JPH02107714A - Production of low-carbon steel by smelting - Google Patents

Production of low-carbon steel by smelting

Info

Publication number
JPH02107714A
JPH02107714A JP25921288A JP25921288A JPH02107714A JP H02107714 A JPH02107714 A JP H02107714A JP 25921288 A JP25921288 A JP 25921288A JP 25921288 A JP25921288 A JP 25921288A JP H02107714 A JPH02107714 A JP H02107714A
Authority
JP
Japan
Prior art keywords
decarburization
molten steel
steel
content
carbon content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25921288A
Other languages
Japanese (ja)
Inventor
Shohei Korogi
興梠 昌平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP25921288A priority Critical patent/JPH02107714A/en
Publication of JPH02107714A publication Critical patent/JPH02107714A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently reduce the carbon content to a desired value in a short time by precisely discriminating the time when the carbon content is reduced to the desired value from the initial carbon content and decarburizing rate at the time of producing an extremely low carbon steel from molten steel by vacuum degassing equipment. CONSTITUTION:Molten steel is decarburized by an RH-type vacuum degassing equipment to obtain an extremely low carbon steel contg. <30ppm C. In this case, the C content is analyzed when the raw molten steel is charged into the equipment. The C content in the molten steel sample during decarburization is then analyzed, and the decarburizing rate in the low-carbon region by the equipment is estimated from both results of analysis. The CO in exhaust gas when the molten steel is decarburized to a desired value is obtained by analysis from the decarburizing rate and the measured C content in the exhaust gas. As a result, the molten steel is precisely decarburized to a desired C content in a short time, the O2 content in the decarburized molten steel is adjusted to 150-500ppm, and an extremely low carbon steel appropriate for a continuously annealed steel sheet for deep drawing is stably produced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、深絞り用連続焼鈍鋼板や電磁鋼板等として好
適な極低炭素鋼を安定かつ安価に溶製する方法に関する
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for stably and inexpensively producing ultra-low carbon steel suitable for continuous annealing steel sheets for deep drawing, electrical steel sheets, and the like.

(従来の技術) 一般に、転炉、電気炉等大気中で溶解・精錬を行った溶
鋼は、H,N、Oなどのガス成分による汚染を受ける。
(Prior Art) Generally, molten steel melted and refined in the atmosphere, such as in a converter or an electric furnace, is contaminated by gas components such as H, N, and O.

そこで鋼の品質に対する要求の高まりにつれて、種々の
製鋼技術の開発、改善が進められてきたが、最近では転
炉、電気炉などを溶解専用炉として用い、高品質を要求
される特別な精錬には別の適当な装置を用いる精錬法、
いわゆる炉外精錬法が主流となっている。
As demands for steel quality have increased, various steel-making technologies have been developed and improved.Recently, converters, electric furnaces, and other furnaces are used as melting-only furnaces for special refining processes that require high quality. is a smelting method using another suitable equipment,
The so-called out-of-furnace refining method is the mainstream.

炉外精錬法には、代表的な方法としてR1+脱ガス法と
DH肌脱ガス法がある。
Typical methods for out-of-furnace refining include the R1+ degassing method and the DH skin degassing method.

RH脱ガス法の原理は次の如くである。すなわちffj
H吸い上げ用および排出用の2本の脚を有する真空容器
内において、この2木の脚を取鍋内湾鋼中に浸漬し槽内
の排気を行うことにより、溶鋼は真空槽内を上昇してく
る。ここで上昇管内へArガスなどを吹き込むと?8鋼
のみかけ比重は小さくなり、上界管内の)8鋼は上昇し
真空槽内へ送られる。
The principle of the RH degassing method is as follows. That is, ffj
In a vacuum vessel with two legs for suction and discharge, the two wooden legs are immersed in the bay steel in the ladle and the vessel is evacuated, allowing the molten steel to rise inside the vacuum vessel. come. What if we blow Ar gas etc. into the riser pipe here? The apparent specific gravity of the 8 steel becomes smaller, and the 8 steel in the upper tube rises and is sent into the vacuum chamber.

真空槽内で脱ガスが行われ脱ガスが終了した溶鋼は取鍋
中に下降する。以上がRH肌脱ガス法原理である。
The molten steel is degassed in the vacuum chamber, and the degassed molten steel descends into the ladle. The above is the principle of the RH skin degassing method.

一方、DH脱ガス法の原理は、RH肌脱ガス法異なり溶
鋼の吸い上げと吐き出しとを1本の脚で行う点である。
On the other hand, the principle of the DH degassing method is that, unlike the RH skin degassing method, molten steel is sucked up and discharged using one leg.

脚を取鍋中の/8綱に浸漬して真空槽内を減圧すると、
18tl[は大気圧相当の高さまで真空槽を上昇してく
る。その後に取鍋を上昇させるかまたは真空槽を下降さ
せるとその高さだけ溶鋼面は真空槽内を下降する。この
上昇、下降を毎分3〜4回行うことにより/8鋼が真空
槽内で処理される。以上がD11脱ガス法の原理である
When the legs are immersed in the /8 wire in the ladle and the pressure inside the vacuum chamber is reduced,
18 tl rises through the vacuum chamber to a height equivalent to atmospheric pressure. When the ladle is then raised or the vacuum chamber is lowered, the surface of the molten steel descends within the vacuum chamber by the same height. By performing this raising and lowering 3 to 4 times per minute, the /8 steel is processed in the vacuum chamber. The above is the principle of the D11 degassing method.

ところでこのような脱ガス法を用いて、炭素含有量が3
0ppm以下である鋼を高速で溶製するための方法が種
々試みられている0例えば (i)fli1脱ガス法では1.浸漬管の管径の拡大に
より大環流量化を促進・強化するとともに、排気エジェ
クター、ブースターの能力を増強して真空槽内における
真空パターンを改善する方法(「鉄と鋼J  73(1
987)、 5939 (P2O3)参照)が、また (ii)DH脱ガス法では、真空ポンプにより真空槽の
吸引サイクルを高速化する方法 がそれぞれ行われている。
By the way, using this degassing method, the carbon content can be reduced to 3.
Various methods have been attempted to produce steel with a concentration of 0 ppm or less at high speed.For example, (i) the fli1 degassing method has 1. A method of promoting and strengthening the large circulation flow rate by increasing the diameter of the immersion tube, and improving the vacuum pattern in the vacuum chamber by increasing the capacity of the exhaust ejector and booster ("Tetsu to Hagane J 73 (1)
987), 5939 (P2O3)), and (ii) the DH degassing method, a method of speeding up the suction cycle of a vacuum chamber using a vacuum pump has been carried out.

さらに真空容器内の取鍋底部からArガスを吹き込みな
がら02吹精ランスによって溶鋼を脱炭するVOD法に
おいても、取鍋底部からの計ガス吹き込すによる、溶鋼
の攪拌を強化することにより脱炭速度を高速化する方法 が工人みられている。
Furthermore, in the VOD method, in which molten steel is decarburized using a 02 blowing lance while blowing Ar gas from the bottom of the ladle in a vacuum vessel, decarburization is achieved by intensifying the stirring of the molten steel by blowing meter gas from the bottom of the ladle. Engineers are finding ways to increase the speed of coal.

これらの方法により脱炭速度は確かに高速化されている
These methods have certainly increased the decarburization rate.

(発明が解決しようとする課題) ところでこの脱炭速度Kc(1/m1n)は、次式%式
%(]) ただし[clo’: イニシャルの[CI ′a度(p
pm)IC1:時間tにおける[CI 4度(ppm)
L 二時間(min) で定義される。一般的にtil+脱ガス脱ガス−ては、
Kcは0.1〜0.35(1/m1n)の範囲にあルコ
とが知られている。一方、第8図に示すように排ガスの
バランスは、脱炭速度Kcの値の大きさ毎に計算するこ
とができ、各々のKc毎に[CI 濃度により、co濃
度(%)を推定することができる。この推定結果を第1
表に示す。
(Problem to be solved by the invention) By the way, this decarburization rate Kc (1/m1n) is calculated by the following formula % formula % (]) where [clo': initial [CI 'a degree (p
pm) IC1: [CI 4 degrees (ppm) at time t
L is defined as two hours (min). In general, til + degassing degassing -
It is known that Kc is in the range of 0.1 to 0.35 (1/m1n). On the other hand, as shown in Fig. 8, the exhaust gas balance can be calculated for each value of the decarburization rate Kc, and for each Kc, the CO concentration (%) can be estimated from the CI concentration. Can be done. This estimation result is
Shown in the table.

第1表 ここで前述したように、Kcの値は0.1〜0.35(
1/m1n)の範囲に存在することを考慮し脱炭速度が
低い場合にも十分に脱炭を行うために、一般的に[CI
 =20(ppm)前後ではKc=0.10(1/m1
n)と仮定し、COa度が4〜5%とな、た時に脱炭を
終了する方法が行われている。
Table 1 Here, as mentioned above, the value of Kc is 0.1 to 0.35 (
In general, [CI
= around 20 (ppm), Kc = 0.10 (1/m1
n), and a method has been used in which decarburization is completed when the COa degree reaches 4 to 5%.

ところが、前述したように近年の製鋼技術の発展により
高速で脱炭が進行した場合、例えばKc−0,20(1
/m1n)の場合、CO濃度が4%になった時に脱炭を
終了したのでは、第9図に示すように [CI< 30
ppmを達成した後も10分間前後の脱炭を続け、[C
I ’= IOppm前後まで過剰な脱炭を行うことと
なってしまう。この場合脱炭反応は高速化したものの、
処理時間の短縮にはつながらない。すなわら、脱炭速度
が向上したにもかかわらず、脱炭終了時期の判定が適切
に行われないため、脱炭速度の高速化による処理時間の
短縮という効果を得ることができなかったのである。
However, as mentioned above, when decarburization progresses at high speed due to the recent development of steelmaking technology, for example, Kc-0.20 (1
/m1n), decarburization ended when the CO concentration reached 4%, as shown in Figure 9 [CI<30
Even after achieving ppm, decarburization continues for about 10 minutes, and [C
Excessive decarburization will be performed to around I'=IOppm. In this case, although the decarburization reaction became faster,
This does not lead to a reduction in processing time. In other words, even though the decarburization rate was improved, the timing of decarburization completion was not properly determined, so it was not possible to achieve the effect of shortening the processing time by increasing the decarburization rate. be.

ここに本発明の目的は、適切に脱炭の終了時期を判定す
ることにより、高速脱炭の効果を最大限に発渾させ、処
理時間の短縮化を図ることができる、低炭素鋼の溶製法
を提供することにある。
The purpose of the present invention is therefore to develop a method for melting low-carbon steel that can maximize the effects of high-speed decarburization and shorten processing time by appropriately determining the end time of decarburization. Our goal is to provide manufacturing methods.

(課題を解決するための手段) 本発明者は、上記課題を解決するため種々検討を重ねた
結果、高炭素量域における脱炭速度Kcがら、低・中炭
素置載における脱炭速度を算出することができ、この低
炭素量域における脱炭速度の算出値から、脱炭終了時期
の判定を正確に行うことができることを知り、本発明を
完成した。
(Means for Solving the Problems) As a result of various studies to solve the above problems, the inventor calculated the decarburization speed in low and medium carbon loading based on the decarburization speed Kc in the high carbon content region. The present invention was completed based on the knowledge that it is possible to accurately determine the end of decarburization from the calculated value of the decarburization rate in this low carbon content region.

ここに本発明の要旨とするところは、炭素含有量が30
ppm以下である鋼を真空処理炉に゛て溶製する際に、 (i)脱炭開始前および脱炭処理中に溶鋼中の炭素含有
量を測定することによりこの間における脱炭速度を算出
し、この算出値より低炭素量域における脱炭速度を推定
する工程と、 (ii)  (i)の工程で求めた低炭素量域における
脱炭速度と溶鋼中の炭素含有量とから、脱炭終了時の排
ガス中のco4度を求める工程と、(ij )  (i
i )の工程で求めたcofR度に基づいて脱炭の終了
時萌を判定する工程と、 からなる低炭素鋼の溶製方法である。
The gist of the present invention is that the carbon content is 30
ppm or less in a vacuum processing furnace, (i) Calculate the decarburization rate by measuring the carbon content in the molten steel before and during the decarburization process. , the process of estimating the decarburization rate in the low carbon content range from this calculated value, and (ii) the decarburization rate from the decarburization rate in the low carbon content range obtained in step (i) and the carbon content in the molten steel. The process of determining CO4 degrees in the exhaust gas at the end of the process, and (ij) (i
A method for producing low-carbon steel, comprising: a step of determining the fertilization at the end of decarburization based on the cofR degree determined in step i);

すなわち、脱炭開始前および脱炭処理中にそれぞれ炭素
含有量を測定した結果から、この間における、換言する
と高炭素量域における脱炭速度を算出し、この算出値よ
り低炭素量域における脱炭速度を推定する。そしてこの
低炭素量域における脱炭速度および溶鋼中の炭素含佇量
に基づいて脱炭終了時期の判定を正確に行う、低炭素鋼
の溶製方法である。
That is, from the results of measuring the carbon content before the start of decarburization and during the decarburization treatment, the decarburization rate during this period, in other words, in the high carbon content range is calculated, and from this calculated value, the decarburization rate in the low carbon content range is calculated. Estimate speed. This is a low carbon steel melting method that accurately determines the end of decarburization based on the decarburization rate in this low carbon content range and the carbon content in molten steel.

(作用) 本発明をその作用効果とともに詳述する。なお本明細書
において「%」は特にことわりが無い限り「体積%」を
意味するものとする。
(Function) The present invention will be explained in detail together with its function and effects. In this specification, "%" means "volume %" unless otherwise specified.

第1図および第2図に高炭素N域(30〜200pρm
)と低・中炭素置載(15〜30.20〜5oppH)
トニオける脱炭速度の関係を示す。第1図および第2図
から明らかなように高炭素量域において高速で脱炭が進
行する場合、低・中炭素置載においても脱炭が高速で進
行することがわかった。
Figures 1 and 2 show the high carbon N region (30 to 200 ppm
) and low/medium carbon mounting (15-30.20-5 oppH)
This shows the relationship between the decarburization rate and the decarburization rate. As is clear from FIGS. 1 and 2, if decarburization progresses at high speed in the high carbon content region, it was also found that decarburization progresses at high speed in low and medium carbon loading.

つまり、高炭素量域における脱炭速度Kcを求めれば、
低・中炭素置載における脱炭速度を予想することができ
る。言い換えれば、脱炭中に[CI 値を測定すること
により、初期[CI 値との関係から、脱炭開始時から
[CI 値測定時までの間における、すなわち高炭素量
域における脱炭速度を算出し、二の高炭素量域における
脱炭速度に基づいて低・中炭素置載の脱炭速度を推定す
ることができる。
In other words, if we find the decarburization rate Kc in the high carbon content region,
It is possible to predict the decarburization rate in low- and medium-carbon installations. In other words, by measuring the [CI value during decarburization, the decarburization rate in the high carbon content region from the start of decarburization to the time of [CI value measurement] can be determined from the relationship with the initial [CI value]. Based on the decarburization rate in the second high carbon content region, it is possible to estimate the decarburization rate for low and medium carbon loading.

したがって高炭素量域の脱炭中に、低・中炭素置載の脱
炭の軌道を予想することができる。
Therefore, it is possible to predict the decarburization trajectory of low and medium carbon loading during decarburization in the high carbon content region.

さらに詳述すると、脱炭処理前および脱炭処理中に一度
[CI 値を測定する理由は次の如くである。
More specifically, the reason why the CI value is measured once before and during the decarburization process is as follows.

すなわちRH脱ガス処理等においては、脱炭速度Kc値
の大きさにばらつきがあるため、高炭素量域でのKc値
を正確に知っておかなければ低炭素量域におけるKc値
を精度良く予想することができないがらである。
In other words, in RH degassing treatment, etc., the decarburization rate Kc value varies, so unless you accurately know the Kc value in the high carbon content range, it is difficult to accurately predict the Kc value in the low carbon content range. Although I am unable to do so.

なお、脱炭処理前のrCI値のフ11定は、(1)転炉
出鋼後の転炉裏でのfcI 分析値を用いる (ii)RH脱ガス装置に溶鋼が到着した時の[CI 
分析値を用いる (iii)IIH脱ガス装置に溶鋼が到着した時に酸素
センサーでt8鋼中の残存酸素量を測定し[CI 4M
を測定する という3方法のいずれの方法でも良い。
The rCI value before decarburization is determined by (1) using the fcI analysis value at the bottom of the converter after tapping the steel, and (ii) using the [CI] value when the molten steel arrives at the RH degasser.
Using analytical values (iii) When the molten steel arrives at the IIH degasser, the amount of residual oxygen in the T8 steel is measured with an oxygen sensor [CI 4M
Any one of the three methods of measuring .

さらに脱炭処理中の[CI 値の測定は、(1)サンプ
ルを採取し[CI を分析することにより行う。ただし
採取時期は脱炭予想時間の50%以上70%以下である
ことが望ましい。これは、50%未満では、(1)式に
おいて[cLaと[CIとの値が近<Kcの推定精度が
低下するおそれがあるからであり、70%を越えると分
析時間が3〜4分かかるため、終点判定タイミングを逸
するおそれがあるからである。
Furthermore, the measurement of the CI value during the decarburization process is carried out by (1) collecting a sample and analyzing the CI value. However, it is preferable that the sampling time be between 50% and 70% of the expected decarburization time. This is because if it is less than 50%, there is a risk that the estimation accuracy of [cLa and [CI] are close <Kc in equation (1) will decrease, and if it exceeds 70%, the analysis time will take 3 to 4 minutes. This is because there is a risk that the end point determination timing may be missed.

(11)排ガスの総量とCOガスの経時変化とにより、
総発生CO量を積算し、脱炭処理前の[CI値より、処
理中のfcI 値を推定することにより行う。
(11) Depending on the total amount of exhaust gas and changes in CO gas over time,
This is done by integrating the total amount of CO generated and estimating the fcI value during treatment from the CI value before decarburization.

以上のに)、(ii )のいずれの方法でもよい。Any of the above methods) and (ii) may be used.

次に終点を、脱炭処理中の[CI 値、予想したKc値
および排ガス成分値により推定する理由について説明す
る。従来法では脱炭終了時期をCO量が4〜5%になっ
た時に固定して終点判定を行っていたため、脱炭速度が
大きい場合オーバーアクションすなわち脱炭が過剰に進
行していた。このため高炭素量域の挙動を判定し、適切
な終点判定を行うため処理中[CI 値よりKcを求め
、排ガス情報である排ガス成分値を参考にしつつ終点判
定を行う必要があるのである。
Next, the reason why the end point is estimated based on the [CI value, predicted Kc value, and exhaust gas component value during the decarburization process] will be explained. In the conventional method, the end point of decarburization was determined by fixing the end point when the amount of CO reached 4 to 5%, and therefore, when the decarburization rate was high, overaction, that is, decarburization proceeded excessively. Therefore, in order to determine the behavior in the high carbon content region and make an appropriate end point determination, it is necessary to determine Kc from the CI value during processing and to determine the end point while referring to the exhaust gas component value, which is exhaust gas information.

すなわち低炭素量域におけるKc値が高精度で予想され
るため、第1表を用いて、従来法のように脱炭終了時期
をCO量4%から5%になった時というように固定せず
、CO量が6%から8%になった時に脱炭終了(Kc 
= 0.15〜0.20と予想した場合)とすることが
可能となるのである。
In other words, since the Kc value in the low carbon content range can be predicted with high accuracy, it is possible to use Table 1 and fix the decarburization end time, such as when the CO content drops from 4% to 5%, as in the conventional method. First, decarburization ends when the amount of CO decreases from 6% to 8% (Kc
= 0.15 to 0.20).

以上詳述してきたように脱炭中の[C1値を測定し、そ
の[CI 値以下の脱炭の軌道および[C1’r20p
pm前後のCOガス濃度を予測する本発明にかかる溶製
方法により、低炭素鋼溶製時の脱炭終了時期を正確に判
定することが出来る。
As detailed above, the [C1 value during decarburization is measured, and the trajectory of decarburization below the [CI value] and [C1'r20p
By the melting method according to the present invention that predicts the CO gas concentration around pm, it is possible to accurately determine the end time of decarburization during the melting of low carbon steel.

ところで本発明にかかる、低炭素鋼の溶製方法において
、脱炭終了時の溶鋼中の溶存酸素量(以下「a、jとい
う)を150ppm以上500ppm以下に調整するこ
とがさらに有効である。この理由について詳述する。
By the way, in the method for producing low carbon steel according to the present invention, it is more effective to adjust the amount of dissolved oxygen in the molten steel (hereinafter referred to as "a, j") at the end of decarburization to 150 ppm or more and 500 ppm or less. The reason will be explained in detail.

■a、≧150ppmの理由 脱炭反応は[CI +[O] →co (g)なる反応
で進行するため、aoを著しく低下させると脱炭速度の
低下を招くおそれがある。例えば還流Arガス量が30
00 N j2/minであり、浸漬管径が660mm
の1?11脱ガス装置においてaoを変化させた結果を
第3図に示す。第3図から明らかなようにa。が15O
pp畑以下では[CI −50〜7oppm前後から著
しく脱炭速度が低下し、脱炭不良となった。このためa
0≧150 ppn+に制御し、脱炭終了時期の判定を
行うことが有効である。
(2) Reason for a, ≧150 ppm Since the decarburization reaction proceeds as follows: [CI + [O] → co (g), if ao is significantly lowered, there is a risk that the decarburization rate will decrease. For example, the amount of refluxed Ar gas is 30
00 N j2/min, and the immersion pipe diameter is 660 mm.
Figure 3 shows the results of changing ao in the 1-11 degasser. As is clear from Figure 3, a. is 15O
In the pp field and below, the decarburization rate decreased significantly from around CI -50 to 7 oppm, resulting in poor decarburization. For this reason a
It is effective to control the amount to 0≧150 ppn+ and determine the end time of decarburization.

■a0≦500ppmの理由 固i8 M m (以下単にrsol[△QIJ とい
う)の調整およびAQ使用量の低減という2つの目的が
あり、それぞれについて分脱する。
■Reason for a0≦500ppm There are two purposes: adjusting i8 M m (hereinafter simply referred to as rsol [ΔQIJ) and reducing the amount of AQ used, and we will separate them from each other.

(i)sol[△Q]の3周整 a0≦500 ppmではへQ歩留が比較的安定してい
るため脱酸用およびsol[△Q1 用AQを、酸素セ
ンサーの80測定値に基づき、−度投入するだけで調整
できるが、ao>500ρpI11ではAQ歩留が安定
せず、−度a。≦500 ppmを目標にして脱酸した
後、再度a。を測定して八I2の投入を行う必要がある
ためRH脱ガス処理の時間が3〜4分間延長されること
があるからである。したがって80≦500 ppmで
あることが有効である。
(i) Since the he Q yield is relatively stable when the three-period adjustment of sol[△Q] is a0≦500 ppm, the AQ for deoxidizing and sol[△Q1 is based on the 80 measurement value of the oxygen sensor. Adjustment can be made by simply adding -degrees, but if ao>500ρpI11, the AQ yield will not be stable and -degrees a. After deoxidizing with a target of ≦500 ppm, a. This is because the time for the RH degassing treatment may be extended by 3 to 4 minutes because it is necessary to measure the amount of I2 and then add 8 I2. Therefore, it is effective that 80≦500 ppm.

(11)へQ原単位の削減 (1)の理由に加えて脱酸は、 2[八Q]   + 3+0]   →  (AQzo
*)なる反応で進行する。著しくaoが高い場合は鵠原
単位が増加し、処理コストの増加を招く。第4図に、脱
炭終了時のa。とへQ原単位との関係を表わすグラフを
示す。このためa0≦500 ppmとした。
To (11), in addition to the reason for Q consumption reduction (1), deoxidation is as follows: 2[8Q] + 3+0] → (AQzo
*) The reaction proceeds as follows. If ao is extremely high, the unit consumption will increase, leading to an increase in processing cost. Figure 4 shows a at the end of decarburization. A graph showing the relationship between Tohe and Q basic unit is shown. Therefore, it was set as a0≦500 ppm.

次に本発明を実施例を用いて詳述する。なおこれは本発
明の例示であり、これにより本発明が不当に制限される
ものでない。
Next, the present invention will be explained in detail using examples. Note that this is an illustration of the present invention, and the present invention is not unduly limited thereby.

実施例1 脱炭終了時のa。を150〜500 ppmとし、従来
法と同じ(CO=4%で脱炭終了した場合と脱炭開始7
〜8分にサンプルを採取し、本発明にかかる方法を実施
した場合を比較した。
Example 1 a at the end of decarburization. 150 to 500 ppm, same as the conventional method (when decarburization is completed at CO = 4% and when decarburization is started at 7
A sample was taken at ~8 minutes and compared when the method according to the invention was implemented.

すなわち浸漬管の径が660mmであり、還流Arガス
量が3000 Nf/minであるRH脱ガス装置を用
いて250〜270ton (ネ刀!IJl[CI  
〜280〜410 ppm )の?8鋼を[C1< 3
0ppmまで脱炭した。
That is, using an RH degassing device in which the diameter of the immersion tube is 660 mm and the amount of refluxed Ar gas is 3000 Nf/min, the
~280-410 ppm)? 8 steel [C1<3
Decarburization was achieved to 0 ppm.

すなわち、目標[CI = 20ppm舎の場合、第2
図を用い、KC5゜う2゜の下限ラインを採用しKcs
o 、211 =0.50XKczoo+*o  H・
・(A)とした。
In other words, if the target [CI = 20 ppm building, the second
Using the diagram, adopt the lower limit line of KC5° - 2° and Kcs
o, 211 = 0.50XKczoo+*o H・
・It was set as (A).

イニシャル[C) a−400ppmで7分でサンプリ
ングしたところ[C1=45ppI11であった。
Initial [C) a - Sampling was performed at 400 ppm for 7 minutes and found that [C1 = 45 ppI11].

このKc=0.312をKCZOO+ffOとみなしく
八)弐よりKcso、zo=0.50xO,312=0
.156 (1/mtn)   (i)を得た。第1表
により[CI = 20ppmとに、=0.156だか
ら0.1と0.2の中間の値、すなわち、(4,4+8
.2)x+A””6.3となり、GO=6.3%で[C
I =20ppmに到達すると予測し、C0=6%を脱
炭停止、へQ投人のタイミングとした。
Considering this Kc=0.312 as KCZOO+ffO, 8) Kcso from 2, zo=0.50xO, 312=0
.. 156 (1/mtn) (i) was obtained. According to Table 1, [CI = 20ppm, = 0.156, so it is the intermediate value between 0.1 and 0.2, that is, (4,4+8
.. 2) x+A””6.3, GO=6.3% and [C
It was predicted that I would reach 20 ppm, and the timing for stopping decarburization and adding Q to C0 was set at 6%.

一方、目標[CI = 15ppmの場合は第1図を用
いて上記と同様に予測した。この場合、上記(A)式に
対応する式は次の通りであった。
On the other hand, in the case of the target [CI = 15 ppm, prediction was made in the same manner as above using FIG. In this case, the formula corresponding to the above formula (A) was as follows.

Kcffo−++s =0.35XKczoo−+、o
  ・・’ (B)第5図に脱炭時間の分布および平均
値を示した。
Kcffo-++s = 0.35XKczoo-+, o
...' (B) Figure 5 shows the distribution and average value of decarburization time.

本発明にかかる方法により脱炭した場合、脱炭処理時間
は平均5.1分(16,7分→11.6分)短縮された
When decarburizing was performed by the method according to the present invention, the decarburizing treatment time was shortened by an average of 5.1 minutes (16.7 minutes → 11.6 minutes).

実施例2 脱炭開始後8分に[CI 分析用サンプルを採取し、本
発明にがかる脱炭方法を行った場合の80の影響を下記
■および■の場合に分けて比較した。
Example 2 A sample for CI analysis was taken 8 minutes after the start of decarburization, and the influence of 80 when the decarburization method according to the present invention was performed was divided into the following cases (1) and (2) and compared.

■a6<150 +)P+llである場合とao = 
150〜500 ppmである場合との比較 実施例1と同様に浸漬管の径が6chmであり、還流A
rガスが3000 Nf/minであるRH脱ガス装置
を用いて250〜270tonの溶鋼を処理した。第6
図(a)および第6図(ハ)に結果を示す。
■If a6<150 +)P+ll and ao =
150 to 500 ppm Similar to Example 1, the diameter of the immersion tube was 6 chm, and the reflux A
250 to 270 tons of molten steel was treated using an RH degassing device with r gas of 3000 Nf/min. 6th
The results are shown in Figure (a) and Figure 6 (c).

第6図(a)および第6因か)より、 (i ) ao>150 PPT1の場合[CI !=
i50〜70ppm前後から脱炭速度が低くなり、18
分経過しても30ppmに達しなかったこと (ii) ao−150〜soo PfHlの場合順調
に脱炭し、約10分で[CI  < 30ppmとなっ
たこと(iii )本発明にかかる方法により10〜1
5分で脱炭を終了することができたこと が明らかである。
From Figure 6(a) and the 6th factor), (i) If ao>150 PPT1 [CI! =
The decarburization rate becomes low from around 50 to 70 ppm, and 18
(ii) In the case of ao-150 to soo PfHl, the decarburization was smooth and [CI < 30 ppm was reached in about 10 minutes. (iii) The method according to the present invention ~1
It is clear that decarburization could be completed in 5 minutes.

■ao>500 ppmである場合とao = 150
〜500 ppmである場合との比較 ■と同様のR1+を用い250〜280 tonの溶鋼
を処理した。脱炭時間はそれぞれ ao>500 ppm    ’平均12.0分(n 
= 8ch)ao=150〜soo ppni :平均
11.6分(n = 18ch)と操業のばらつき内の
範囲であり差はなかった。
■When ao > 500 ppm and ao = 150
Comparison with the case of ~500 ppm 250 to 280 tons of molten steel was treated using R1+ similar to (2). The decarburization time was 12.0 min on average (n
= 8ch) ao = 150 to soo ppni: Average time was 11.6 minutes (n = 18ch), which was within the range of operational variation and there was no difference.

一方、成分調整は、脱酸およびsol[AQI 調整を
行った後、[Tilの調整を行った。
On the other hand, the components were adjusted by performing deoxidation and sol [AQI adjustment, and then [Til adjustment].

この場合の成分調整時間の分布および平均値を第7図に
示した。
The distribution and average value of component adjustment times in this case are shown in FIG.

第7図から明らかなように、a0≦500 ppmの場
合、脱酸十S。L[八Q] 3Pl整を一度にAQ投入
で行えるためa、>500 ppmの場合よりも、成分
調整時間で2゜3分(6,8分→4,5分)短縮し、R
H脱ガス処理法の高速化に寄与することができる。
As is clear from FIG. 7, when a0≦500 ppm, deoxidizing 10S. L[8Q] Since 3Pl adjustment can be performed by adding AQ at once, the component adjustment time is reduced by 2°3 minutes (6,8 minutes → 4,5 minutes) compared to the case of >500 ppm, and R
It can contribute to speeding up the H degassing process.

(発明の効果) 本発明により、最適な脱炭終了時期を判定する方法を提
供することができ、脱炭に要する処理時間を低減するこ
とが可能となった。
(Effects of the Invention) According to the present invention, it is possible to provide a method for determining the optimal decarburization end time, and it has become possible to reduce the processing time required for decarburization.

さらに脱炭終了時の溶鋼中溶存酸素量を適正範囲に制限
したことにより、高速脱炭を一層容易に行うことが可能
となった。
Furthermore, by limiting the amount of dissolved oxygen in the molten steel at the end of decarburization to an appropriate range, it has become possible to perform high-speed decarburization even more easily.

かかる効果を有する本発明の実用上の意義は極めて著し
い。
The practical significance of the present invention having such effects is extremely significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、高炭素量域([CI =30〜200 pp
m)と低炭素量域([CI =15〜30ppm)とに
おける脱炭速度Kcの関係を表わすグラフ; 第2図は、高炭素量域([CI =30〜200 pp
m)と中炭素置載([CI =20〜50ppm)とに
おける脱炭速度Kcの関係を表わすグラ、フ; 第3図は、脱炭終了時の80と[CI の関係を表わす
グラフ 第4図は、脱炭終了時の80と(脱皮十S。、[l’l
QI用AQの原単位の関係を表わすゲラフ;第5図は、
本発明にかかる溶製法と従来法との脱炭時間を表わすグ
ラフ; 第6図(a)および第6図(b)は、aoの変化による
脱炭挙動の変化の関係を表わすグラフ; 第7図は、脱炭終了時a0と成分調整時間の関係を表わ
すグラフ: 第8図は、l?l+処理法の高速化による脱炭挙動の変
化の関係を表わすグラフ;および 第9図は、R1+処理法におけるガスバランスを表わす
グラフである。
Figure 1 shows the high carbon content region ([CI = 30-200 pp
Figure 2 is a graph showing the relationship between the decarburization rate Kc in the high carbon content range ([CI = 30 to 200 ppm) and the low carbon content range ([CI = 15 to 30 ppm)];
Figure 3 is a graph showing the relationship between 80 and [CI] at the end of decarburization. The figure shows 80 at the end of decarburization and (Decarburization 1S., [l'l
A galaf representing the relationship between the basic units of AQ for QI; Figure 5 is
A graph showing the decarburization time between the melting method according to the present invention and the conventional method; FIGS. 6(a) and 6(b) are graphs showing the relationship between changes in decarburization behavior due to changes in ao; The figure is a graph showing the relationship between a0 at the end of decarburization and component adjustment time: Figure 8 shows l? A graph showing the relationship between changes in decarburization behavior due to speeding up of the l+ treatment method; and FIG. 9 is a graph showing the gas balance in the R1+ treatment method.

Claims (2)

【特許請求の範囲】[Claims] (1)炭素含有量が30ppm以下である鋼を真空処理
炉にて溶製する際に、 (i)脱炭開始前および脱炭処理中に溶鋼中の炭素含有
量を測定することによりこの間における脱炭速度を算出
し、この算出値より低炭素量域における脱炭速度を推定
する工程と、 (ii)(i)の工程で求めた低炭素量域における脱炭
速度と溶鋼中の炭素含有量とから、脱炭終了時の排ガス
中のCO濃度を求める工程と、 (iii)(ii)の工程で求めたCO濃度に基づいて
脱炭の終了時期を判定する工程と、 からなる低炭素鋼の溶製方法。
(1) When melting steel with a carbon content of 30 ppm or less in a vacuum processing furnace, (i) measuring the carbon content in the molten steel before and during decarburization; A process of calculating the decarburization rate and estimating the decarburization rate in the low carbon content range from this calculated value, and (ii) calculating the decarburization rate in the low carbon content range determined in step (i) and the carbon content in the molten steel. (iii) determining the end time of decarburization based on the CO concentration determined in step (ii); Steel melting method.
(2)請求項(1)記載の溶製方法において、さらに脱
炭処理終了時の溶鋼中の溶存酸素量を150ppm以上
500ppm以下の範囲内に調整することを特徴とする
、低炭素鋼の溶製方法。
(2) The method for producing low carbon steel according to claim (1), further comprising adjusting the amount of dissolved oxygen in the molten steel at the end of the decarburization treatment to within a range of 150 ppm to 500 ppm. Manufacturing method.
JP25921288A 1988-10-14 1988-10-14 Production of low-carbon steel by smelting Pending JPH02107714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25921288A JPH02107714A (en) 1988-10-14 1988-10-14 Production of low-carbon steel by smelting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25921288A JPH02107714A (en) 1988-10-14 1988-10-14 Production of low-carbon steel by smelting

Publications (1)

Publication Number Publication Date
JPH02107714A true JPH02107714A (en) 1990-04-19

Family

ID=17330952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25921288A Pending JPH02107714A (en) 1988-10-14 1988-10-14 Production of low-carbon steel by smelting

Country Status (1)

Country Link
JP (1) JPH02107714A (en)

Similar Documents

Publication Publication Date Title
JP5396834B2 (en) Converter refining method
JP2013108153A (en) Converter refining method
JP3287204B2 (en) End point carbon concentration control method and carbon concentration control device in RH vacuum degasser
JP6007887B2 (en) Vacuum degassing apparatus and method for decarburizing molten steel using the same
JPH02107714A (en) Production of low-carbon steel by smelting
JP4686917B2 (en) Melting method of molten steel in vacuum degassing equipment
JP3891564B2 (en) Control method of decarburization time in vacuum decarburization of molten steel
KR102155413B1 (en) Method for determining decarburization time in rh vacuum degassing process
JP6822148B2 (en) Dehydrogenation refining method for molten steel
JP6966029B1 (en) Decarburization refining method of molten steel under reduced pressure
JP2002363636A (en) Method for smelting molten steel in rh vacuum degassing apparatus
JP2006104521A (en) Molten steel decarburizing method in rh vacuum degassing device
JP6943300B2 (en) Control device and control method for vacuum degassing equipment
JP7376795B2 (en) Molten steel decarburization method in RH vacuum degassing equipment
KR102534954B1 (en) Blowing control method and blowing control device of converter type dephosphorization refining furnace
JP7211553B1 (en) Method for operating converter and method for producing molten steel
RU2026360C1 (en) Device for determining the instant of metal discharge from converter
JP7318821B2 (en) Method for deoxidizing and refining molten steel, method for manufacturing steel material, and steel material thereof
JP4277741B2 (en) Method for melting nitrogen-containing steel
JPH1192821A (en) Production of clean steel in rh degassing apparatus
JPH06306443A (en) Method for melting extra low carbon steel by vacuum refining
JP2017115173A (en) Operation method of converter
JPH02247327A (en) Method for refining dead-soft carbon steel
JP2016188404A (en) Slag component estimation method, flux calculation method and hot metal preliminary treatment method
JPH07242928A (en) Method for estimating carbon concentration in molten steel through rh type vacuum vessel