JPH02107705A - Manufacture of sintered bearing material - Google Patents

Manufacture of sintered bearing material

Info

Publication number
JPH02107705A
JPH02107705A JP63257351A JP25735188A JPH02107705A JP H02107705 A JPH02107705 A JP H02107705A JP 63257351 A JP63257351 A JP 63257351A JP 25735188 A JP25735188 A JP 25735188A JP H02107705 A JPH02107705 A JP H02107705A
Authority
JP
Japan
Prior art keywords
sizing
core
sintered
mold
bearing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63257351A
Other languages
Japanese (ja)
Other versions
JPH07116490B2 (en
Inventor
Isamu Kikuchi
勇 菊池
Masanori Kikuchi
菊池 眞紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP25735188A priority Critical patent/JPH07116490B2/en
Publication of JPH02107705A publication Critical patent/JPH02107705A/en
Publication of JPH07116490B2 publication Critical patent/JPH07116490B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/20Shaping by sintering pulverised material, e.g. powder metallurgy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/40Shaping by deformation without removing material
    • F16C2220/48Shaping by deformation without removing material by extrusion, e.g. of metallic profiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/02Mechanical treatment, e.g. finishing
    • F16C2223/04Mechanical treatment, e.g. finishing by sizing, by shaping to final size by small plastic deformation, e.g. by calibrating or coining

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a bearing material having a little friction with a rotating shaft by arranging non-contacting part with the rotating shaft in the intermediate inner wall part of the cylindrical sintered bearing material with a sizing device at the time of manufacturing the porous oil-containing bearing material by forming and sintering metal powder. CONSTITUTION:Raw material metal powder is charged into gap between a core 1 and a metallic mold 2 and compacted with a upper and lower punches 3a, 3, and after making a cylindrical formed body, this is sintered to make the sintered body 4. This is set in a sizing core 11 for forming a large diameter part 11a at the inter-mediate part, upper and lower punches 12, 13 and metallic mold 15, and by pressing down the upper punch 12, the sintered body 4 is pressed in gap 14 between the straight part at upper end side of the sizing core 11 and inner face of the metallic mold, and successively, this is pressed in gap between the large diameter part 11a and the metallic mold 15 to execute compressed sizing. This sized material 6 is knocked out from the metallic mold 15. the expanded diameter part without contacting with the rotating shaft at the center pat of the inner wall face is formed and the bearing material having a little friction with the rotating shaft at the time of working the bearing, is obtd.

Description

【発明の詳細な説明】 「発明の目的」 本発明は焼結軸受材の製造法に係り、焼結軸受材の内径
中間部に的確な非接触域を有し、しかも両端側外面がス
トレートでハウジングに対し安定且つ適切な装着関係を
形成することのできる製品を適格に製造することのでき
る方法を得ようとするものである。
[Detailed Description of the Invention] "Object of the Invention" The present invention relates to a method for manufacturing a sintered bearing material, which has a precise non-contact area in the middle part of the inner diameter of the sintered bearing material, and has straight outer surfaces on both ends. The object of the present invention is to provide a method for properly manufacturing a product that can form a stable and proper mounting relationship with the housing.

(産業上の利用分野) 内径面中間部に非接触域を形成し摩擦低減を図り、しか
もハウジングに対する装着を常に適切ならしめるように
した焼結軸受材。
(Industrial Application Field) A sintered bearing material that reduces friction by forming a non-contact area in the middle of the inner diameter surface, and also ensures proper attachment to the housing.

(従来の技術) 含油軸受の如きにおいて、焼結金属材を用いることは従
来から実施されているが、この従来の焼結金属軸受材と
して一般的なものは内径面が軸方向においてストレート
なものである。即ち圧粉成形および焼結後のサイジング
に当ってサイジングコアにより内径面が成形されるもの
であるからそのサイジングコア面にそってストレートと
なることは当然である。
(Prior art) The use of sintered metal materials in oil-impregnated bearings and the like has been practiced for a long time, but the conventional sintered metal bearing materials generally have an inner diameter that is straight in the axial direction. It is. That is, since the inner diameter surface is shaped by the sizing core during sizing after powder compacting and sintering, it is natural that the inner diameter surface becomes straight along the sizing core surface.

上記のような従来−船釣な焼結メタルを使用し回転軸を
2ケ所で支持するような場合、各々の軸受長さは短くて
もよいが、それら2個の軸受間の同軸度を出すのが困難
である。もし上記のような同軸度を解消するため1個の
焼結メタルで軸を受けようとすると、軸受材の軸方向長
さが大となり、この軸方向長さの大きい軸受においては
回転軸との接触面積が大となって摩擦が大となる。又連
続運転時における軸受体の温度上昇も大きいことから上
記のような軸受材の内径面中間部に軸材と接触しない逃
げを形成することが行われている。即ちその方法として
は以下の如くである。
When using conventional sintered metal as described above and supporting the rotating shaft at two locations, the length of each bearing may be short, but it is necessary to maintain coaxiality between the two bearings. It is difficult to If an attempt is made to support the shaft with a single piece of sintered metal in order to eliminate the coaxiality described above, the axial length of the bearing material will be large, and in a bearing with such a large axial length, it will be difficult to connect the shaft with the rotating shaft. The contact area becomes large and friction becomes large. Furthermore, since the temperature of the bearing body increases significantly during continuous operation, a relief is formed in the middle part of the inner diameter surface of the bearing material as described above so that it does not come into contact with the shaft material. That is, the method is as follows.

■ 機械的穿削加工 ■ 特開昭58−84222のように、筒状焼結体の上
下両端面および外径両端部を拘束した状態で圧縮しその
外径中央部を膨出せしめると共に内径中央部を拡張させ
て非接触域を形成する方法。
■ Mechanical drilling ■ As in JP-A-58-84222, both upper and lower end surfaces and both ends of the outer diameter of a cylindrical sintered body are compressed while being restrained, and the center of the outer diameter is expanded, and the center of the inner diameter is A method of expanding the area to form a non-contact area.

(発明が解決しようとする課題) 内径面の全般がストレートな従来一般の圧粉成形b”e
結軸受材は軸材との間における面yr擦が大であり、特
に軸材回転時における振れを抑止するような軸受長が長
い軸受材において摩擦が大で、連続回転時における温度
上昇も高い。
(Problem to be solved by the invention) Conventional general powder compacting b”e where the inner diameter surface is generally straight
Bonded bearing materials have a large amount of surface friction between them and the shaft material, especially bearing materials with long bearing lengths that suppress vibration when the shaft material rotates, and the temperature rise during continuous rotation is also high. .

この不利を避けるための前項■によるものはその内面に
対する穿削加工が困難で、工数が嵩み、必然的にコスト
アップとなる。
In order to avoid this disadvantage, the method described in the previous item (2) is difficult to perform drilling on the inner surface, which increases the number of man-hours and inevitably increases costs.

前項■によるものは上記■の場合の不利を解消するもの
と言えるが圧縮操作時において膨出する現象を利用する
ものであるから的確な形状組織を確保し得ない傾向があ
り、強度的にも不充分となり易いのでそれなりの肉厚を
必要とし、又比較的短小なものとなる。更にこのものの
両端側外面における形状は小径部となり、即ち中間部の
みが上記のように膨出成形されたものとなるのでこのよ
うに中央部が膨出した軸受をハウジングに設定するに当
ってはハウジングの両側において夫々空隙を残し、又仮
りにハウジングの一側に軸受体一端側の外径寸法に合致
させた寸法形状とする特別な構成となすことにより略密
実な設定が得られるとしても軸受体の他端側はハウジン
グとの間にやはり空隙を残すこととならざるを得す、安
定なセント状態を得難い。
Although it can be said that the method according to the previous item (■) eliminates the disadvantage of the above case (■), since it utilizes the phenomenon of swelling during compression operation, it tends to be unable to secure an accurate shape structure, and it also has a tendency to be difficult to maintain in terms of strength. Since it tends to be insufficient, it requires a certain wall thickness and is relatively short and small. Furthermore, the shape of the outer surface of both ends of this product is a small diameter part, that is, only the middle part is bulged as described above, so when installing a bearing with a bulged center part like this in a housing, Even if a substantially tight setting can be obtained by leaving gaps on both sides of the housing and creating a special configuration in which one side of the housing has a size and shape that matches the outer diameter of one end of the bearing body. A gap must still be left between the other end of the bearing and the housing, making it difficult to obtain a stable centrifugal state.

「発明の構成」 (課題を解決するための手段) コアと金型との間に装入された原料粉を圧粉成形した筒
状体とする圧粉成形工程と、この圧粉成形筒状体を焼結
してから成形域中間部を大径状態とされたサイジングコ
アとサイジング金型との間に装入すると共に上下パンチ
によりサイジングし、前記したサイジングコア成形域の
中間部大径部分により前記成形筒状焼結体の内孔中間部
に拡径域を形成し、次いでサイジングコアと共にサイジ
ング体を金型から押出し、その後該サイジング体のスプ
リングバンクにより前記サイジングコアを抜取ることを
特徴とした焼結軸受材の製造法。
"Structure of the Invention" (Means for Solving the Problems) A powder compacting process in which raw material powder charged between a core and a mold is compacted into a cylindrical body, and this compacted cylindrical body. After sintering the body, the middle part of the forming area is inserted between the sizing core, which has a large diameter, and the sizing mold, and sizing is performed using upper and lower punches, and the large diameter part of the middle part of the forming area of the sizing core is sintered. forming an enlarged diameter region in the middle part of the inner hole of the molded cylindrical sintered body, then extruding the sizing body together with the sizing core from the mold, and then extracting the sizing core by a spring bank of the sizing body. A manufacturing method for sintered bearing materials.

(作用) 圧粉成形焼結筒状体を成形域中間部を大径状態とされた
サイジングコアとサイジング金型との間に装入しサイジ
ングすることにより内孔中間部が前記大径部で拡径され
たサイジング体が得られる。
(Function) By inserting a compacted sintered cylindrical body between a sizing core and a sizing mold in which the middle part of the forming area is made large in diameter and sizing, the middle part of the inner hole becomes the large diameter part. A sizing body with an expanded diameter is obtained.

このサイジング後、サイジング体をそのコアと共に金型
から取出すことによりサイジング体にスプリングバンク
が得られ、又前記したサイジングコア大径部との境界に
おけるテーパなどから一船的に10μm以下であるコア
大径部が容易に引抜ける。
After this sizing, the sizing body is taken out from the mold along with its core to obtain a spring bank in the sizing body, and the core size is 10 μm or less in one ship due to the taper at the boundary with the large diameter part of the sizing core. The diameter part can be easily pulled out.

サイジング後における製品の内外面が共に圧粉ないし圧
縮成形層として形成され、組織および寸法を均一安定化
すると共に強度性を適切に得しめる。
After sizing, both the inner and outer surfaces of the product are formed as compacted powder or compression molded layers, which stabilizes the structure and dimensions to be uniform and provides appropriate strength.

従って比較的薄層な製品、あるいは外径よりも大きい長
さをもった比較的長い製品であっても適切に製造するこ
とを可能とする。両端側の軸材に対する摺動面が何れも
金型成形された的確な寸法および組織をもったものとな
るので在勤な軸受作用を得しめる。又両端部を含めた製
品の内径は−様なストレートをなしていてハウジング取
付部に特別な工作を必要とせず、しかもハウジングに対
し常に密実状態の装着を得しめる。
Therefore, even products with relatively thin layers or relatively long products with a length larger than the outer diameter can be appropriately manufactured. Since the sliding surfaces for the shaft members on both ends are molded with precise dimensions and structure, a constant bearing action is achieved. Moreover, the inner diameter of the product including both ends is straight like that, so no special machining is required at the housing attachment part, and moreover, it can always be attached to the housing in a tight state.

(実施例) 上記したような本発明によるものの具体的な実施態様を
添附図面に示すものについて説明すると、本発明におい
ては第1図に示すような操作手法によって圧粉成形し、
次いで該圧粉成形体を焼結した後のサイジングを第2図
に段階的に示すような手法で行うものである。
(Example) To explain the specific embodiment of the invention as described above, which is shown in the attached drawings, in the present invention, compaction is performed by the operation method shown in FIG.
Next, after sintering the powder compact, sizing is carried out in a stepwise manner as shown in FIG.

即ち第1図の圧粉成形は、従来から一般的に行われてい
るところと全く同じであって、コア1と金型2との間に
原料粉を装入してから上下のパンチ3.3aをコア1に
そって操作し圧粉成形するもので内外面が何れもストレ
ートな成形体として成形されるものである。
That is, the powder compacting shown in FIG. 1 is exactly the same as that which has been conventionally performed, in which raw material powder is charged between a core 1 and a mold 2, and then upper and lower punches 3. 3a is operated along the core 1 and compacted to form a molded body with straight inner and outer surfaces.

上記のような第1図の手法で得られた圧粉成形体は次い
で焼結処理を受は第1図(B)として示すような焼結体
4とされる。
The powder compact obtained by the method shown in FIG. 1 as described above is then subjected to a sintering treatment to form a sintered body 4 as shown in FIG. 1(B).

前記のようにして得られた焼結体は次いで第2図のよう
な各過程を経てサイジング処理されるもので、このサイ
ジングに当ってはサイジング域の中間部を大径部11a
とされたサイジングコア11と上下バンチ12.13お
よび金型15を用いる。
The sintered body obtained as described above is then subjected to sizing treatment through various steps as shown in FIG.
A sizing core 11, upper and lower bunches 12, 13, and a mold 15 are used.

即ち先ず、同図(A)のようにサイジングコア11の上
端を金型15の上面に合致させた状態で前記したような
焼結体4をセットし、上パンチ12を圧下すると焼結体
4は上記のようなサイジングコア11の上端側ストレー
ト部11bと金型内面との間の間隙14に圧入され、次
いで大径部11aと金型15との間に圧入される。大径
部11aのサイジングコア11外径に対する増径量は製
品軸受として軸材に対する摩擦減少を有効に得るため、
−船釣に5〜10μm程度で充分であり、この程度に大
径とされた大径部11aと金型15の内面との間には比
較的平易に圧入されて第2図(B)の状態となり、又下
バンチ13の加圧によって第2図(C)のように圧縮サ
イジングされる。
That is, first, as shown in the same figure (A), the above-described sintered body 4 is set with the upper end of the sizing core 11 aligned with the upper surface of the mold 15, and when the upper punch 12 is pressed down, the sintered body 4 is is press-fitted into the gap 14 between the upper straight portion 11b of the sizing core 11 as described above and the inner surface of the mold, and then press-fitted between the large-diameter portion 11a and the mold 15. The amount of increase in diameter of the large diameter portion 11a relative to the outer diameter of the sizing core 11 is determined in order to effectively reduce friction against the shaft material as a product bearing.
- Approximately 5 to 10 μm is sufficient for boat fishing, and it is relatively easy to press fit between the large diameter portion 11a made to this large diameter and the inner surface of the mold 15, as shown in Fig. 2 (B). Then, by applying pressure from the lower bunch 13, it is compressed and sized as shown in FIG. 2(C).

第2図(C)のように圧縮サイジングされたものは次い
で下パンチ13とサイジングコア11とが共に金型15
から押上げられることにより第2図(D)のようにサイ
ジング材6がノックアウトされる。このようなノックア
ウトでサイジング時に圧縮されていたサイジング材6が
スプリングハックし、その内孔とサイジングコア11の
成型域との間にそれなりの間隙が生ずることは第2図(
D)の如くであり、この状態でサイジングコア11を適
宜に下パンチ13と共に引抜くと、第2図(E)のよう
にサイジング材6のみが金型15上に残る。
As shown in FIG. 2(C), the lower punch 13 and the sizing core 11 are both compressed and sized in the mold 15.
As the sizing material 6 is pushed up, the sizing material 6 is knocked out as shown in FIG. 2(D). As shown in Fig. 2, the sizing material 6 compressed during sizing is spring-hacked due to such knockout, and a certain gap is created between the inner hole and the molding area of the sizing core 11.
D), and when the sizing core 11 is appropriately pulled out together with the lower punch 13 in this state, only the sizing material 6 remains on the mold 15 as shown in FIG. 2(E).

即らこの第2図(E)のように金型15上に残ったサイ
ジング材6は同図(F)のように成形域外に払い出され
て製品となり、その後は第2図(A)の状態に戻って新
しい焼結材4に対する上述同様なサイジングが繰返され
ることとなる。
That is, as shown in FIG. 2 (E), the sizing material 6 remaining on the mold 15 is discharged outside the molding area as shown in FIG. Returning to the state, the same sizing as described above is repeated for a new sintered material 4.

上記したサイジング処理に関し第2図(D)に示したよ
うなサイジング材のスプリングバンクについて、その仔
細を実地的に説明すると、コアおよび金型間において上
下パンチ12.13で圧縮され、サイジングされた後に
サイジング材6が金型15から引出されると、その内外
径の何れにおいても金型寸法より+0.1〜+0.2%
程度大径化することが本発明者等の検討によって確認さ
れている。つまり材質、組織などによりそれなりに変動
があるにしても一般的なサイジング条件においては上記
のようなスプリングバンク量が得られ、サイジングコア
における大径部11aの寸法をこのスプリングバック量
の範囲内における大径化とすることにより斯かる大径部
11aをもったサイジングコア11が略適切に引抜ける
こととなる。この引抜きに際してはサイジング材6にお
ける弾性変形も得られるから実質的容易性は明らかであ
る。
Regarding the above-mentioned sizing process, the details of the spring bank of sizing material as shown in Figure 2 (D) will be explained in detail. When the sizing material 6 is later pulled out from the mold 15, its inner and outer diameters are +0.1 to +0.2% larger than the mold dimensions.
It has been confirmed through studies by the present inventors that the diameter can be increased to a certain degree. In other words, even though there are some variations depending on the material, structure, etc., under general sizing conditions, the above spring bank amount is obtained, and the dimensions of the large diameter portion 11a of the sizing core are set within this spring back amount. By increasing the diameter, the sizing core 11 having such a large diameter portion 11a can be pulled out approximately appropriately. Since elastic deformation of the sizing material 6 is also obtained during this drawing, it is clear that the drawing is substantially easy.

例えばサイジング材6における内孔径が8鶴の場合にお
いて、サイジング材6の拡径部における内径が8.00
5〜8.010*nとされる多くの製品について検討し
たが、何れも問題がなく、円滑なサイジングをなすこと
ができ、又このような拡径部により軸材に対する摩擦を
充分に低減することができる。
For example, when the inner hole diameter of the sizing material 6 is 8.00 mm, the inner diameter of the enlarged diameter portion of the sizing material 6 is 8.0 mm.
We have examined many products with a diameter of 5 to 8.010*n, but none of them have any problems, and smooth sizing can be achieved.Furthermore, such an enlarged diameter portion sufficiently reduces friction against the shaft material. be able to.

このようにして得られる本発明によるものは外径がスト
レートであるからハウジングに対する装着上苦心すべき
ものは何もなく、しかも内孔中間部が的確に中逃げ状と
されたものであるから支承される軸材との間における摩
擦抵抗が小となり、一体であることから同軸度も的確で
ある。
The thus obtained product according to the present invention has a straight outer diameter, so there is no need to worry about attaching it to the housing, and since the middle part of the inner hole is exactly recessed, it can be easily supported. The frictional resistance between the shaft member and the other shaft member is small, and coaxiality is also accurate since the shaft member is integrated.

「発明の効果」 上記したような本発明によるときは内径面において的確
な軸材に対する非接触面を形成することができ、それに
よって軸受作用時における摩擦を有効に縮減せしめ、し
かも全体が有効な圧粉成形ないし圧縮成形によって形成
されることから強度的に優れ、又寸法的にも的確な製品
として得られると共に一体成形材であるから同軸度の高
い設定を可能とすることは明らかであり、しかも外面が
ストレート ハウジングに対する装着上苦心すべきものが何もなく、
常に安定且つ的確な設定を簡易になし得る軸受材を低コ
ストに提供し得るものであるから工業的にその効果の大
きい発明である。
``Effects of the Invention'' According to the present invention as described above, it is possible to form a precise non-contact surface with the shaft material on the inner diameter surface, thereby effectively reducing friction during bearing operation, and moreover, it is possible to effectively reduce the friction as a whole. It is clear that since it is formed by powder molding or compression molding, it has excellent strength and can be obtained as a product with accurate dimensions, and since it is an integrally molded material, it is possible to set a high degree of coaxiality. Moreover, there is nothing to worry about when installing the outer surface to the straight housing.
This invention is industrially very effective because it can provide a bearing material that can be easily and consistently set stably and accurately at a low cost.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の技術的内容を示すものであって、第1図
は本発明方法における圧粉成形機構の断面図、第2図は
その圧粉成形焼結体に対するサイジング機構についての
各過程を段階的に示した断面的説明図である。 然してこれらの図面において、■はコア、2は金型、3
、3aはパンチ、4は焼結体、6はサイジング材、10
はハウジング、11はサイジングコア、llaはその大
径部、llbはストレー1〜部、12は上パンチ、13
は下パンチ、14は間隙、15はサイジング金型を示す
ものである。 ゛鰯5(:LHl
The drawings show the technical contents of the present invention, and Fig. 1 is a sectional view of the compaction mechanism in the method of the present invention, and Fig. 2 shows each process of the sizing mechanism for the compacted sintered body. It is a sectional explanatory view shown step by step. However, in these drawings, ■ is the core, 2 is the mold, and 3 is the core.
, 3a is a punch, 4 is a sintered body, 6 is a sizing material, 10
is the housing, 11 is the sizing core, lla is the large diameter part, llb is the stray 1~ section, 12 is the upper punch, 13
14 is a lower punch, 14 is a gap, and 15 is a sizing mold.゛Sardine 5 (:LHL

Claims (1)

【特許請求の範囲】[Claims] コアと金型との間に装入された原料粉を圧粉成形した筒
状体とする圧粉成形工程と、この圧粉成形筒状体を焼結
してから成形域中間部を大径状態とされたサイジングコ
アとサイジング金型との間に装入すると共に上下パンチ
によりサイジングし、前記したサイジングコア成形域の
中間部大径部分により前記成形筒状焼結体の内孔中間部
に拡径域を形成し、次いでサイジングコアと共にサイジ
ング体を金型から押出し、その後該サイジング体のスプ
リングバックにより前記サイジングコアを抜取ることを
特徴とした焼結軸受材の製造法。
A powder compaction process in which the raw material powder charged between the core and the mold is compacted into a cylindrical body, and after this compacted cylindrical body is sintered, the middle part of the forming area is formed into a large diameter The sizing core is inserted between the sizing core and the sizing mold, and sized using upper and lower punches. 1. A method for manufacturing a sintered bearing material, which comprises forming an enlarged diameter region, extruding a sizing body together with a sizing core from a mold, and then extracting the sizing core by springback of the sizing body.
JP25735188A 1988-10-14 1988-10-14 Manufacturing method of sintered bearing material Expired - Fee Related JPH07116490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25735188A JPH07116490B2 (en) 1988-10-14 1988-10-14 Manufacturing method of sintered bearing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25735188A JPH07116490B2 (en) 1988-10-14 1988-10-14 Manufacturing method of sintered bearing material

Publications (2)

Publication Number Publication Date
JPH02107705A true JPH02107705A (en) 1990-04-19
JPH07116490B2 JPH07116490B2 (en) 1995-12-13

Family

ID=17305174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25735188A Expired - Fee Related JPH07116490B2 (en) 1988-10-14 1988-10-14 Manufacturing method of sintered bearing material

Country Status (1)

Country Link
JP (1) JPH07116490B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07332363A (en) * 1994-06-03 1995-12-22 Pooraito Kk Inside diameter intermediate cavity shaped bearing and manufacture thereof
US5895119A (en) * 1995-11-30 1999-04-20 Hitachi Powered Metals Co., Ltd. Composite porous bearing
US6049983A (en) * 1996-08-02 2000-04-18 Hitachi Powdered Metal Co. Ltd. Method for producing a sintered porous bearing and the sintered porous bearing
NL1008457C2 (en) 1997-03-06 2000-08-15 Ntn Toyo Bearing Co Ltd Hydrodynamic, porous oil-impregnated bearing.
JP2006162077A (en) * 2005-12-19 2006-06-22 Ntn Corp Method of manufacturing dynamic pressure type sintered oil retaining bearing and housing of information equipment spindle motor
US7866047B2 (en) 2005-03-18 2011-01-11 Nidec Corporation Sleeve-unit manufacturing method
US7988810B2 (en) 2006-09-20 2011-08-02 Nidec Corporation Sleeve unit, method of manufacturing thereof, and motor using the sleeve unit
CN114228196A (en) * 2021-11-11 2022-03-25 三峡大学 Efficient forming method of thin-wall graphite heating pipe
CN114228197A (en) * 2021-11-11 2022-03-25 三峡大学 Forming device and method for thin-wall graphite heating pipe

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07332363A (en) * 1994-06-03 1995-12-22 Pooraito Kk Inside diameter intermediate cavity shaped bearing and manufacture thereof
US5895119A (en) * 1995-11-30 1999-04-20 Hitachi Powered Metals Co., Ltd. Composite porous bearing
US6119346A (en) * 1995-11-30 2000-09-19 Hitachi Powdered Metals Co., Ltd Composite porous bearing and method of making same
US6049983A (en) * 1996-08-02 2000-04-18 Hitachi Powdered Metal Co. Ltd. Method for producing a sintered porous bearing and the sintered porous bearing
DE19809770B4 (en) * 1997-03-06 2006-06-29 Ntn Corp. Hydrodynamic, porous, oil-impregnated bearing
NL1008457C2 (en) 1997-03-06 2000-08-15 Ntn Toyo Bearing Co Ltd Hydrodynamic, porous oil-impregnated bearing.
US7059052B2 (en) 1997-03-06 2006-06-13 Ntn Corporation Hydrodynamic type porous oil-impregnated bearing
US7866047B2 (en) 2005-03-18 2011-01-11 Nidec Corporation Sleeve-unit manufacturing method
JP4509922B2 (en) * 2005-12-19 2010-07-21 Ntn株式会社 Hydrodynamic sintered oil-impregnated bearing for information equipment spindle motor
JP2006162077A (en) * 2005-12-19 2006-06-22 Ntn Corp Method of manufacturing dynamic pressure type sintered oil retaining bearing and housing of information equipment spindle motor
US7988810B2 (en) 2006-09-20 2011-08-02 Nidec Corporation Sleeve unit, method of manufacturing thereof, and motor using the sleeve unit
CN114228196A (en) * 2021-11-11 2022-03-25 三峡大学 Efficient forming method of thin-wall graphite heating pipe
CN114228197A (en) * 2021-11-11 2022-03-25 三峡大学 Forming device and method for thin-wall graphite heating pipe

Also Published As

Publication number Publication date
JPH07116490B2 (en) 1995-12-13

Similar Documents

Publication Publication Date Title
JPH02107705A (en) Manufacture of sintered bearing material
US5282688A (en) Sintered oil impregnated bearing and its manufacturing method
US1620530A (en) Consolidated metallic fiber article
JP2762037B2 (en) Manufacturing method of inner diameter intermediate hollow bearing
JP2934470B2 (en) Manufacturing method of sintered oil-impregnated bearing
US2168300A (en) Sizing porous metal bearings
JPS6054525B2 (en) Manufacturing method for sintered oil-impregnated bearings
JPH028302A (en) Manufacture of sintered bearing material
JP2663481B2 (en) Sintered oil-impregnated bearing and its manufacturing method
JP2841190B2 (en) Sintered bearing material and its manufacturing method
JP2850135B2 (en) Manufacturing method of hydrodynamic groove bearing
JPS57110823A (en) Sintered oil containing bearing and its manufacture
JPS62149803A (en) Production of bearing material
JPS6142126B2 (en)
JPS62151502A (en) Production of sintered bearing material
JPH10122240A (en) Bearing of inner diameter intermediate part with hollow shape
JPH03277814A (en) Manufacture of oil impregnated sintered bearing
JPH0788521B2 (en) Sintered oil-impregnated bearing manufacturing method
JPH0988962A (en) Manufacture of bearing
JP3713559B2 (en) Manufacturing method of inner diameter enlarged bearing in inner hole
JPS5850282B2 (en) Manufacturing method of sintered oil-impregnated shaft
JP2007023327A (en) Method and device for producing internal relief bearing
RU1819701C (en) Drawing die
JP4095215B2 (en) Manufacturing method of bearing
JPH0114459B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees