

このレーザ描画装置は、図1に示すように、描画ヘッド1と、この描画ヘッド1の出射レンズ2に光束を入射させる光源3と、この光源3から出射された露光用光束Rの強度を変調させる変調手段となる変調素子4と、この露光用光束Rの光路を偏向させる走査手段となる偏向素子5と、出射レンズ2から出射される光束が照射される露光対象物となる基板101を移動操作可能に支持する走査手段となる移動ステージ6とを備えて構成されている。   As shown in FIG. 1, the laser drawing apparatus modulates the intensity of a drawing head 1, a light source 3 that makes a light beam incident on an output lens 2 of the drawing head 1, and an exposure light beam R emitted from the light source 3. A modulation element 4 serving as a modulation means, a deflection element 5 serving as a scanning means for deflecting the optical path of the exposure light beam R, and a substrate 101 serving as an exposure object irradiated with the light beam emitted from the exit lens 2 are moved. A moving stage 6 serving as scanning means that is operably supported is provided.

基板101は、フォトマスク等の製造に用いられるフォトマスクブランクであって、表面部にレジスト(感光性樹脂)が塗布されてレジスト膜102が形成されており、このレジスト膜102に対してレーザビーム等により所望のパターンが描画される。   The substrate 101 is a photomask blank used for manufacturing a photomask or the like, and a resist film (photosensitive resin) is applied to the surface portion to form a resist film 102. A laser beam is applied to the resist film 102. Thus, a desired pattern is drawn.

このレーザ描画装置の描画ヘッド1は、図2に示すように、下方に向けて露光用光束Rを出射する出射レンズ2と、この出射レンズを支持する基材部7とを備えている。この描画ヘッド1は、レーザ描画装置において、スライダ8を介して、上昇及び下降が可能に支持される。この描画ヘッド1は、レーザ描画装置の動作時には、露光対象物となる基板101の表面に向けて下降され、この表面に接近されて、走査手段により、基板101に対して相対的に水平方向に移動されつつ動作する。すなわち、この描画ヘッド1は、基板101の表面に対して、極めて狭い一定の空隙を介して対向して水平に移動しながら、この基板101の表面の上方より、露光用光束Rを照射する。   As shown in FIG. 2, the drawing head 1 of the laser drawing apparatus includes an exit lens 2 that emits an exposure light beam R downward, and a base member 7 that supports the exit lens. The drawing head 1 is supported by a laser drawing apparatus through a slider 8 so that it can be raised and lowered. During the operation of the laser drawing apparatus, the drawing head 1 is lowered toward the surface of the substrate 101 as an exposure object, approaches the surface, and is relatively horizontal with respect to the substrate 101 by the scanning unit. Operates while being moved. That is, the drawing head 1 irradiates an exposure light beam R from above the surface of the substrate 101 while moving horizontally facing the surface of the substrate 101 through a very narrow fixed gap.

なお、描画ヘッド1と基板101との水平方向への相対的移動は、移動ステージ6により基板101を水平方向に移動操作することにより行われるが、スライダ8を支持している移動ステージ9により描画ヘッド1を移動させることによって行うようにしてもよい。   The relative movement of the drawing head 1 and the substrate 101 in the horizontal direction is performed by moving the substrate 101 in the horizontal direction by the moving stage 6, but the drawing is performed by the moving stage 9 that supports the slider 8. It may be performed by moving the head 1.

なお、この描画ヘッドは、基板101の表面との間の空隙を一定に維持するための手段として、基板101に向けて下降されたときに、この基板101に向けて空気流を噴射する機構を備えている。この描画ヘッド1においては、基板101に向けて噴射される空気流の圧力と自重とが均衡して浮遊することにより、基板101との間の空隙が一定に維持される。すなわち、この描画ヘッド1は、レーザ描画装置の動作時には、自重により基板101に向けて下降し、かつ、下面部より基板101に向けて噴射する空気流の圧力によって浮遊して、動作する。この描画ヘッド1において、基板101に向けて噴射する空気流の圧力による基板101からの浮遊間隔は、解像力や検査能力の向上のために、10μm乃至数100μm程度と、極めて短い間隔となされる。   The drawing head has a mechanism for injecting an air flow toward the substrate 101 when the drawing head is lowered toward the substrate 101 as a means for maintaining a constant gap with the surface of the substrate 101. I have. In the drawing head 1, the pressure between the air flow ejected toward the substrate 101 and its own weight float in a balanced manner, so that the gap between the substrate 101 and the substrate 101 is maintained constant. That is, when the laser drawing apparatus is in operation, the drawing head 1 moves down by its own weight toward the substrate 101 and floats due to the pressure of the air flow ejected from the lower surface toward the substrate 101 to operate. In this drawing head 1, the floating interval from the substrate 101 due to the pressure of the air flow injected toward the substrate 101 is an extremely short interval of about 10 μm to several hundreds of μm in order to improve the resolution and inspection capability.

光源3としては、例えば、波長442nmの光束を発するHe-Caレーザ等を使用することができる。この光源3から発せられた露光用光束Rは、図1に示すように、変調素子4に入射され、この変調素子4によって強度変調される。この変調素子4は、変調ドライバ10によって駆動されることにより、透過する露光用光束Rの強度を変調する。   As the light source 3, for example, a He—Ca laser that emits a light beam with a wavelength of 442 nm can be used. The exposure light beam R emitted from the light source 3 is incident on the modulation element 4 as shown in FIG. The modulation element 4 is driven by the modulation driver 10 to modulate the intensity of the transmitted exposure light beam R.

変調ドライバ10には、データ入力装置11、データ処理装置12、メモリ13及びデータ読出装置14を経たデータが供給される。データ入力装置11には、基板101上のレジスト膜102に対して描画する所定のパターンに対応したデータが入力される。このデータ入力装置11に入力されたデータは、データ処理装置12に送られ、描画されるパターンに応じた位置データ(XY座標データ)及び強度データとして処理される。データ処理装置12において処理されたデータは、メモリ13に蓄積され、このメモリ13よりデータ読出装置14によって読出されて変調ドライバ10に送られる。   The modulation driver 10 is supplied with data that has passed through the data input device 11, the data processing device 12, the memory 13, and the data reading device 14. Data corresponding to a predetermined pattern to be drawn on the resist film 102 on the substrate 101 is input to the data input device 11. The data input to the data input device 11 is sent to the data processing device 12 and processed as position data (XY coordinate data) and intensity data corresponding to the pattern to be drawn. Data processed in the data processing device 12 is stored in the memory 13, read from the memory 13 by the data reading device 14, and sent to the modulation driver 10.

なお、データ読出装置14及び変調ドライバ10は、コントローラ15によって制御され、クロック発生器16より出力されるクロックに基づいて動作する。   The data reading device 14 and the modulation driver 10 are controlled by the controller 15 and operate based on the clock output from the clock generator 16.

そして、変調素子4によって強度変調された露光用光束Rは、偏向素子5に入射され、この偏向素子5を透過することにより出射方向を偏向される。この偏向素子5は、例えば、音響−光学変換素子であり、走査回路17によって駆動されることにより、透過する露光用光束Rの光路を一定周期で偏向させる。   Then, the exposure light beam R whose intensity has been modulated by the modulation element 4 is incident on the deflection element 5 and is transmitted through the deflection element 5, so that the emission direction is deflected. The deflecting element 5 is, for example, an acousto-optic converting element, and is driven by the scanning circuit 17 to deflect the optical path of the transmitted exposure light beam R at a constant period.

走査回路17は、コントローラ15によって制御されるXYコントローラ18によって制御され、クロック発生器16より出力されるクロックに基づいて動作する。   The scanning circuit 17 is controlled by an XY controller 18 controlled by the controller 15 and operates based on a clock output from the clock generator 16.

偏向素子5によって出射方向を偏向された露光用光束Rは、出射レンズ2に入射され、基板101上のレジスト膜102に集光されて照射される。このように基板101上に照射される露光用光束Rは、一定周期で偏向されるとともに、基板101上に描画されるパターンに応じて強度変調されたものとなっている。   The light beam R for exposure whose deflection direction is deflected by the deflecting element 5 is incident on the exit lens 2 and is condensed and irradiated on the resist film 102 on the substrate 101. In this way, the exposure light beam R irradiated onto the substrate 101 is deflected at a constant period and is intensity-modulated according to the pattern drawn on the substrate 101.

そして、XYコントローラ18は、サーボ機構19,20、21,22を介して、移動ステージ6を駆動し、図1中矢印X及び矢印Yで示すように、基板101を所定の周期で水平方向に移動操作することにより、この基板101と描画ヘッド1とを相対的に移動させる。   Then, the XY controller 18 drives the moving stage 6 via the servo mechanisms 19, 20, 21, and 22 to move the substrate 101 in the horizontal direction at a predetermined cycle as indicated by arrows X and Y in FIG. By performing the moving operation, the substrate 101 and the drawing head 1 are relatively moved.

本実施の形態で用いられる描画方式は、一般的にラスタスキャン方式と呼ぱれる方式である。ラスタスキャン方式は、図3に示すように、基板101上の描画エリア全面を、露光用光束Rが走査し、パターン部分に達すると露光用光束Rの強度が所定値まで上がり(ONとなり)、非パターン部分においては所定値まで下がる(OFFとなる)。   The drawing method used in this embodiment is a method generally called a raster scan method. In the raster scan method, as shown in FIG. 3, the exposure light beam R scans the entire drawing area on the substrate 101, and when reaching the pattern portion, the intensity of the exposure light beam R increases to a predetermined value (ON). In the non-pattern part, it drops to a predetermined value (turns OFF).

描画領域全面を走査するために、露光用光束Rの走査は、一定区間(露光用光束RのY方向走査単位)でY方向へ走査され、Y方向ヘの1区間の走査が終了すると、この露光用光束Rが走査された領域に隣接する領域が次に露光用光束Rが走査される領域となる距離(露光用光束RのX方向送り単位)だけ露光用光束RがX方向に送られ、それが繰り返される。その一列の描画が終了すると、次の列に露光用光束Rが送られて同様の走査が繰り返され、描画領域全面が走査される。   In order to scan the entire drawing area, the exposure light beam R is scanned in the Y direction at a constant interval (scanning unit of the exposure light beam R in the Y direction). The exposure light beam R is sent in the X direction by a distance (the X-direction feed unit of the exposure light beam R) where the region adjacent to the region scanned with the exposure light beam R becomes the next region where the exposure light beam R is scanned. , It is repeated. When the drawing for one row is completed, the exposure light beam R is sent to the next row, and the same scanning is repeated to scan the entire drawing region.

次の列に露光用光束Rが送られる際には、Y方向走査単位同士がわずかなオーバーラップ部分を設けて隣接するように送る方式(シングルパス描画方式)や、多量露光を行うために、所定量重なるようにY方向走査単位を配置する方式(マルチパス描画方式)がある。   When the exposure light beam R is sent to the next row, the Y-direction scanning units are arranged so as to be adjacent to each other with a slight overlap (single-pass drawing method), There is a method (multi-pass drawing method) in which Y-direction scanning units are arranged to overlap each other by a predetermined amount.

なお、Y方向の露光用光束Rの走査は、露光用光束Rの偏向によって行い、X方向の露光用光束Rの移動は、ステージを移動させることによって行うのが一般的である。   The scanning of the exposure light beam R in the Y direction is generally performed by deflecting the exposure light beam R, and the movement of the exposure light beam R in the X direction is generally performed by moving a stage.

このように、変調素子4により強度変調された露光用光束Rの基板101上の走査と、移動ステージ6による基板101の移動とを繰返して行うことにより、基板101上には、データ入力装置11に入力された所定のパターンの描画が行われる。なお、このようにして行われる描画の速度は、例えば、毎分300mm乃至1500mm程度である。 As described above, the scanning operation of the exposure light beam R whose intensity is modulated by the modulation element 4 on the substrate 101 and the movement of the substrate 101 by the moving stage 6 are repeatedly performed, so that the data input device 11 is placed on the substrate 101. The predetermined pattern input to is drawn. Incidentally, the speed of the drawing to be performed in this way, for example, per minute 300 mm 2 to 1500 mm 2 approximately.

そして、このレーザ描画装置は、露光対象物である基板101からの露光用光束Rの反射光束に基づいてレジスト膜の膜厚を測定する膜厚測定手段を備えている。すなわち、基板101からの露光用光束Rの反射光束は、出射レンズ2及び偏向素子5を経て、光束分岐素子23に至る。この光束分岐素子23は、例えば、ビームスプリッタである。変調素子4から偏向素子5に至る往路の露光用光束Rは、この光束分岐素子23を透過する。そして、偏向素子5から変調素子4に向かう復路の露光用光束Rは、この光束分岐素子23によって変調素子4に至る光路から分岐され、膜厚測定手段となる膜厚測定回路24に入射される。この膜厚測定回路24は、入射する反射光量を検出し、この検出結果に基づいて、レジスト膜102の膜厚を算出する。   This laser drawing apparatus is provided with a film thickness measuring means for measuring the film thickness of the resist film based on the reflected light beam of the exposure light beam R from the substrate 101 which is an exposure object. That is, the reflected light beam of the exposure light beam R from the substrate 101 reaches the light beam branching element 23 through the exit lens 2 and the deflecting element 5. The beam splitter 23 is, for example, a beam splitter. The outward exposure light beam R from the modulation element 4 to the deflection element 5 passes through this light beam branching element 23. The return exposure light beam R from the deflecting element 5 toward the modulation element 4 is branched from the optical path reaching the modulation element 4 by the light beam branching element 23 and is incident on the film thickness measuring circuit 24 serving as a film thickness measuring means. . The film thickness measurement circuit 24 detects the amount of incident reflected light, and calculates the film thickness of the resist film 102 based on the detection result.

基板101からの露光用光束Rの反射光量は、レジスト膜102の表面からの反射光とレジスト膜102の裏面(すなわち、基板101の表面)からの反射光との干渉によって変動する。すなわち、基板101からの露光用光束Rの反射光量値は、レジスト膜102の膜厚の関数となるので、これら反射光量値と膜厚との関係を予め特定しておけば、反射光量の検出結果からレジスト膜102の膜厚を知ることができる。   The amount of light reflected by the exposure light beam R from the substrate 101 varies due to interference between reflected light from the surface of the resist film 102 and reflected light from the back surface of the resist film 102 (that is, the surface of the substrate 101). That is, the reflected light amount value of the exposure light beam R from the substrate 101 is a function of the film thickness of the resist film 102. Therefore, if the relationship between the reflected light amount value and the film thickness is specified in advance, the reflected light amount is detected. From the result, the film thickness of the resist film 102 can be known.

なお、露光用光束Rを用いてレジス卜の膜厚測定を行うためには、基板101からわずかでも露光用光束Rの反射光が発生することが必要である。しかしながら、一方では、レーザ描画装置を行う際には、描画精度上の理由により露光用光束Rの反射光が低く抑えられていることが、通常好ましいとされている。したがって、本実施の形態においては、描画精度に悪影響を与えない範囲で検出可能な反射光を得るために、レジス卜の膜厚をコントロールする等の方法により、予め基板101からの反射率を調整しておいてもよい。   In order to measure the thickness of the resist film using the exposure light beam R, it is necessary that even a slight amount of reflected light of the exposure light beam R is generated from the substrate 101. However, on the other hand, when performing a laser drawing apparatus, it is generally preferred that the reflected light of the exposure light beam R be kept low for reasons of drawing accuracy. Therefore, in the present embodiment, the reflectance from the substrate 101 is adjusted in advance by a method such as controlling the thickness of the resist film in order to obtain detectable reflected light within a range that does not adversely affect the drawing accuracy. You may keep it.

そして、膜厚測定回路24において算出されたレジスト膜102の膜厚値は、変調ドライバ10に送られる。この変調ドライバ10は、レジスト膜102の膜厚値に基づいて、変調素子4における変調量を補正する。すなわち、変調素子4は、予め設定された描画パターンと、膜厚測定回路24による測定結果とに基づいて、露光用光束Rの強度を変調させることとなる。   The film thickness value of the resist film 102 calculated by the film thickness measurement circuit 24 is sent to the modulation driver 10. The modulation driver 10 corrects the modulation amount in the modulation element 4 based on the film thickness value of the resist film 102. That is, the modulation element 4 modulates the intensity of the exposure light beam R based on a preset drawing pattern and a measurement result by the film thickness measurement circuit 24.

ところで、基板101において所定の描画パターンの描画を行う区間においては、露光用光束Rの強度が描画パターンに応じて変調されるので、反射光束もこの強度変調に比例して変化する。したがって、この場合には、予め算出された、出射される露光用光束Rの変調強度に応じた、反射光の強度と膜厚との関係に基づき、レジス卜膜の膜厚を決定する。   By the way, in the section in which a predetermined drawing pattern is drawn on the substrate 101, the intensity of the exposure light beam R is modulated in accordance with the drawing pattern, so that the reflected light beam also changes in proportion to the intensity modulation. Accordingly, in this case, the film thickness of the resist film is determined based on the relationship between the intensity of the reflected light and the film thickness, which is calculated in advance according to the modulation intensity of the emitted exposure light beam R.

すなわち、このレーザ描画装置においては、図4のフローチャートに示すように、まず、ステップst1において、基板101において所定の膜厚測定区間において、この露光用光束Rの反射光束の光量を検出する。この膜厚測定区間は、例えば、100μm程度の区間である。   That is, in the laser drawing apparatus, as shown in the flowchart of FIG. 4, first, in step st1, the light quantity of the reflected light beam of the exposure light beam R is detected in a predetermined film thickness measurement section on the substrate 101. This film thickness measurement section is, for example, a section of about 100 μm.

そして、ステップst2において、検出された反射光束の光量に基づいて、膜厚測定区間の描画点におけるレジスト膜102の膜厚の算出を行い、その平均値を算出して、この算出結果を記憶しておく。   In step st2, the film thickness of the resist film 102 at the drawing point in the film thickness measurement section is calculated based on the detected amount of reflected light flux, the average value is calculated, and the calculation result is stored. Keep it.

ステップst3においては、ステップst2で算出されたレジスト膜102の膜厚について、所定の範囲に含まれているかを判別し、所定の範囲に含まれていない値が存在すればステップst4に進み、所定の範囲に含まれていなければステップst6に進む。ここで、レジスト膜102の膜厚の所定の範囲とは、例えば、指定膜厚の±2.5%乃至±5%程度の範囲である。   In step st3, it is determined whether or not the film thickness of the resist film 102 calculated in step st2 is included in a predetermined range. If there is a value that is not included in the predetermined range, the process proceeds to step st4. If it is not included in the range, the process proceeds to step st6. Here, the predetermined range of the film thickness of the resist film 102 is, for example, a range of about ± 2.5% to ± 5% of the specified film thickness.

ステップst6では、基板101のレジスト膜102を不良と判断し、不良であることを示す警告を行う。この警告は、例えば、警告音を発したり、所定の表示を行うことによって行う。   In step st6, the resist film 102 of the substrate 101 is determined to be defective, and a warning indicating that it is defective is issued. This warning is performed, for example, by emitting a warning sound or performing a predetermined display.

ステップst4では、ステップst2で算出されたレジスト膜102の膜厚に基づいて、露光用光束Rの光量の補正値を決定する。   In step st4, a correction value for the light amount of the exposure light beam R is determined based on the film thickness of the resist film 102 calculated in step st2.

ステップst5では、ステップst4で決定された補正値に基づいて、露光量(ドーズ量:Dose)の補正を行いながら、隣接する膜厚測定区間の描画を行うと同時に、ステップst1を行う。   In step st5, while the exposure amount (dose amount) is corrected based on the correction value determined in step st4, the adjacent film thickness measurement section is drawn, and at the same time, step st1 is performed.

このように、このレーザ描画装置においては、描画を行わない膜厚測定区間におけるレジスト膜102の膜厚測定と、この膜厚測定の結果に基づいて露光量の補正を行った描画とを繰り返すことにより、順次、所定の描画パターンの描画を行ってゆく。   As described above, in this laser drawing apparatus, the film thickness measurement of the resist film 102 in the film thickness measurement section in which drawing is not performed and the drawing in which the exposure amount is corrected based on the result of the film thickness measurement are repeated. Thus, drawing of a predetermined drawing pattern is sequentially performed.

ラスタスキャン方式においては、上述のように、露光用光束RのY方向走査単位の走査とX方向送り単位の移動とを繰り返しながら行う場合においては、Y方向走査単位に、整数個の膜厚測定区間を含むように設定することが実用上好ましい。シングルパス方式においては、Y方向走査単位におけるオーバーラップ部を除く区間に、整数個の膜厚測定区間を含むように設定することが、さらに好ましい。   In the raster scanning method, as described above, when the exposure light beam R is repeatedly scanned in the Y direction scanning unit and moved in the X direction feed unit, an integral number of film thickness measurements are performed in the Y direction scanning unit. It is practically preferable to set so as to include a section. In the single pass method, it is more preferable to set so that an integer number of film thickness measurement sections are included in the section excluding the overlap portion in the Y-direction scanning unit.

この場合、各列における最初のY方向走査単位においては、膜厚を測定するのみで露光補正は行わず、次の区間から露光補正を行う。また、Y方向走査単位、または、そのオーバーラップ部を除く区間に、2個以上の膜厚測定区間を含むように設定した場合には、各Y方向走査単位の最初の区間においては、前のY方向走査単位の膜厚測定の結果を用いて露光補正を行う。   In this case, in the first Y-direction scanning unit in each column, only the film thickness is measured and exposure correction is not performed, but exposure correction is performed from the next section. In addition, when the Y-direction scanning unit or the section excluding the overlap portion is set to include two or more film thickness measurement sections, the first section of each Y-direction scanning unit Exposure correction is performed using the result of film thickness measurement in the Y-direction scanning unit.

また、膜厚測定区間のX方向の長さについては、露光用光束Rのビーム径に相当するX方向送り単位と同じにすることが実用上好ましい。なお、Y方向走査単位、または、そのオーバーラップ部を除く区間に、1個の膜厚測定区間を含むように設定した場合においては、2個以上のX方向送り単位を膜厚測定区間としてもよい。   The length in the X direction of the film thickness measurement section is preferably practically the same as the X direction feed unit corresponding to the beam diameter of the exposure light beam R. In addition, when it is set to include one film thickness measurement section in the Y direction scanning unit or the section excluding the overlap portion, two or more X direction feed units may be used as the film thickness measurement section. Good.

上記方法は、隣接した区間の膜厚測定結果を反映させて露光補正を行うものであるが、レジス卜膜は、通常、微視的な粗さで膜厚が変動するのではなく、面内において巨視的な傾向をもって変動するので、充分な効果が得られる。   In the above method, the exposure correction is performed by reflecting the film thickness measurement result in the adjacent section. However, the resist film does not usually change in film thickness due to microscopic roughness, but in-plane. Since it fluctuates with a macroscopic tendency, a sufficient effect can be obtained.

〔レーザ描画装置の第2の実施の形態〕
そして、本発明に係るレーザ描画装置は、図5に示すように、描画ヘッド1とは別個に、露光対象物となる基板101に膜厚測定用光束Mを照射する光学ヘッド25を設けて構成してもよい。
[Second Embodiment of Laser Drawing Apparatus]
As shown in FIG. 5, the laser drawing apparatus according to the present invention is provided with an optical head 25 that irradiates a substrate 101 serving as an exposure object with a film thickness measuring beam M separately from the drawing head 1. May be.

この場合には、このレーザ描画装置は、図6に示すように、描画ヘッド1と、膜厚測定用光束Mを照射する光学ヘッド25とを有し、走査手段となる偏向素子5及び移動ステージ6は、基板101上における露光用光束R及び膜厚測定用光束Mの照射位置を移動させることとなる。すなわち、光源3から発せられた露光用光束Rは、変調素子4に入射され、この変調素子4によって強度変調される。この変調素子4は、変調ドライバ10によって駆動されることにより、透過する露光用光束Rの強度を変調する。この変調ドライバ10には、データ入力装置11、データ処理装置12、メモリ13及びデータ読出装置14を経たデータが供給される。   In this case, as shown in FIG. 6, this laser drawing apparatus has a drawing head 1 and an optical head 25 that irradiates a light beam M for measuring a film thickness, and a deflecting element 5 and a moving stage serving as scanning means. 6, the irradiation positions of the exposure light beam R and the film thickness measurement light beam M on the substrate 101 are moved. That is, the exposure light beam R emitted from the light source 3 enters the modulation element 4 and is intensity-modulated by the modulation element 4. The modulation element 4 is driven by the modulation driver 10 to modulate the intensity of the transmitted exposure light beam R. The modulation driver 10 is supplied with data that has passed through the data input device 11, the data processing device 12, the memory 13, and the data reading device 14.

そして、変調素子4によって強度変調された露光用光束Rは、偏向素子5の露光用光束R用の偏向素子(図示せず)に入射され、この露光用光束R用偏向素子を透過することにより出射方向を偏向される。この露光用光束R用偏向素子は、走査回路17によって駆動されることにより、透過する露光用光束Rの光路を一定周期で偏向させる。   Then, the exposure light beam R whose intensity is modulated by the modulation element 4 is incident on a deflection element (not shown) for the exposure light beam R of the deflection element 5, and is transmitted through the exposure light beam R deflection element. The exit direction is deflected. This exposure light beam R deflecting element is driven by the scanning circuit 17 to deflect the optical path of the transmitted exposure light beam R at a constant period.

そして、光学ヘッド25から発せられた膜厚測定用光束Mは、偏向素子5の膜厚測定用光束M用の偏向素子(図示せず)に入射され、この膜厚測定用光束M用偏向素子を透過することにより出射方向を偏向される。この膜厚測定用光束M用偏向素子は、露光用光束R用偏向素子と同時に、膜厚測定用光束Mと露光用光束Rとの間の一定距離を保持しながら偏向させる。   Then, the film thickness measuring light beam M emitted from the optical head 25 is incident on a deflecting element (not shown) for the film thickness measuring light beam M of the deflecting element 5, and this film thickness measuring light beam M deflecting element. The transmission direction is deflected by transmitting the light. The deflecting element for the film thickness measuring beam M deflects while maintaining a certain distance between the film thickness measuring beam M and the exposing beam R simultaneously with the exposing beam R deflecting element.

偏向素子5によって出射方向を偏向された露光用光束R及び膜厚測定用光束Mは、出射レンズ2に入射され、基板101上のレジスト膜102に集光されて照射される。このように基板101上に照射される露光用光束Rは、一定周期で偏向されるとともに、基板101上に描画されるパターンに応じて強度変調されたものとなっている。   The exposure light beam R and the film thickness measurement light beam M deflected in the emission direction by the deflecting element 5 are incident on the emission lens 2, and are condensed and irradiated on the resist film 102 on the substrate 101. In this way, the exposure light beam R irradiated onto the substrate 101 is deflected at a constant period and is intensity-modulated according to the pattern drawn on the substrate 101.

そして、XYコントローラ18は、サーボ機構19,20、21,22を介して、移動ステージ6を駆動し、図6中矢印X及び矢印Yで示すように、基板101を所定の周期で水平方向に移動操作することにより、この基板101と描画ヘッド1及び光学ヘッド25とを相対的に移動させる。   Then, the XY controller 18 drives the moving stage 6 via the servo mechanisms 19, 20, 21, and 22 to move the substrate 101 in the horizontal direction at a predetermined cycle as indicated by arrows X and Y in FIG. 6. By performing the moving operation, the substrate 101, the drawing head 1 and the optical head 25 are relatively moved.

このレーザ描画装置においては、第1の実施の形態と同様にラスタスキャン描画方式を用い、基板101上には、例えば、毎分300mm乃至1500mm程度の速度により、データ入力装置11に入力された所定のパターンの描画が行われる。 In the laser drawing apparatus, using a raster scan writing strategy as in the first embodiment, on the substrate 101, for example, the speed of approximately min 300 mm 2 to 1500 mm 2, is input to the data input device 11 The predetermined pattern is drawn.

そして、このレーザ描画装置は、露光対象物である基板101からの膜厚測定用光束Mの反射光束に基づいてレジスト膜の膜厚を測定する膜厚測定手段を備えている。すなわち、基板101からの膜厚測定用光束Mの反射光束は、出射レンズ2及び偏向素子5を経て、膜厚測定手段となる膜厚測定回路24に入射される。この膜厚測定回路24は、入射する反射光量を検出し、この検出結果に基づいて、レジスト膜102の膜厚を算出する。   This laser drawing apparatus is provided with a film thickness measuring means for measuring the film thickness of the resist film based on the reflected light beam of the film thickness measuring light beam M from the substrate 101 which is an exposure object. That is, the reflected light beam of the film thickness measuring light beam M from the substrate 101 is incident on the film thickness measuring circuit 24 serving as the film thickness measuring means via the exit lens 2 and the deflecting element 5. The film thickness measurement circuit 24 detects the amount of incident reflected light, and calculates the film thickness of the resist film 102 based on the detection result.

基板101からの膜厚測定用光束Mの反射光量は、レジスト膜102の表面からの反射光とレジスト膜102の裏面(すなわち、基板101の表面)からの反射光との干渉によって変動する。すなわち、基板101からの膜厚測定用光束Mの反射光量値は、レジスト膜102の膜厚の関数となるので、これら反射光量値と膜厚との関係を予め特定しておけば、反射光量の検出結果からレジスト膜102の膜厚を知ることができる。   The amount of light reflected by the film thickness measuring light beam M from the substrate 101 varies due to interference between the reflected light from the surface of the resist film 102 and the reflected light from the back surface of the resist film 102 (that is, the surface of the substrate 101). That is, the reflected light amount value of the film thickness measurement light beam M from the substrate 101 is a function of the film thickness of the resist film 102. Therefore, if the relationship between the reflected light amount value and the film thickness is specified in advance, the reflected light amount From this detection result, the film thickness of the resist film 102 can be known.

そして、膜厚測定回路24において算出されたレジスト膜102の膜厚値は、変調ドライバ10に送られる。この変調ドライバ10は、レジスト膜102の膜厚値に基づいて、変調素子4における変調量を補正する。すなわち、変調素子4は、予め設定された描画パターンと、膜厚測定回路24による測定結果とに基づいて、露光用光束Rの強度を変調させることとなる。   The film thickness value of the resist film 102 calculated by the film thickness measurement circuit 24 is sent to the modulation driver 10. The modulation driver 10 corrects the modulation amount in the modulation element 4 based on the film thickness value of the resist film 102. That is, the modulation element 4 modulates the intensity of the exposure light beam R based on a preset drawing pattern and a measurement result by the film thickness measurement circuit 24.

このレーザ描画装置においては、膜厚測定用光束Mは、基板101上において、露光用光束Rに先行して走査されるようになっている。すなわち、基板101上においては、膜厚測定用光束Mが照射された位置に、その後、露光用光束Rが照射される。したがって、露光用光束Rは、すでに膜厚測定用光束Mが照射されてレジスト膜102の膜厚が測定された個所に、この測定結果に基づく強度の補正をなされて、照射される。   In this laser drawing apparatus, the film thickness measurement light beam M is scanned on the substrate 101 prior to the exposure light beam R. That is, on the substrate 101, the exposure light beam R is irradiated to the position where the film thickness measurement light beam M is irradiated. Therefore, the exposure light beam R is irradiated with the intensity corrected based on the measurement result at the position where the film thickness measurement light beam M has already been irradiated and the film thickness of the resist film 102 has been measured.

なお、この膜厚測定用光束Mとしては、レジストを感光させないような波長のレーザ高(例えば、波長500nm以上)が用いられる。   As the film thickness measurement light beam M, a laser height (for example, a wavelength of 500 nm or more) that does not expose the resist is used.

そして、基板101上における露光用光束Rの照射位置と、基板101上における膜厚測定用光束Mの照射位置との間隔は、10mm以下とすることが望ましい。これは、膜厚測定用光束Mの照射により測定されたレジスト膜102の膜厚(または、この膜厚に基づく露光用光束Rについての補正値)は、当該測定がなされた個所に露光用光束Rが照射されるまでの間、記憶されていなければならないが、露光用光束R及び膜厚測定用光束Mの照射位置の間隔を狭くすることにより、露光用光束Rが照射されるまでに記憶しておかなければならないデータ量を少なくすることができるからである。   The distance between the irradiation position of the exposure light beam R on the substrate 101 and the irradiation position of the film thickness measurement light beam M on the substrate 101 is preferably 10 mm or less. This is because the film thickness of the resist film 102 (or the correction value for the exposure light beam R based on this film thickness) measured by the irradiation of the film thickness measurement light beam M is the exposure light beam at the location where the measurement was made. Although it must be stored until R is irradiated, it is stored until the exposure light beam R is irradiated by narrowing the interval between the irradiation positions of the exposure light beam R and the film thickness measurement light beam M. This is because the amount of data that must be kept can be reduced.

なお、このレーザ描画装置においては、図5に示すように、膜厚測定用光束Mを基板101に対して略々45°の入射角にて照射させ、この膜厚測定用光束Mの基板101から略々45°の出射角にて出射される反射光束が、膜厚測定回路24に対して直接入射されるように構成してもよい。   In this laser drawing apparatus, as shown in FIG. 5, the film thickness measurement light beam M is irradiated to the substrate 101 at an incident angle of approximately 45 °, and the film thickness measurement light beam M is irradiated onto the substrate 101. Alternatively, the reflected light beam emitted at an emission angle of approximately 45 ° may be directly incident on the film thickness measurement circuit 24.

また、膜厚測定回路24によるレジスト膜102の膜厚の測定は、基板101において所定の描画パターンの描画を行わない膜厚測定区間のみにおいて行うようにしてもよい。この場合には、このレーザ描画装置においては、図7のフローチャートに示すように、まず、ステップst11において、基板101の膜厚測定区間において、膜厚測定用光束Mの反射光束の光量を検出する。この膜厚測定区間は、例えば、10μm程度の区間である。   Further, the measurement of the film thickness of the resist film 102 by the film thickness measurement circuit 24 may be performed only in the film thickness measurement section in which a predetermined drawing pattern is not drawn on the substrate 101. In this case, in this laser drawing apparatus, as shown in the flowchart of FIG. 7, first, in step st11, the light amount of the reflected light beam of the film thickness measurement light beam M is detected in the film thickness measurement section of the substrate 101. . This film thickness measurement section is, for example, a section of about 10 μm.

そして、ステップst12において、検出された反射光束の光量に基づいて、レジスト膜102の膜厚の算出を行い、その平均値を算出して、この算出結果を記憶しておく。   In step st12, the film thickness of the resist film 102 is calculated based on the detected amount of reflected light flux, the average value is calculated, and the calculation result is stored.

ステップst13においては、ステップst12で算出されたレジスト膜102の膜厚について、所定の範囲に含まれているかを判別し、所定の範囲に含まれていればステップst14に進み、所定の範囲に含まれていなければステップst16に進む。ここで、レジスト膜102の膜厚の所定の範囲とは、例えば、指定膜厚の±2.5%乃至±5%程度の範囲である。   In step st13, it is determined whether or not the film thickness of the resist film 102 calculated in step st12 is included in a predetermined range. If it is included in the predetermined range, the process proceeds to step st14 and is included in the predetermined range. If not, the process proceeds to step st16. Here, the predetermined range of the film thickness of the resist film 102 is, for example, a range of about ± 2.5% to ± 5% of the specified film thickness.

ステップst16では、基板101のレジスト膜102を不良と判断し、不良であることを示す警告を行う。この警告は、例えば、警告音を発したり、所定の表示を行うことによって行う。   In step st16, the resist film 102 of the substrate 101 is determined to be defective, and a warning indicating that it is defective is issued. This warning is performed, for example, by emitting a warning sound or performing a predetermined display.

ステップst14では、ステップst12で算出されたレジスト膜102の膜厚に基づいて、露光用光束Rの光量の補正値を決定する。   In step st14, the correction value of the light amount of the exposure light beam R is determined based on the film thickness of the resist film 102 calculated in step st12.

ステップst15では、ステップst14で決定された補正値に基づいて、露光量(ドーズ量:Dose)の補正を行いながら、描画を行うと同時に、この区間において、ステップst11を行う。   In step st15, drawing is performed while correcting the exposure amount (dose amount) based on the correction value determined in step st14, and at the same time, step st11 is performed in this section.

このように、このレーザ描画装置においては、描画を行わない膜厚測定区間におけるレジスト膜102の膜厚測定と、この膜厚測定の結果に基づいて露光量の補正を行った描画とを繰り返すことにより、順次、所定の描画パターンの描画を行ってゆく。   As described above, in this laser drawing apparatus, the film thickness measurement of the resist film 102 in the film thickness measurement section in which drawing is not performed and the drawing in which the exposure amount is corrected based on the result of the film thickness measurement are repeated. Thus, drawing of a predetermined drawing pattern is sequentially performed.

なお、ラスタスキャン方式においては、上述のように、露光用光束RのY方向走査単位の走査とX方向送り単位の移動とを繰返しながら行う場合、Y方向走査単位に、整数個の膜厚測定区間を含むように設定することが実用上好ましく、シングルパス方式の場合は、Y方向走査単位におけるオーバーラップ部を除く区間に、整数個の膜厚測定区間を含むように設定することが、さらに好ましい。   In the raster scan method, as described above, when the exposure light beam R is repeatedly scanned in the Y-direction scanning unit and moved in the X-direction feeding unit, an integral number of film thickness measurements are performed in the Y-direction scanning unit. It is practically preferable to set to include a section, and in the case of the single pass method, it is further set to include an integral number of film thickness measurement sections in the section excluding the overlap portion in the Y-direction scanning unit. preferable.

また、膜厚測定区間のX方向の長さについては、露光用光束Rのビーム径に相当するX方向送り単位と同じにすることが、実用上好ましい。なお、Y方向走査単位、または、そのオーバーラップ部を除く区間に、1個の膜厚測定区間を含むように設定した場合は、2個以上のX方向送り単位を膜厚測定区間としてもよい。   In addition, it is practically preferable that the length in the X direction of the film thickness measurement section is the same as the X-direction feed unit corresponding to the beam diameter of the exposure light beam R. In addition, when it is set to include one film thickness measurement section in the Y direction scanning unit or the section excluding the overlap portion, two or more X direction feed units may be used as the film thickness measurement section. .

この方法においては、偏向素子5は、露光用光束Rと膜厚測定用光束Mとが、それぞれ少なくともY方向走査単位を走査するように設定される。   In this method, the deflection element 5 is set so that the exposure light beam R and the film thickness measurement light beam M each scan at least in the Y-direction scanning unit.

本発明に係るレーザ描画装置の第1の実施の形態における構成を示すブロック図である。It is a block diagram which shows the structure in 1st Embodiment of the laser drawing apparatus which concerns on this invention. 前記レーザ描画装置の第1の実施の形態における描画ヘッドの構成を示す斜視図である。It is a perspective view which shows the structure of the drawing head in 1st Embodiment of the said laser drawing apparatus. 前記レーザ描画装置における描画方式であるラスタスキャン方式を説明する平面図である。It is a top view explaining the raster scan system which is a drawing system in the laser drawing apparatus. 前記レーザ描画装置の第1の実施の形態における動作を示すフローチャートである。It is a flowchart which shows the operation | movement in 1st Embodiment of the said laser drawing apparatus. 本発明に係るレーザ描画装置の第2の実施の形態における描画ヘッドの構成を示す側面図である。It is a side view which shows the structure of the drawing head in 2nd Embodiment of the laser drawing apparatus which concerns on this invention. 前記レーザ描画装置の第2の実施の形態における構成を示すブロック図である。It is a block diagram which shows the structure in 2nd Embodiment of the said laser drawing apparatus. 前記レーザ描画装置の第2の実施の形態における動作を示すフローチャートである。It is a flowchart which shows the operation | movement in 2nd Embodiment of the said laser drawing apparatus.

符号の説明Explanation of symbols

1 描画ヘッド
2 出射レンズ
3 光源
4 変調素子
5 偏向素子
6 移動ステージ
24 膜厚測定回路
25 光学ヘッド
101 基板
102 レジスト膜
DESCRIPTION OF SYMBOLS 1 Drawing head 2 Outgoing lens 3 Light source 4 Modulating element 5 Deflection element 6 Moving stage 24 Film thickness measuring circuit 25 Optical head 101 Substrate 102 Resist film

Claims (7)

表面部にレジスト膜が形成された露光対象物に露光用光束を照射する描画ヘッドと、
前記露光対象物上における前記露光用光束の照射位置を移動させる走査手段と、
前記露光用光束の強度を変調させる変調手段と、
前記露光対象物からの前記露光用光束の反射光束に基づいて、前記レジスト膜の膜厚を測定する膜厚測定手段と
を備え、
前記変調手段は、予め設定された描画パターン及び前記膜厚測定手段による測定結果に基づいて、前記露光用光束の強度を変調させる
ことを特徴とするレーザ描画装置。
A drawing head for irradiating a light beam for exposure on an exposure object having a resist film formed on the surface portion;
Scanning means for moving an irradiation position of the exposure light beam on the exposure object;
Modulation means for modulating the intensity of the exposure light beam;
A film thickness measuring means for measuring a film thickness of the resist film based on a reflected light beam of the exposure light beam from the exposure object;
The laser writing apparatus, wherein the modulating means modulates the intensity of the exposure light beam based on a preset drawing pattern and a measurement result by the film thickness measuring means.
表面部にレジスト膜が形成された露光対象物に露光用光束を照射する描画ヘッドと、
前記露光対象物に膜厚測定用光束を照射する光学ヘッドと、
前記露光対象物上における前記露光用光束及び前記膜厚測定用光束の照射位置を移動させる走査手段と、
前記露光用光束の強度を変調させる変調手段と、
前記露光対象物からの前記膜厚測定用光束の反射光束に基づいて、前記レジスト膜の膜厚を測定する膜厚測定手段と
を備え、
前記膜厚測定用光束は、前記露光対象物において前記露光用光束が照射される位置に、この露光用光束に先行して照射され、
前記変調手段は、予め設定された描画パターン及び前記膜厚測定手段による測定結果に基づいて、前記露光用光束の強度を変調させる
ことを特徴とするレーザ描画装置。
A drawing head for irradiating a light beam for exposure on an exposure object having a resist film formed on the surface portion;
An optical head for irradiating the exposure object with a light flux for measuring a film thickness;
Scanning means for moving an irradiation position of the exposure light beam and the film thickness measurement light beam on the exposure object;
Modulation means for modulating the intensity of the exposure light beam;
A film thickness measuring means for measuring the film thickness of the resist film based on a reflected light beam of the film thickness measuring light beam from the exposure object;
The film thickness measurement light beam is irradiated on the exposure object at a position where the exposure light beam is irradiated prior to the exposure light beam,
The laser writing apparatus, wherein the modulating means modulates the intensity of the exposure light beam based on a preset drawing pattern and a measurement result by the film thickness measuring means.
前記露光対象物上における前記露光用光束の照射位置と、前記露光対象物上における前記膜厚測定用光束の照射位置との間隔は、10mm以下となされている
ことを特徴とする請求項2記載のレーザ描画装置。
The distance between the irradiation position of the exposure light beam on the exposure object and the irradiation position of the film thickness measurement light beam on the exposure object is 10 mm or less. Laser drawing device.
表面部にレジスト膜が形成された露光対象物に描画ヘッドにより露光用光束を照射し、
前記露光対象物上における前記露光用光束の照射位置を移動させ、
前記露光対象物からの前記露光用光束の反射光束に基づいて、前記レジスト膜の膜厚を測定し、
予め設定された描画パターン及び前記レジスト膜の膜厚の測定結果に基づいて、前記露光用光束の強度を変調させる
ことを特徴とするレーザ描画方法。
Irradiate an exposure object having a resist film formed on the surface with an exposure light beam by a drawing head,
Move the irradiation position of the exposure light beam on the exposure object,
Based on the reflected light flux of the exposure light beam from the exposure object, measure the film thickness of the resist film,
A laser drawing method characterized by modulating the intensity of the exposure light beam based on a preset drawing pattern and a measurement result of the film thickness of the resist film.
表面部にレジスト膜が形成された露光対象物に描画ヘッドにより露光用光束を照射するとともに、前記露光対象物に膜厚測定用光束を照射し、
前記露光対象物上において、前記膜厚測定用光束が、前記露光用光束が照射される位置にこの露光用光束に先行して照射されるように、前記露光対象物上における前記露光用光束及び前記膜厚測定用光束の照射位置を移動させ、
前記露光対象物からの前記膜厚測定用光束の反射光束に基づいて、前記レジスト膜の膜厚を測定し、
予め設定された描画パターン及び前記レジスト膜の膜厚の測定結果に基づいて、前記露光用光束の強度を変調させる
ことを特徴とするレーザ描画方法。
The exposure object having a resist film formed on the surface portion is irradiated with an exposure light beam by a drawing head, and the exposure object is irradiated with a film thickness measurement light beam,
On the exposure object, the exposure light beam on the exposure object and the film thickness measurement light beam are irradiated on the exposure object at a position where the exposure light beam is irradiated prior to the exposure light beam. Move the irradiation position of the light flux for film thickness measurement,
Based on the reflected light flux of the film thickness measurement light beam from the exposure object, measure the film thickness of the resist film,
A laser drawing method characterized by modulating the intensity of the exposure light beam based on a preset drawing pattern and a measurement result of the film thickness of the resist film.
表面部にレジスト膜を有するフォトマスクブランクに描画ヘッドにより露光用光束を照射し、
前記フォトマスクブランク上における前記露光用光束の照射位置を移動させ、
前記フォトマスクブランクからの前記露光用光束の反射光束に基づいて、前記レジスト膜の膜厚を測定し、
予め設定された描画パターン及び前記レジスト膜の膜厚の測定結果に基づいて、前記露光用光束の強度を変調させる
ことを特徴とするフォトマスクの製造方法。
Irradiate a photomask blank having a resist film on the surface with an exposure light beam by a drawing head,
Move the irradiation position of the exposure light beam on the photomask blank,
Based on the reflected light flux of the exposure light beam from the photomask blank, measure the film thickness of the resist film,
A photomask manufacturing method, wherein the intensity of the exposure light beam is modulated based on a preset drawing pattern and a measurement result of the film thickness of the resist film.
表面部にレジスト膜を有するフォトマスクブランクに描画ヘッドにより露光用光束を照射するとともに、前記フォトマスクブランクに膜厚測定用光束を照射し、
前記フォトマスクブランク上において、前記膜厚測定用光束が、前記露光用光束が照射される位置にこの露光用光束に先行して照射されるように、前記フォトマスクブランク上における前記露光用光束及び前記膜厚測定用光束の照射位置を移動させ、
前記フォトマスクブランクからの前記膜厚測定用光束の反射光束に基づいて、前記レジスト膜の膜厚を測定し、
予め設定された描画パターン及び前記レジスト膜の膜厚の測定結果に基づいて、前記露光用光束の強度を変調させる
ことを特徴とするフォトマスクの製造方法。
Irradiating a photomask blank having a resist film on the surface with an exposure light beam by a drawing head, irradiating the photomask blank with a film thickness measurement light beam,
On the photomask blank, the exposure light flux on the photomask blank and the film thickness measurement light flux are irradiated on the position where the exposure light flux is irradiated prior to the exposure light flux, and Move the irradiation position of the light flux for film thickness measurement,
Based on the reflected light flux of the film thickness measurement light beam from the photomask blank, measure the film thickness of the resist film,
A photomask manufacturing method, wherein the intensity of the exposure light beam is modulated based on a preset drawing pattern and a measurement result of the film thickness of the resist film.
JP2004104082A 2004-03-31 2004-03-31 Laser drawing apparatus, laser drawing method, and photomask manufacturing method Expired - Fee Related JP4440688B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004104082A JP4440688B2 (en) 2004-03-31 2004-03-31 Laser drawing apparatus, laser drawing method, and photomask manufacturing method
TW094109733A TWI279829B (en) 2004-03-31 2005-03-29 Laser plotting device, laser plotting method, and method of manufacturing photomask
CNB2005100637720A CN100465792C (en) 2004-03-31 2005-03-31 Laser drawing device, method thereof and method for preparing optical mask
KR1020050027335A KR100650165B1 (en) 2004-03-31 2005-03-31 Laser drawing apparatus and method, and method of forming photomask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004104082A JP4440688B2 (en) 2004-03-31 2004-03-31 Laser drawing apparatus, laser drawing method, and photomask manufacturing method

Publications (2)

Publication Number Publication Date
JP2005292271A true JP2005292271A (en) 2005-10-20
JP4440688B2 JP4440688B2 (en) 2010-03-24

Family

ID=35049825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004104082A Expired - Fee Related JP4440688B2 (en) 2004-03-31 2004-03-31 Laser drawing apparatus, laser drawing method, and photomask manufacturing method

Country Status (4)

Country Link
JP (1) JP4440688B2 (en)
KR (1) KR100650165B1 (en)
CN (1) CN100465792C (en)
TW (1) TWI279829B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163632A (en) * 2005-12-12 2007-06-28 Hitachi Displays Ltd Method for manufacturing display device, display device and exposure apparatus
JP2007334316A (en) * 2006-05-15 2007-12-27 Hoya Corp Mask blank and photomask
CN102566288A (en) * 2010-12-21 2012-07-11 无锡华润上华半导体有限公司 Exposure method and system
WO2022065048A1 (en) * 2020-09-24 2022-03-31 株式会社ニコン Pattern formation method, electronic device production method, and pattern exposure device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4274251B2 (en) * 2007-01-24 2009-06-03 ソニー株式会社 Laser drawing method and laser drawing apparatus
KR101862015B1 (en) 2011-03-25 2018-07-04 삼성전자주식회사 Method of measure an expose energy in photolithography system
JP6682263B2 (en) * 2015-12-25 2020-04-15 キヤノン株式会社 Detecting apparatus, exposure apparatus, and article manufacturing method
CN115128912A (en) * 2022-07-08 2022-09-30 西湖大学 Non-mechanical optical scanning optical fiber photoetching machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0210821A (en) * 1988-06-29 1990-01-16 Nec Corp Reduction projection aligner
JP2003500847A (en) * 1999-05-20 2003-01-07 マイクロニック レーザー システムズ アクチボラゲット Error reduction method in lithography
WO2003010803A1 (en) * 2001-07-26 2003-02-06 Seiko Epson Corporation Exposure device, exposure method, method of producing semiconductor device, electrooptic device, and electronic equipment
JP2003272990A (en) * 2002-03-12 2003-09-26 Semiconductor Leading Edge Technologies Inc Semiconductor-manufacturing system and manufacturing method for semiconductor equipment
JP2003297730A (en) * 2002-04-03 2003-10-17 Hoya Corp Rotary coating method, method of determining rotary coating condition, and mask blank

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4308586A (en) * 1980-05-02 1981-12-29 Nanometrics, Incorporated Method for the precise determination of photoresist exposure time
JPH0513292A (en) * 1991-07-02 1993-01-22 Nikon Corp Exposure apparatus
JPH08233555A (en) * 1994-12-28 1996-09-13 Matsushita Electric Ind Co Ltd Method and apparatus for measuring resist pattern
JPH09128818A (en) * 1995-11-02 1997-05-16 Sony Corp Exposure device
JPH10135112A (en) * 1996-11-01 1998-05-22 Hitachi Ltd Measurement of resist photosensitive parameter and semiconductor lithography based thereon
RU2148854C1 (en) * 1998-08-12 2000-05-10 Воронежский государственный университет Method testing process of exposure of photoresist film
JP2002373843A (en) * 2001-06-14 2002-12-26 Nec Corp Coating system and method for controlling thickness of coating film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0210821A (en) * 1988-06-29 1990-01-16 Nec Corp Reduction projection aligner
JP2003500847A (en) * 1999-05-20 2003-01-07 マイクロニック レーザー システムズ アクチボラゲット Error reduction method in lithography
WO2003010803A1 (en) * 2001-07-26 2003-02-06 Seiko Epson Corporation Exposure device, exposure method, method of producing semiconductor device, electrooptic device, and electronic equipment
JP2003272990A (en) * 2002-03-12 2003-09-26 Semiconductor Leading Edge Technologies Inc Semiconductor-manufacturing system and manufacturing method for semiconductor equipment
JP2003297730A (en) * 2002-04-03 2003-10-17 Hoya Corp Rotary coating method, method of determining rotary coating condition, and mask blank

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163632A (en) * 2005-12-12 2007-06-28 Hitachi Displays Ltd Method for manufacturing display device, display device and exposure apparatus
JP2007334316A (en) * 2006-05-15 2007-12-27 Hoya Corp Mask blank and photomask
CN102566288A (en) * 2010-12-21 2012-07-11 无锡华润上华半导体有限公司 Exposure method and system
WO2022065048A1 (en) * 2020-09-24 2022-03-31 株式会社ニコン Pattern formation method, electronic device production method, and pattern exposure device

Also Published As

Publication number Publication date
TWI279829B (en) 2007-04-21
CN100465792C (en) 2009-03-04
CN1677245A (en) 2005-10-05
TW200540936A (en) 2005-12-16
JP4440688B2 (en) 2010-03-24
KR20060045401A (en) 2006-05-17
KR100650165B1 (en) 2006-11-27

Similar Documents

Publication Publication Date Title
KR100650165B1 (en) Laser drawing apparatus and method, and method of forming photomask
JP5698831B2 (en) Lithographic apparatus and device manufacturing method
US9013674B2 (en) Exposure apparatus including the exposure head and control method thereof
US10719018B2 (en) Dynamic imaging system
KR20060044902A (en) Exposure device
US9329504B2 (en) Method of aligning an exposure apparatus, method of exposing a photoresist film using the same and exposure apparatus for performing the method of exposing a photoresist film
JP5336036B2 (en) Drawing system
US20100091256A1 (en) Method and apparatus for reproducing a programmable mask on a substrate
JP2009246165A (en) Exposure device
JP2006319098A (en) Drawing equipment
WO2020085037A1 (en) Drawing method and drawing device
US20050133739A1 (en) Charged beam writing method and writing tool
KR20100042864A (en) Exposure apparatus and method to measure straitness thereof
JP2010026465A (en) Pattern drawing device
JP2008058477A (en) Drawing device
JP2009210960A (en) Laser direct drawing device
JP2010258085A (en) Surface position detecting method
JP2005258352A (en) Exposure apparatus and exposure method
JP2007280993A (en) Hologram exposure apparatus, hologram exposure method, method of manufacturing semiconductor device and method of manufacturing electro-optical device
JP2012209443A (en) Pattern drawing apparatus and pattern drawing method
JP2024121091A (en) Drawing device and drawing method
CN115735158A (en) Apparatus and method for controlling focus of laser beam
JP2014199861A (en) Pattern drawing apparatus and pattern drawing method
JP2005164896A (en) Optical head device, laser lithography apparatus and method for drawing pattern
JPH11271983A (en) Laser beam exposure marking device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070125

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090212

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090218

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140115

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees