JPH02105106A - Optical fiber - Google Patents

Optical fiber

Info

Publication number
JPH02105106A
JPH02105106A JP63258584A JP25858488A JPH02105106A JP H02105106 A JPH02105106 A JP H02105106A JP 63258584 A JP63258584 A JP 63258584A JP 25858488 A JP25858488 A JP 25858488A JP H02105106 A JPH02105106 A JP H02105106A
Authority
JP
Japan
Prior art keywords
optical fiber
carbon film
raman
carbon
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63258584A
Other languages
Japanese (ja)
Inventor
Shinji Araki
荒木 真治
Keiji Ohashi
圭二 大橋
Takeshi Shimomichi
毅 下道
Hideo Suzuki
秀雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP63258584A priority Critical patent/JPH02105106A/en
Publication of JPH02105106A publication Critical patent/JPH02105106A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To obtain the optical fiber having a sufficient hydrogen resistance characteristic and mechanical strength by specifying the crystal structure of a carbon film. CONSTITUTION:The carbon film 2 is provided on the bare optical fiber 1 and a resin film 3 is further provided at need on this carbon film 2. The carbon film 2 in this case refers to the carbon film which is obtd. by thermally decomposing a raw material compd. contg. carbon and with which the ratio R=I1,360/I1,600 of the intensity I1,600 of the Raman rays generated in a 1,575 to 1,600cm<-1> oscillation region and the intensity I1,360 of the Raman rays generated in a 1,355 to 1,360cm<-1> oscillation region attains 0.75 to 1.40. The crystal structure of the carbon film indicating such Raman spectra contains much amorphous part to the extent at which sufficient hydrogen permeation blocking capacity is obtd. and is soft to the extent of not damaging the surface of the bare optical fiber. The optical fiber which has the sufficient hydrogen resistance characteristic and exhibits the high mechanical strength is obtd. in this way.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、炭素被膜を形成した光ファイバに関し、炭
素被膜の結晶構造を特定することにより耐水素特性と機
械的強度とを大幅に向上せしめるようにしたものである
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an optical fiber formed with a carbon film, and the hydrogen resistance and mechanical strength thereof are significantly improved by specifying the crystal structure of the carbon film. This is how it was done.

[従来の技術] 石英系光ファイバは、水素と接触するとファイバ内に拡
散した水素分子の分子振動に起因する吸収損失が増大し
、さらにドーパントとして含有されているP tOs、
 GeOt、 B tOsなどが水素と反応しo t−
i基としてファイバガラス中に取り込まれるため、OH
基の吸収による伝送損失ら増大してしまう問題があった
[Prior Art] When a silica-based optical fiber comes into contact with hydrogen, absorption loss due to the molecular vibration of hydrogen molecules diffused into the fiber increases, and PtOs, which is contained as a dopant, increases.
GeOt, BtOs, etc. react with hydrogen and
Since it is incorporated into the fiber glass as an i group, OH
There is a problem in that transmission loss due to absorption of the radical increases.

このような弊害に対処するため、水素吸収能を有する液
状の組成物を光ケーブル内に充填する方法(特願昭61
−251808号)などが考えられているが、その効果
が不十分であるうえ、構造が複雑となって経済的にも問
題がある。
In order to deal with such adverse effects, a method of filling an optical cable with a liquid composition having hydrogen absorption ability (Japanese Patent Application No. 1983) was proposed.
-251808), but the effect is not sufficient and the structure is complicated, resulting in economical problems.

このような問題を解決するため、最近化学気相成長法(
以下、CVD法と略称する)によって先ファイバ表面に
炭素被膜を形成し、これによって光ファイバの耐水素性
を向上させうろことが発表されている。
In order to solve these problems, chemical vapor deposition method (
It has been announced that a carbon film is formed on the surface of the tip fiber by a CVD method (hereinafter abbreviated as CVD method), thereby improving the hydrogen resistance of the optical fiber.

[発明が解決しようとする課題] ところで炭素被膜の耐水素特性を向上させるためには緻
密な構造のアモルファス部分を多くする必要があるが、
アモルファス部分の多い炭素被膜は硬<、形成時に光フ
アイバ表面に損傷を与え、光ファイバの機械的強度を低
下させるので、充分な水素透過阻止能力と機械的強度を
併せ持つ実用に適した光ファイバを得るには至っていな
い。
[Problem to be solved by the invention] However, in order to improve the hydrogen resistance of a carbon film, it is necessary to increase the amorphous portion with a dense structure.
Carbon coatings with many amorphous parts are hard and damage the optical fiber surface during formation, reducing the mechanical strength of the optical fiber. I haven't been able to get it yet.

この発明は上記課題を解決するためになされたものであ
って、炭素被膜の結晶構造を特定することにより、充分
な耐水素特性と機械的強度を有する光ファイバを提供す
ることを目的としている。
This invention was made to solve the above problems, and aims to provide an optical fiber having sufficient hydrogen resistance and mechanical strength by specifying the crystal structure of the carbon coating.

[課題を解決するための手段] この発明の光ファイバは、1575〜1600cm−’
の振動数領域で発生するラマン線の強度■1゜ooと、
1355〜1360co+−’の振動数領域で発生する
ラマン線の強度1.13IOとの比R= I t3s。
[Means for Solving the Problems] The optical fiber of the present invention has a length of 1575 to 1600 cm-'
The intensity of Raman rays generated in the frequency region of ■1゜oo,
The ratio of the intensity of the Raman line generated in the frequency range of 1355 to 1360 co+-' to 1.13IO is R= I t3s.

/1 +sooが0.75〜1.40となる炭素被膜を
有してなることをその解決手段とした。
The solution was to have a carbon film with /1+soo of 0.75 to 1.40.

[作用] このようなラマンスペクトルを示す炭素被膜の結晶構造
は、充分な水素透過阻止能力が得られる程度にアモルフ
ァス部分が多く、かつ光フアイバ裸線表面に損傷を与え
ない程度に軟質であるので、耐水素特性と機械的強度と
を併せ持つ実用に適したものとなる。
[Function] The crystal structure of the carbon film exhibiting such a Raman spectrum has a large enough amorphous portion to provide sufficient hydrogen permeation blocking ability, and is soft enough not to damage the surface of the bare optical fiber. , it has both hydrogen resistance and mechanical strength, making it suitable for practical use.

以下、この発明の詳細な説明する。The present invention will be explained in detail below.

第1図はこの発明の光ファイバの一例を示すもので、図
中符号1は光ファイバ裸線である。この光ファイバ裸線
1は石英系ガラス、多成分系ガラスなどのガラスからな
るものである。この光ファイバ裸線1上には炭素被膜2
が設けられている。
FIG. 1 shows an example of the optical fiber of the present invention, and reference numeral 1 in the figure indicates a bare optical fiber. The bare optical fiber 1 is made of glass such as quartz glass or multi-component glass. A carbon coating 2 is placed on the bare optical fiber 1.
is provided.

この炭素被膜2上にはさらに必要に応じて樹脂波膜3が
設けられている。
A resin corrugated film 3 is further provided on this carbon film 2 as required.

ここでの炭素被膜2は、炭素を含有する原料化合物を熱
分解して得られたものであり、!575〜1600cm
−’の振動数領域で発生するラマン線の強度1 +ao
oと、1355〜1360cm−’の振動数領域で発生
するラマン線の強度■1,6゜との比R−I 136G
/111800が0.75〜1.40となるものである
The carbon film 2 here is obtained by thermally decomposing a raw material compound containing carbon! 575-1600cm
Intensity of Raman line generated in the frequency region of -' 1 +ao
o and the intensity of Raman rays generated in the frequency region of 1355 to 1360 cm-'■1.6°Ratio R-I 136G
/111800 is 0.75 to 1.40.

炭素被膜2の原料化合物として用いられる炭化水素とし
ては、熱分解によって炭素被膜を析出させるものであれ
ば特に限定されるものではないが、形成されろ炭素被膜
2の性状および析出速度の観点から、炭素数15以下の
炭化水素またはハロゲン化炭化水素が望ましく、特に炭
素数2である塩素化された脂肪族炭化水素は炭素被膜析
出速度が速いため所定の膜厚を得るまでの時間を短くす
ることができるので好適である。炭素数が16以上であ
ると原料化合物が炭素化する分解速度が非常に遅くなる
ため好ましくない。また炭化水素の水素原子と置換する
ハロゲン原子としては毒性などの取り扱いの観点から塩
素を用いたものが好ましい。またアルコール類、ケトン
類、エステル類などの酸素原子をその構造中に有した炭
素化合物は、分解によって炭素化する効率が非常に低い
とともに、煤状物質が発生しやすいので用いることがで
今ない。
The hydrocarbon used as a raw material compound for the carbon film 2 is not particularly limited as long as it can deposit a carbon film by thermal decomposition, but from the viewpoint of the properties and precipitation rate of the carbon film 2 that is formed, Hydrocarbons or halogenated hydrocarbons with carbon numbers of 15 or less are desirable, and in particular chlorinated aliphatic hydrocarbons with carbon numbers of 2 have a fast carbon film deposition rate, so the time required to obtain a predetermined film thickness should be shortened. This is suitable because it allows for If the number of carbon atoms is 16 or more, the rate of decomposition of the raw material compound into carbon becomes extremely slow, which is not preferable. Further, as the halogen atom to be substituted for the hydrogen atom of the hydrocarbon, chlorine is preferably used from the viewpoint of handling such as toxicity. In addition, carbon compounds with oxygen atoms in their structures, such as alcohols, ketones, and esters, have very low efficiency of carbonization through decomposition and tend to generate soot-like substances, so they cannot be used at present. .

また原料化合物の熱分解温度は特に限定されないが、4
00〜ttoo℃が好適である。400℃以下であると
原料化合物の熱分解が起きず、また石英の徐冷点が11
70℃であり、この温度以上にすると先ファイバの結晶
構造が変化を起こし脆(なるためにt too℃以上に
することはできない。また原料化合物の分解の方法とし
ては、抵抗加熱炉、誘導加熱炉、赤外線加熱炉などの加
熱分解させろ方法、あるいは原料化合物をガス状に気化
させた後、窒素、ヘリウム、アルゴンなどの不活性ガス
で希釈し、高周波またはマイクロ波を用いてプラズマを
発生させて、イオン分解する方法などを用いることがで
きる。
Furthermore, the thermal decomposition temperature of the raw material compound is not particularly limited;
00°C to too0°C is suitable. If the temperature is below 400°C, thermal decomposition of the raw material compound will not occur, and the annealing point of quartz will be 11
70℃, and if the temperature exceeds this temperature, the crystal structure of the tip fiber changes and becomes brittle, so it cannot be heated above ttoo℃.The method for decomposing the raw material compound is a resistance heating furnace, induction heating. Thermal decomposition methods such as furnaces and infrared heating furnaces, or after vaporizing the raw material compound into a gaseous state, diluting it with an inert gas such as nitrogen, helium, or argon, and generating plasma using high frequency or microwaves. , ion decomposition method, etc. can be used.

第2図はこの発明の光ファイバの1000〜!800c
++−’の振動数領域のラマンスペクトルを示したもの
である。1600ca+−’を中心としたピークは、炭
素のグラファイト構造の各層を形成する二次元六方格子
に起因するものであり、このピークが大きい程、炭素被
膜の結晶性が高いものとなる。また1 360cm−’
を中心としたピーク°は、グラファイト構造中の構造欠
陥により二次元六方格子の対称性が低下するか、あるい
は六方格子構造カ消失することに起因するもので、この
ピークが大きい程、アモルファス部分が多いものとなる
Figure 2 shows the optical fiber of this invention with 1000~! 800c
This shows a Raman spectrum in the ++-' frequency region. The peak centered at 1600ca+-' is due to the two-dimensional hexagonal lattice forming each layer of the graphite structure of carbon, and the larger this peak, the higher the crystallinity of the carbon film. Also 1 360cm-'
The peak centered around ° is caused by the decrease in the symmetry of the two-dimensional hexagonal lattice due to structural defects in the graphite structure, or the disappearance of the hexagonal lattice structure. There will be many.

ところで炭素被膜2の結晶度が高いと、六員環構造が規
則的に配列されることになるので、柔らかいものとなる
。そして炭素被膜2の形成時に生じる収縮を緩和するこ
とができ、光ファイバ裸線lの内部歪を吸収するととも
に、外部からの光ファイバにかかる応力をも吸収するこ
とができるので、光ファイバの機械的強度を向上させる
ことができろ。一方、アモルファス部分の多い炭素被膜
は結晶度の高い炭素被膜に比べて硬質であり、形成時に
光ファイバ裸線1表面に損傷を与えることがあるが、構
造が緻密であるので非常に高い水素透過阻止能力を示す
。よって、炭素被膜2の結晶度を示す1600ca+−
’のピークとアモルファス部分を示す1360cm−’
のピークのそれぞれの強度118ooと1 +360と
の比R= I +eoo/ I +*eoを求め、これ
を一定にしておけば、機械的強度と水素透過阻止能力と
を併せ持つ炭素被膜2を得ることができる。1600c
m−’のピークと1360cm−’のピークの強度比R
を求めるには、まず光ファイバ裸線1表面に炭素被膜2
を形成したのら、ラマン分光光度計によりI 000〜
I 800cm−’の振動数領域のラマンスペクトルを
得る。このラマン分光光度計には通常のレーザラマン分
光光度計を用いることができる。次に1575〜160
0cm−”の振動数領域と1355〜1360cn−’
の振動数領域とで各々ピークを求める。ピークの強面は
、第2図中に示したようにベースライン引き、ベースラ
インからの高さを測定して、この高さをそれぞれの強度
111100q  I +3110とし、R= 113
110/ I +so。
By the way, if the carbon film 2 has a high degree of crystallinity, the six-membered ring structure will be regularly arranged, making it soft. The shrinkage that occurs during the formation of the carbon coating 2 can be alleviated, and the internal strain of the bare optical fiber l can be absorbed, as well as the stress applied to the optical fiber from the outside. Be able to improve your objective strength. On the other hand, a carbon film with many amorphous parts is harder than a highly crystalline carbon film and may damage the surface of the bare optical fiber 1 during formation, but its dense structure allows for very high hydrogen permeability. Demonstrates deterrent ability. Therefore, 1600ca+- indicating the crystallinity of the carbon coating 2
1360 cm-' showing the peak and amorphous part of '
By finding the ratio R=I +eoo/I +*eo of the intensity of each peak of 118oo and 1+360 and keeping this constant, it is possible to obtain a carbon film 2 that has both mechanical strength and hydrogen permeation blocking ability. Can be done. 1600c
Intensity ratio R of the peak at m-' and the peak at 1360 cm-'
To find the carbon coating 2 on the surface of the bare optical fiber 1, first
After forming, the Raman spectrophotometer measures I 000~
A Raman spectrum in the frequency region of I 800 cm-' is obtained. A normal laser Raman spectrophotometer can be used as this Raman spectrophotometer. Next 1575-160
0cm-'' frequency range and 1355-1360cn-'
Find the peaks in each frequency region. For the strong side of the peak, draw the baseline as shown in Figure 2, measure the height from the baseline, and take this height as the respective intensity 111100q I +3110, R = 113
110/I +so.

を求める。seek.

以下、Rの適正値を求めるための試験例について述べる
A test example for determining the appropriate value of R will be described below.

[試験例] 強度比Rの適正値を求めるために光ファイバ裸線!表面
に種々の条件にて炭素被膜2を形成し、得られた光ファ
イバのラマンスペクトルと、機械的強度、伝送損失等の
特性評価をした。
[Test example] Bare optical fiber to find the appropriate value of the intensity ratio R! A carbon film 2 was formed on the surface under various conditions, and the Raman spectrum and characteristics such as mechanical strength and transmission loss of the obtained optical fiber were evaluated.

(試験例1) 光フアイバ母材から光ファイバ裸線を紡糸する紡糸装置
内に、内径40mmの石英管を通した抵抗加熱炉を取り
付けた。次にこの紡糸装置内にGeO7がドープ剤とし
て含浸されたコア部を有する外径30mmの光フアイバ
母材を設置した。この先ファイバ母材を2000℃に加
熱して、30m/分の紡糸速度で外径125μmの光フ
ァイバに紡糸すると共に、上記抵抗加熱炉内を1400
℃に加熱しつつ、炭素被膜を形成する原料化合物として
約5v01%にアルゴンガスで希釈したベンゼン蒸気を
約5ff/分の流量で供給して紡糸された光ファイバ課
線表面に炭素被膜を形成した。
(Test Example 1) A resistance heating furnace through which a quartz tube with an inner diameter of 40 mm was passed was installed in a spinning device for spinning bare optical fiber from an optical fiber base material. Next, an optical fiber base material having an outer diameter of 30 mm and having a core impregnated with GeO7 as a dopant was placed in this spinning apparatus. The fiber preform is then heated to 2000°C and spun into an optical fiber with an outer diameter of 125 μm at a spinning speed of 30 m/min.
While heating to ℃, benzene vapor diluted with argon gas to about 5v01% as a raw material compound for forming a carbon film was supplied at a flow rate of about 5ff/min to form a carbon film on the surface of the spun optical fiber. .

(試験例2) 炭素被膜2を形成する抵抗加熱炉内の温度を950℃に
した以外は試験例1と全く同様にして光ファイバを製造
した。
(Test Example 2) An optical fiber was manufactured in exactly the same manner as in Test Example 1 except that the temperature in the resistance heating furnace for forming the carbon coating 2 was set to 950°C.

(試験例3) 原料化合物として1.2ジクロロエチレンを用い、抵抗
加熱炉内の温度を650℃とした以外は試験例1と全く
同様にして光ファイバを製造した。
(Test Example 3) An optical fiber was manufactured in exactly the same manner as in Test Example 1 except that 1.2 dichloroethylene was used as the raw material compound and the temperature in the resistance heating furnace was 650°C.

(試験例4) 原料化合物として1.2ジクロロエチレンを用い、抵抗
加熱炉内の温度を2500℃とした以外は試験例1と全
く同様にして光ファイバを製造した。
(Test Example 4) An optical fiber was manufactured in exactly the same manner as Test Example 1 except that 1.2 dichloroethylene was used as the raw material compound and the temperature in the resistance heating furnace was 2500°C.

(比較例1) 光ワアイバ母材から光ファイバ裸線を紡糸する紡糸装置
内に、Gemtがドープ剤として含浸されたコア部を有
する外径30mmの光フアイバ母材を設置し、これを2
000℃に加熱して、30■/分の紡糸速度で外径12
5μmの光ファイバに紡糸し・た。
(Comparative Example 1) An optical fiber base material having an outer diameter of 30 mm and having a core impregnated with Gemt as a doping agent was installed in a spinning device that spins bare optical fiber from an optical fiber base material, and this was
Heated to 000°C and spun at a spinning speed of 30 cm/min to create an outer diameter of 12 mm.
It was spun into a 5 μm optical fiber.

このようにして得られた試験例1ないし試験例4の各光
ファイバのラマンスペクトルを、レーザラマン分光光度
計により1000〜1800cm−’の振動数領域で測
定した。このレーザラマン分光には、光源として488
 rvのアルゴンレーザを用い、回折格子として有効波
長範囲450〜850n111で1800本/m+eの
ホログラフィック回折格子を用い、ラマン光集光光学系
は「=50mm+、レーザ光導入素子には全反射プリズ
ムを用い、振動数精度±1cm−’で測定を行った。こ
の結果、いずれも1355〜1360cm−’の振動数
領域と、1575〜1600cm−’の振動数領域とに
、それぞれ炭素を起因とする大きなピークが観測できた
。次にこれらのピークの強度t taoo、I +38
Gをそれぞれ測定し、これから強度比R= I 13g
。/[,6゜。を得た。これらのラマンスペクトルを模
式化したグラフと強度比Rの値とを第3図に示した。な
お第3図には比較のために天然グラファイトのラマンス
ペクトルを模式化したグラフも併せて示した。
The Raman spectra of each of the optical fibers of Test Examples 1 to 4 thus obtained were measured in the frequency range of 1000 to 1800 cm-' using a laser Raman spectrophotometer. This laser Raman spectroscopy requires 488 yen as a light source.
An RV argon laser is used, a holographic diffraction grating with an effective wavelength range of 450 to 850n111 and 1800 lines/m+e is used as the diffraction grating, the Raman light focusing optical system is 50mm+, and a total reflection prism is used as the laser beam introduction element. The measurement was carried out with a frequency accuracy of ±1 cm-'.As a result, there were large vibrations caused by carbon in the frequency region of 1355 to 1360 cm-' and the frequency region of 1575 to 1600 cm-'. Peaks were observed.Next, the intensity of these peaks taoo, I +38
G is measured respectively, and from this the intensity ratio R=I 13g
. /[,6°. I got it. A graph illustrating these Raman spectra and the value of the intensity ratio R are shown in FIG. For comparison, FIG. 3 also shows a graph illustrating the Raman spectrum of natural graphite.

またファイバ強度の中央値、常温常圧下での疲労試験、
80℃、1気圧の水素雰囲気中に24時間放置した前後
での波長124μmでの伝送損失の増加を調べて、得ら
れた光ファイバの耐水素特性と機械的強度とを調べた。
In addition, the median fiber strength, fatigue test at room temperature and pressure,
The increase in transmission loss at a wavelength of 124 μm was examined before and after leaving it in a hydrogen atmosphere at 80° C. and 1 atm for 24 hours, and the hydrogen resistance and mechanical strength of the obtained optical fiber were examined.

この結果を第1表に強度比Rと共に示した。The results are shown in Table 1 along with the strength ratio R.

(以下、余白) 第1表 第1表の結果から、耐水素特性と機械的強度とを併せ持
つ光ファイバは、試験例2、試験例3であることが判明
し、1575〜1600cm−’の振動数領域でのラマ
ン線の強度1 taooと、1355〜1360cm−
’の振動数領域でのラマン線の強度! +3110との
比UL = 11380/ I taooの適正値は0
゜75〜1.40であることがわかった。
(Hereinafter, blank space) From the results in Table 1, it was found that the optical fibers having both hydrogen resistance and mechanical strength were Test Examples 2 and 3. Raman line intensity in several regions 1 taoo and 1355 to 1360 cm-
The intensity of the Raman line in the frequency region of '! Ratio to +3110 UL = 11380/ I taoo's appropriate value is 0
It was found that the temperature was 75 to 1.40.

[実施例] 光フアイバ母材から光ファイバ裸線を紡糸する紡糸装置
内に、内径4011IMの石英管を通した抵抗加熱炉を
取り付けた。次にこの紡糸装置内にGe0、がドープ剤
として含浸されたコア部を存する外径30II1mの光
フアイバ母材を設置した。この光フアイバ母材を200
0℃に加熱して、30m/分の紡糸速度で外径125μ
mの光ファイバに紡糸すると共に、t taooと11
111゜との強度比Rが075〜1.40の範囲になる
ように上記抵抗加熱炉内を1100℃に加熱しつつ、炭
素被膜を形成する原料化合物として約5vo1%にアル
ゴンガスで希釈したトリクロロエタン蒸気を約5(2/
分の流量で供給して紡糸された光フアイバ裸線表面に炭
素被膜を形成した。この光ファイバのラマンスペクトル
を調べ、強度比Rの値を求めたところR=0.84とな
り、適正値であることが確認できた。この光ファイバの
強度は5.3kg、疲労指数は200.80℃、1気圧
の水素雰囲気中に24時間放置した前後の1.24μm
波長での伝送損失増加は全くみられず、機械的強度と耐
水素特性とを併せ持つ実用に適したものであることが確
認できた。
[Example] A resistance heating furnace through which a quartz tube having an inner diameter of 4011 IM was passed was installed in a spinning device for spinning bare optical fiber from an optical fiber base material. Next, an optical fiber base material having an outer diameter of 30II1 m and having a core impregnated with Ge0 as a doping agent was placed in this spinning apparatus. This optical fiber base material
Heated to 0℃ and spun at a spinning speed of 30m/min to an outer diameter of 125μ.
At the same time as spinning into an optical fiber of m, t taoo and 11
Trichloroethane diluted with argon gas to about 5 vol. 1% as a raw material compound for forming the carbon film was heated in the resistance heating furnace to 1100° C. so that the intensity ratio R to 111° was in the range of 075 to 1.40. Steam about 5 (2/
A carbon film was formed on the surface of the bare optical fiber that was spun by supplying the fiber at a flow rate of 100 min. When the Raman spectrum of this optical fiber was examined and the value of the intensity ratio R was determined, it was found that R=0.84, which was confirmed to be an appropriate value. The strength of this optical fiber is 5.3 kg, the fatigue index is 200.80°C, and it is 1.24 μm before and after being left in a hydrogen atmosphere of 1 atm for 24 hours.
No increase in transmission loss was observed at any wavelength, and it was confirmed that the material has both mechanical strength and hydrogen resistance and is suitable for practical use.

[発明の効果] 以上説明したように、この発明の光ファイバは、157
5〜1600cm−’の振動数領域で発生するラマン線
の強度夏+sooと、1355〜1360cm刊の振動
数領域で発生するラマン線の強度1136Gとの比R−
1+3@O/1 +soo/J’0.75〜1.40と
なる炭素被膜を有してなるものであるので、水素透過阻
止能力を示す緻密なアモルファス部分と軟質の結晶部分
とが適度に存在するので、充分な耐水素特性を有し、か
つ高い機械的強度を示すものとなる。
[Effects of the Invention] As explained above, the optical fiber of the present invention has 157
The ratio R- of the intensity of Raman rays generated in the frequency range of 5 to 1600 cm-' (summer+soo) and the intensity of Raman lines generated in the frequency range of 1355 to 1360 cm, 1136G.
Since it has a carbon film of 1+3@O/1 +soo/J'0.75 to 1.40, there are moderate amounts of dense amorphous parts and soft crystal parts that exhibit hydrogen permeation blocking ability. Therefore, it has sufficient hydrogen resistance properties and exhibits high mechanical strength.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の光ファイバの一例を示した概略断面
図、第2図はこの発明の光ファイバのラマンスペクトル
を示したグラフ、第3図は種々条件下で炭素被膜を形成
した光ファイバのラマンスペクトルを模式化したグラフ
である。 ■・・・光ファイバ裸線、 2・・・炭素被膜。
Fig. 1 is a schematic cross-sectional view showing an example of the optical fiber of the present invention, Fig. 2 is a graph showing the Raman spectrum of the optical fiber of the invention, and Fig. 3 is an optical fiber with a carbon coating formed under various conditions. This is a graph schematically showing the Raman spectrum of . ■...Optical fiber bare wire, 2...Carbon coating.

Claims (1)

【特許請求の範囲】[Claims] 1575〜1600cm^−^1の振動数領域で発生す
るラマン線の強度I_1_6_0_0と、1355〜1
360cm^−^1の振動数領域で発生するラマン線の
強度I_1_3_8_0との比R=I_1_3_6_0
/I_1_6_0_0が0.75〜1.40となる炭素
被膜を有してなる光ファイバ
Intensity I_1_6_0_0 of Raman rays generated in the frequency range of 1575 to 1600 cm^-^1 and 1355 to 1
Ratio of intensity I_1_3_8_0 of Raman rays generated in the frequency region of 360 cm^-^1 R = I_1_3_6_0
Optical fiber having a carbon coating with /I_1_6_0_0 of 0.75 to 1.40
JP63258584A 1988-10-14 1988-10-14 Optical fiber Pending JPH02105106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63258584A JPH02105106A (en) 1988-10-14 1988-10-14 Optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63258584A JPH02105106A (en) 1988-10-14 1988-10-14 Optical fiber

Publications (1)

Publication Number Publication Date
JPH02105106A true JPH02105106A (en) 1990-04-17

Family

ID=17322287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63258584A Pending JPH02105106A (en) 1988-10-14 1988-10-14 Optical fiber

Country Status (1)

Country Link
JP (1) JPH02105106A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983107A (en) * 1982-11-04 1984-05-14 Sumitomo Electric Ind Ltd Optical fiber
JPS6415710A (en) * 1987-07-09 1989-01-19 Ricoh Kk Optical fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983107A (en) * 1982-11-04 1984-05-14 Sumitomo Electric Ind Ltd Optical fiber
JPS6415710A (en) * 1987-07-09 1989-01-19 Ricoh Kk Optical fiber

Similar Documents

Publication Publication Date Title
RU2706849C2 (en) Optical fibre with high content of chlorine and low coefficient of attenuation
US5056888A (en) Single-mode, single-polarization optical fiber
US4125388A (en) Method of making optical waveguides
US4896942A (en) Polarization-maintaining optical fiber
Kashaykin et al. Radiation-induced attenuation in silica optical fibers fabricated in high O 2 excess conditions
JP2013520712A (en) Three-layer clad optical fiber and device using three-layer clad optical fiber
EP0402895A1 (en) Hermetically coated optical fiber and production of the same
US6760526B2 (en) Chalcogenide doping of oxide glasses
EP0371628B1 (en) A method of producing carbon-coated optical fiber
EP0167054A1 (en) Method for producing glass preform for optical fiber
JPH02105106A (en) Optical fiber
GB1596088A (en) Method of making glass articles
JPH0648325B2 (en) Optical fiber and manufacturing method thereof
Nelson et al. The fabrication and performance of long lengths of silica core fiber
Chida et al. Fabrication of OH-free multimode fiber by vapor phase axial deposition
Kuzuu et al. KrF-and ArF-excimer-laser-induced absorption in silica glasses produced by melting synthetic silica powder
JP2004109124A (en) Optical fiber and method of estimating optical fiber
JP3406034B2 (en) Carbon coated optical fiber
JP3039948B2 (en) Optical fiber manufacturing method
Li et al. Electron paramagnetic resonance hyperfine spectrum of the Si E′ defect associated with weakly bonded hydrogen molecules in synthetic silica optical fibers
Grishchenko et al. Manufacturing and testing of all-silica fibers resistant to UV and gamma radiation
JP2595364B2 (en) Optical fiber manufacturing method
Shimizu et al. Antimony oxide-doped silica fibers fabricated by the VAD method
JP2825843B2 (en) Optical fiber
JPH0235404A (en) Optical fiber