JPH07116490B2 - Manufacturing method of sintered bearing material - Google Patents

Manufacturing method of sintered bearing material

Info

Publication number
JPH07116490B2
JPH07116490B2 JP25735188A JP25735188A JPH07116490B2 JP H07116490 B2 JPH07116490 B2 JP H07116490B2 JP 25735188 A JP25735188 A JP 25735188A JP 25735188 A JP25735188 A JP 25735188A JP H07116490 B2 JPH07116490 B2 JP H07116490B2
Authority
JP
Japan
Prior art keywords
sizing
core
sintered
die
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25735188A
Other languages
Japanese (ja)
Other versions
JPH02107705A (en
Inventor
勇 菊池
眞紀 菊池
Original Assignee
勇 菊池
眞紀 菊池
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 勇 菊池, 眞紀 菊池 filed Critical 勇 菊池
Priority to JP25735188A priority Critical patent/JPH07116490B2/en
Publication of JPH02107705A publication Critical patent/JPH02107705A/en
Publication of JPH07116490B2 publication Critical patent/JPH07116490B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/20Shaping by sintering pulverised material, e.g. powder metallurgy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/40Shaping by deformation without removing material
    • F16C2220/48Shaping by deformation without removing material by extrusion, e.g. of metallic profiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/02Mechanical treatment, e.g. finishing
    • F16C2223/04Mechanical treatment, e.g. finishing by sizing, by shaping to final size by small plastic deformation, e.g. by calibrating or coining

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 「発明の目的」 本発明は焼結軸受材の製造法に係り、焼結軸受材の内径
中間部に的確な非接触域を有し、しかも両端側外面がス
トレートでハウジングに対し安定且つ適切な装着関係を
形成することのできる製品を適格に製造することのでき
る方法を得ようとするものである。
DETAILED DESCRIPTION OF THE INVENTION “Object of the Invention” The present invention relates to a method for manufacturing a sintered bearing material, which has an accurate non-contact area in the middle portion of the inner diameter of the sintered bearing material, and has straight outer surfaces on both end sides. An object of the present invention is to obtain a method capable of properly manufacturing a product capable of forming a stable and appropriate mounting relationship with a housing.

(産業上の利用分野) 内径面中間部に非接触域を形成し摩擦低減を図り、しか
もハウジングに対する装着を常に適切ならしめるように
した焼結軸受材。
(Industrial field of application) A sintered bearing material that has a non-contact area in the middle of the inner diameter surface to reduce friction and is always properly mounted on the housing.

(従来の技術) 含油軸受の如きにおいて、焼結金属材を用いることは従
来から実施されているが、この従来の焼結金属軸受材と
して一般的なものは内径面が軸方向においてストレート
なものである。即ち圧粉成形および焼結後のサイジング
に当ってサイジングコアにより内径面が成形されるもの
であるからそのサイジングコア面にそってストレートと
なることは当然である。
(Prior Art) It has been practiced to use a sintered metal material such as an oil-impregnated bearing. However, a typical sintered metal bearing material of the related art has a straight inner diameter surface in the axial direction. Is. That is, since the inner diameter surface is formed by the sizing core upon sizing after compacting and sintering, it is natural that the inner surface is straight along the sizing core surface.

上記のような従来一般的な焼結メタルを使用し回転軸を
2ヶ所で支持するような場合、各々の軸受長さは短くて
もよいが、それら2個の軸受間の同軸度を出すのが困難
である。もし上記のような同軸度を解消するため1個の
焼結メタルで軸を受けようとすると、軸受材の軸方向長
さが大となり、この軸方向長さの大きい軸受においては
回転時との接触面積が大となって摩擦が大となる。又連
続運転時における軸受体の温度上昇も大きいことから上
記のような軸受材の内径面中間部に軸材と接触しない逃
げを形成することが行われている。即ちその方法として
は以下の如くである。
When the conventional general sintered metal is used and the rotary shaft is supported at two places, the length of each bearing may be short, but the concentricity between the two bearings is provided. Is difficult. If an attempt is made to receive the shaft with a single piece of sintered metal in order to eliminate the above-mentioned concentricity, the axial length of the bearing material becomes large. The contact area is large and the friction is large. Further, since the temperature rise of the bearing body during the continuous operation is large, the relief which does not contact the shaft material is formed in the intermediate portion of the inner diameter surface of the bearing material as described above. That is, the method is as follows.

機械的穿削加工 特開昭58−84222のように、筒状焼結体の上下両端
面および外径両端部を拘束した状態で圧縮しその外径中
央部を膨出せしめると共に内径中央部を拡張させて非接
触域を形成する方法。
Mechanical drilling As in Japanese Patent Laid-Open No. 58-84222, the cylindrical sintered body is compressed with both upper and lower end surfaces and outer diameter both ends constrained to bulge the outer diameter central portion and the inner diameter central portion. A method of expanding to form a non-contact area.

(発明が解決しようとする課題) 内径面の全般がストレートな従来一般の圧粉成形焼結軸
受材は軸材との間における面摩擦が大であり、特に軸材
回転時における振れを抑止するような軸受長が長い軸受
材において摩擦が大で、連続回転時における温度上昇も
高い。
(Problems to be solved by the invention) Conventional powder compacted sintered bearing materials having a straight inner diameter surface have large surface friction with the shaft material, and in particular suppress runout during rotation of the shaft material. Such a bearing material having a long bearing length has a large friction and a high temperature rise during continuous rotation.

この不利を避けるための前項によるものはその内面に
対する穿削加工が困難で、工数が嵩み、必然的にコスト
アップとなる。
In order to avoid this disadvantage, according to the above item, it is difficult to perform the drilling process on the inner surface, the man-hour is increased, and the cost is inevitably increased.

前項によるものは上記の場合の不利を解消するもの
と言えるが圧縮操作時において膨出する現象を利用する
ものであるから的確な形状組織を確保し得ない傾向があ
り、強度的にも不充分となり易いのでそれなりの肉厚を
必要とし、又比較的短小なものとなる。更にこのものの
両端側外面における形状は小径部となり、即ち中間部の
みが上記のように膨出成形されたものとなるのでこのよ
うに中央部が膨出した軸受をハウジングに設定するに当
ってはハウジングの両側において夫々空隙を残し、又仮
りにハウジングの一側に軸受体一端側の外径寸法に合致
させた寸法形状とする特別な構成となすことにより略密
実な設定が得られるとしても軸受体の他端側はハウジン
グとの間にやはり空隙を残すこととならざるを得ず、安
定なセット状態を得難い。
The one according to the preceding paragraph can be said to eliminate the disadvantages in the above case, but since it utilizes the phenomenon of bulging during compression operation, there is a tendency that an accurate shape structure cannot be secured, and strength is also insufficient. Since it is easy to become, it requires a certain thickness and is relatively short. Furthermore, the outer surface of both ends of this product has a small diameter part, that is, only the middle part is bulged as described above. Even if a substantially solid setting can be obtained by leaving a space on each side of the housing, or by assuming a special configuration in which one side of the housing has a size and shape that matches the outer diameter size of one end of the bearing body. At the other end of the bearing body, there is no choice but to leave a gap between the bearing body and the housing, and it is difficult to obtain a stable set state.

「発明の構成」 (課題を解決するための手段) コアと金型との間に装入された原料粉を圧粉成形した筒
状体とする圧粉成形工程と、この圧粉成形筒状体を焼結
してから成形域中間部を大径状態とされたサイジングコ
アとサイジング金型との間に装入すると共に上下パンチ
によりサイジングし、前記したサイジングコア成形域の
中間部大径部分により前記成形筒状焼結体の内孔中間部
に拡径域を形成し、次いでサイジングコアと共にサイジ
ング体を金型から押出し、その後該サイジング体のスプ
リングバックにより前記サイジングコアを抜取ることを
特徴とした焼結軸受材の製造法。
"Structure of the Invention" (Means for Solving the Problem) A powder compacting step of forming a raw material powder charged between a core and a mold into a cylindrical body, and a compaction tube After sintering the body, insert the middle part of the molding area between the sizing core and the sizing die, which are in a large diameter state, and sizing by the upper and lower punches, and the large diameter part of the middle portion of the sizing core described above. By forming a diameter expansion region in the intermediate portion of the inner hole of the molded cylindrical sintered body by, then extruding the sizing body together with the sizing core from the mold, after that the sizing core is removed by spring back of the sizing body. Manufacturing method of sintered bearing material.

(作用) 圧粉成形焼結筒状体を成形域中間部を大径状態とされた
サイジングコアとサイジング金型との間に装入しサイジ
ングすることにより内孔中間部が前記大径部で拡径され
たサイジング体が得られる。
(Function) The compacted and sintered sintered tubular body is charged between the sizing die and the sizing core, which has a large diameter in the middle part of the molding area, and is sized so that the inner part of the inner hole has the large diameter part. An enlarged sizing body is obtained.

このサイジング後、サイジング体をそのコアと共に金型
から取出すことによりサイジング体にスプリングバック
が得られ、又前記したサイジングコア大径部との境界に
おけるテーパなどから一般的に10μm以下であるコア大
径部が容易に引抜ける。
After this sizing, a spring back is obtained in the sizing body by removing the sizing body together with the core from the mold, and the core large diameter is generally 10 μm or less due to the taper at the boundary with the large diameter portion of the sizing core. The part can be pulled out easily.

サイジング後における製品の内外面が共に圧粉ないし圧
縮成形層として形成され、組織および寸法を均一安定化
すると共に強度姓を適切に得しめる。
The inner and outer surfaces of the product after sizing are both formed as a powder compact or a compression-molded layer, which uniformly stabilizes the structure and dimensions and also appropriately obtains strength.

従って比較的薄層な製品、あるいは外径よりも大きい長
さをもった比較的長い製品であっても適切に製造するこ
とを可能とする。両端側の軸材に対する摺動面が何れも
金型成形された的確な寸法および組織をもったものとな
るので有効な軸受作用を得しめる。又両端部を含めた製
品の内径は一様なストレートをなしていてハウジング取
付部に特別な工作を必要とせず、しかもハウジングに対
し常に密実状態の装着を得しめる。
Therefore, even a relatively thin product or a relatively long product having a length larger than the outer diameter can be appropriately manufactured. Since the sliding surfaces for the shaft members on both end sides each have an appropriate size and structure formed by die molding, an effective bearing action can be obtained. Moreover, the inner diameter of the product including both ends is uniform and straight, so that no special work is required for the housing mounting portion, and moreover, it is possible to always mount the housing in a solid state.

(実施例) 上記したような本発明によるものの具体的な実施態様を
添附図面に示すものについて説明すると、本発明におい
ては第1図に示すような操作手法によって圧粉成形し、
次いで該圧粉成形体を焼結した後のサイジングを第2図
に段階的に示すような手法で行うものである。
(Example) A concrete embodiment of the present invention as described above will be described with reference to the accompanying drawings. In the present invention, powder compaction is performed by an operation method as shown in FIG.
Next, the sizing after sintering the green compact is carried out by the method shown in steps in FIG.

即ち第1図の圧粉成形は、従来から一般的に行われてい
るところと全く同じであって、コア1と金型2との間に
原料粉を装入してから上下のパンチ3、3aをコア1にそ
って操作し圧粉成形するもので内外面が何れもストレー
トな成形体として成形されるものである。
That is, the powder compaction shown in FIG. 1 is exactly the same as that which has been generally performed conventionally, in which the raw material powder is charged between the core 1 and the die 2, and then the upper and lower punches 3, 3a is operated along the core 1 to perform powder compacting, and the inner and outer surfaces are both formed as straight compacts.

上記のような第1図の手法で得られた圧粉成形体は次い
で焼結処理を受け第1図(B)として示すような焼結体
4とされる。
The powder compact obtained by the method of FIG. 1 as described above is then subjected to a sintering treatment to obtain a sintered body 4 as shown in FIG. 1 (B).

前記のようにして得られた焼結体は次いで第2図のよう
な各過程を経てサイジング処理されるもので、このサイ
ジングに当ってはサイジング域の中間部を大径部11aと
されたサイジングコア11と上下パンチ12、13および金型
15を用いる。
The sintered body obtained as described above is then subjected to a sizing treatment through the steps as shown in FIG. 2, and in this sizing, the sizing in which the middle portion of the sizing region is made the large diameter portion 11a Core 11, upper and lower punches 12, 13 and mold
Use 15.

即ち先ず、同図(A)のようにサイジングコア11の上端
を金型15の上面に合致させた状態で前記したような焼結
体4をセットし、上パンチ12を圧下すると焼結体4は上
記のようなサイジングコア11の上端側ストレート部11b
と金型内面との間の間隙14に圧入され、次いで大径部11
aと金型15との間に圧入される。大径部11aのサイジング
コア11外径に対する増径量は製品軸受として軸材に対す
る摩擦減少を有効に得るため、一般的に5〜10μm程度
で充分であり、この程度に大径とされた大径部11aと金
型15の内面との間には比較的平易に圧入されて第2図
(B)の状態となり、又下パンチ13の加圧によって第2
図(C)のように圧縮サイジングされる。
That is, first, as shown in FIG. 3A, the above-mentioned sintered body 4 is set with the upper end of the sizing core 11 aligned with the upper surface of the die 15, and the upper punch 12 is pressed down to obtain the sintered body 4. Is the upper end side straight portion 11b of the sizing core 11 as described above.
Is pressed into the gap 14 between the mold and the inner surface of the mold, and then the large diameter portion 11
It is press-fitted between a and the mold 15. In order to effectively reduce the friction of the large diameter portion 11a with respect to the outer diameter of the sizing core 11 as a product bearing, about 5 to 10 μm is generally sufficient. It is relatively easily press-fitted between the diameter portion 11a and the inner surface of the die 15 to be in the state of FIG.
Compression sizing is performed as shown in FIG.

第2図(C)のように圧縮サイジングされたものは次い
で下パンチ13とサイジングコア11とが共に金型15から押
上げられることにより第2図(D)のようにサイジング
材6がノックアウトされる。このようなノックアウトで
サイジング時に圧縮されていたサイジング材6がスプリ
ングバックし、その内孔とサイジングコア11の成形域と
の間にそれなりの間隙が生ずることは第2図(D)の如
くであり、この状態でサイジングコア11を適宜に下パン
チ13と共に引抜くと、第2図(E)のようにサイジング
材6のみが金型15上に残る。即ちこの第2図(E)のよ
うに金型15上に残ったサイジング材6は同図(F)のよ
うに成形域外に払い出されて製品となり、その後は第2
図(A)の状態に戻って新しい焼結材4に対する上述同
様なサイジングが繰返されることとなる。
In the case of compression sizing as shown in FIG. 2 (C), the lower punch 13 and the sizing core 11 are both pushed up from the die 15 to knock out the sizing material 6 as shown in FIG. 2 (D). It As shown in FIG. 2D, the sizing material 6 that has been compressed at the time of sizing springs back due to such knockout, and a certain amount of gap is generated between the inner hole and the molding region of the sizing core 11. When the sizing core 11 is appropriately pulled out together with the lower punch 13 in this state, only the sizing material 6 remains on the die 15 as shown in FIG. 2 (E). That is, the sizing material 6 remaining on the mold 15 as shown in FIG. 2 (E) is discharged out of the molding area as shown in FIG.
Returning to the state of FIG. (A), the sizing similar to the above is repeated for the new sintered material 4.

上記したサイジング処理に関し第2図(D)に示したよ
うなサイジング材のスプリングバックについて、その仔
細を実地的に説明すると、コアおよび金型間において上
下パンチ12、13で圧縮され、サイジングされた後にサイ
ジング材6が金型15から引出されると、その内外径の何
れにおいても金型寸法より+0.1〜+0.2%程度大径化す
ることが本発明者等の検討によって確認されている。つ
まり材質、組織などによりそれなりに変動があるにして
も一般的なサイジング条件においては上記のようなスプ
リングバック量が得られ、サイジングコアにおける大径
部11aの寸法をこのスプリングバック量の範囲内におけ
る大径化とすることにより斯かる大径部11aをもったサ
イジングコア11が略適切に引抜けることとなる。この引
抜きに際してはサイジング材6における弾性変形も得ら
れるから実質的容易性は明らかである。例えばサイジン
グ材6における内孔径が8mmの場合において、サイジン
グ材6の拡径部における内径が8.005〜8.010mmとされる
多くの製品について検討したが、何れも問題がなく、円
滑なサイジングをなすことができ、又このような拡径部
により軸材に対する摩擦を充分に低減することができ
る。
Regarding the above-described sizing treatment, the details of the spring-back of the sizing material as shown in FIG. 2D will be described in practice. The sizing was performed by compressing the upper and lower punches 12 and 13 between the core and the die. It was confirmed by the study of the present inventors that when the sizing material 6 is pulled out from the mold 15 later, the diameter is increased by about +0.1 to + 0.2% from the mold size in any of the inner and outer diameters. There is. That is, even if there is some variation due to material, structure, etc., the above-mentioned springback amount is obtained under general sizing conditions, and the size of the large diameter portion 11a in the sizing core is set within this springback amount range. By increasing the diameter, the sizing core 11 having such a large diameter portion 11a can be pulled out substantially appropriately. At the time of this withdrawal, elastic deformation of the sizing material 6 is also obtained, so that it is substantially easy. For example, when the inner diameter of the sizing material 6 is 8 mm, many products in which the inner diameter of the expanded portion of the sizing material 6 is 8.005 to 8.010 mm have been studied, but there is no problem and smooth sizing is performed. Moreover, the expanded portion can sufficiently reduce the friction with respect to the shaft material.

このようにして得られる本発明によるものは外径がスト
レートであるからハウジングに対する装着上苦心すべき
ものは何もなく、しかも内孔中間部が的確に中逃げ状と
されたものであるから支承される軸材との間における摩
擦抵抗が小となり、一体であることから同軸度も的確で
ある。
The thus-obtained one according to the present invention has a straight outer diameter, so that there is nothing to be troubled when mounting it on the housing, and moreover, the middle portion of the inner hole is accurately formed into a central relief shape. The friction resistance between the shaft and the shaft is small, and since it is integrated, the coaxiality is also accurate.

「発明の効果」 上記したような本発明によるときは内径面において的確
な軸材に対する非接触面を形成することができ、それに
よって軸受作用時における摩擦を有効に縮減せしめ、し
かも全体が有効な圧粉成形ないし圧縮成形によって形成
されることから強度的に優れ、又寸法的にも的確な製品
として得られると共に一体成形材であるから同軸度の高
い設定を可能とすることは明らかであり、しかも外面が
ストレートなものとして量産的に得られるので、ハウジ
ングに対する装着上苦心すべきものが何もなく、常に安
定且つ的確な設定を簡易になし得る軸受材を低コストに
提供し得るものであるから工業的にその効果の大きい発
明である。
[Advantages of the Invention] According to the present invention as described above, it is possible to form an appropriate non-contact surface for the shaft member on the inner diameter surface, thereby effectively reducing the friction at the time of bearing action, and moreover the whole is effective. It is clear that since it is formed by compaction molding or compression molding, it is excellent in strength, and it can be obtained as an accurate product in terms of dimensions, and it is possible to set a high degree of coaxiality because it is an integrally molded material. Moreover, since the outer surface can be mass-produced with a straight surface, there is nothing to worry about when mounting on the housing, and it is possible to provide a bearing material that can always make stable and accurate setting easily at low cost. It is an invention that is industrially highly effective.

【図面の簡単な説明】[Brief description of drawings]

図面は本発明の技術的内容を示すものであって、第1図
は本発明方法における圧粉成形機構の断面図、第2図は
その圧粉成形焼結体に対するサイジング機構についての
各過程を段階的に示した断面的説明図である。 然してこれらの図面において、1はコア、2は金型、
3、3aはパンチ、4は焼結体、6はサイジング材、10は
ハウジング、11はサイジングコア、11aはその大径部、1
1bはストレート部、12は上パンチ、13は下パンチ、14は
間隙、15はサイジング金型を示すものである。
The drawings show the technical contents of the present invention. FIG. 1 is a cross-sectional view of a powder compacting mechanism in the method of the present invention, and FIG. 2 shows each step of a sizing mechanism for the compacted sintered body. It is sectional explanatory drawing shown in steps. Therefore, in these drawings, 1 is a core, 2 is a mold,
3 and 3a are punches, 4 is a sintered body, 6 is a sizing material, 10 is a housing, 11 is a sizing core, 11a is its large diameter portion, 1
1b is a straight part, 12 is an upper punch, 13 is a lower punch, 14 is a gap, and 15 is a sizing die.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】コアと金型との間に装入された原料粉を圧
粉成形した筒状体とする圧粉成形工程と、この圧粉成形
筒状体を焼結してから成形域中間部を大径状態とされた
サイジングコアとサイジング金型との間に装入すると共
に上下パンチによりサイジングし、前記したサイジング
コア成形域の中間部大径部分により前記成形筒状焼結体
の内孔中間部に拡径域を形成し、次いでサイジングコア
と共にサイジング体を金型から押出し、その後該サイジ
ング体のスプリングバックにより前記サイジングコアを
抜取ることを特徴とした焼結軸受材の製造法。
1. A powder compacting step of compacting a raw material powder charged between a core and a die into a cylindrical body, and a compacting zone after sintering the compacted cylindrical body. The intermediate portion is charged between the sizing core and the sizing die in a large diameter state, and sizing is performed by the upper and lower punches, and the formed tubular sintered body is formed by the large diameter portion in the intermediate portion of the sizing core molding region. A method for producing a sintered bearing material, characterized in that an expanded diameter region is formed in an intermediate portion of an inner hole, a sizing body is then extruded from a mold together with a sizing core, and then the sizing core is extracted by spring back of the sizing body. .
JP25735188A 1988-10-14 1988-10-14 Manufacturing method of sintered bearing material Expired - Fee Related JPH07116490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25735188A JPH07116490B2 (en) 1988-10-14 1988-10-14 Manufacturing method of sintered bearing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25735188A JPH07116490B2 (en) 1988-10-14 1988-10-14 Manufacturing method of sintered bearing material

Publications (2)

Publication Number Publication Date
JPH02107705A JPH02107705A (en) 1990-04-19
JPH07116490B2 true JPH07116490B2 (en) 1995-12-13

Family

ID=17305174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25735188A Expired - Fee Related JPH07116490B2 (en) 1988-10-14 1988-10-14 Manufacturing method of sintered bearing material

Country Status (1)

Country Link
JP (1) JPH07116490B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7866047B2 (en) 2005-03-18 2011-01-11 Nidec Corporation Sleeve-unit manufacturing method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2762037B2 (en) * 1994-06-03 1998-06-04 ポーライト株式会社 Manufacturing method of inner diameter intermediate hollow bearing
JP3475215B2 (en) * 1995-11-30 2003-12-08 日立粉末冶金株式会社 Composite porous bearing
JP3511553B2 (en) * 1996-08-02 2004-03-29 日立粉末冶金株式会社 Method for producing sintered oil-impregnated bearing
GB2322915B (en) 1997-03-06 2001-06-06 Ntn Toyo Bearing Co Ltd Hydrodynamic type porous oil-impregnated bearing
JP4509922B2 (en) * 2005-12-19 2010-07-21 Ntn株式会社 Hydrodynamic sintered oil-impregnated bearing for information equipment spindle motor
JP2008101772A (en) 2006-09-20 2008-05-01 Nippon Densan Corp Sleeve unit manufacturing method, sleeve unit, and motor
CN114228197B (en) * 2021-11-11 2023-08-01 三峡大学 Forming device and method for thin-wall graphite heating pipe
CN114228196B (en) * 2021-11-11 2023-07-28 三峡大学 Efficient forming method of thin-wall graphite heating pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7866047B2 (en) 2005-03-18 2011-01-11 Nidec Corporation Sleeve-unit manufacturing method

Also Published As

Publication number Publication date
JPH02107705A (en) 1990-04-19

Similar Documents

Publication Publication Date Title
EP2052800B1 (en) Production method of a sintered gear with an area of high density
KR960005887B1 (en) Devices for forming sintered helical gears
JPH07116490B2 (en) Manufacturing method of sintered bearing material
US5282688A (en) Sintered oil impregnated bearing and its manufacturing method
JP3347451B2 (en) Molding apparatus for green compaction and molding method
JP2762037B2 (en) Manufacturing method of inner diameter intermediate hollow bearing
JP2934470B2 (en) Manufacturing method of sintered oil-impregnated bearing
JPH086124B2 (en) Manufacturing method of sintered bearing material
JP2841190B2 (en) Sintered bearing material and its manufacturing method
JP2003193113A (en) Sintered product, method for forming sintered product, and forming die
JP4282084B2 (en) Method for manufacturing sintered parts
JPS58145314A (en) Boss projecting to both side of steel plate, and its forming method
JP3173398B2 (en) Powder molding method
JPS62151502A (en) Production of sintered bearing material
JP3507666B2 (en) Manufacturing method of sintered oil-impregnated bearing with internal groove
JPH064883B2 (en) Bearing material manufacturing method
JPH0788521B2 (en) Sintered oil-impregnated bearing manufacturing method
JP3713559B2 (en) Manufacturing method of inner diameter enlarged bearing in inner hole
JPH03277814A (en) Manufacture of oil impregnated sintered bearing
JPS5850282B2 (en) Manufacturing method of sintered oil-impregnated shaft
JPH05156305A (en) Device for compacting sintered part
JP2809288B2 (en) Molding method for long cylindrical green compact
JPH08209205A (en) Green compact molding die
JPH0988962A (en) Manufacture of bearing
JPS63183106A (en) Power molding device for helical gear

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees