JPH02103977A - Power source for pulsed laser - Google Patents

Power source for pulsed laser

Info

Publication number
JPH02103977A
JPH02103977A JP25578088A JP25578088A JPH02103977A JP H02103977 A JPH02103977 A JP H02103977A JP 25578088 A JP25578088 A JP 25578088A JP 25578088 A JP25578088 A JP 25578088A JP H02103977 A JPH02103977 A JP H02103977A
Authority
JP
Japan
Prior art keywords
voltage
capacitors
capacitor
stage
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25578088A
Other languages
Japanese (ja)
Inventor
Kenji Takahashi
賢二 高橋
Eiji Kaneko
英治 金子
Akira Ishii
彰 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25578088A priority Critical patent/JPH02103977A/en
Publication of JPH02103977A publication Critical patent/JPH02103977A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/0971Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser transversely excited

Abstract

PURPOSE:To detect abnormality in operation at an early period and to prevent breakdown of a laser apparatus by using capacitors in a magnetic compression circuit as voltage dividers, providing voltage monitoring windings in saturable reactors, and providing a current monitor between the capacitors and the ground. CONSTITUTION:Capacitors 16 and 17 at each stage of a magnetic compression circuit are used as voltage dividers. Voltages which are proportional to rise-up voltages are outputted. Current transformers 20 and 21 are provided for lead wires for connecting the capacitors 16 and 17. The moving state of electric charge is taken out as a voltage output. Monitoring windings 22 and 23 are provided around saturable reactors 18 and 19. The voltage outputs caused by the currents of main circuits are supplied to a monitoring device 26 through protecting impedances 24 and 25. the accumulated energy in the capacitor 17 at the final stage is sent into a laser device 27 through the reactor 19. In this way, a power source for pulsed laser which detects abnormality in operation at an early period and prevents the breakdown of the laser device is provided.

Description

【発明の詳細な説明】 (発明の目的〕 (産業上の利用分野) 本発明は、パルスレーザ電源回路の動作監視システムを
改良したパルスレーザ用電源に関するものでおる。
DETAILED DESCRIPTION OF THE INVENTION (Objectives of the Invention) (Industrial Application Field) The present invention relates to a pulsed laser power supply that has an improved operation monitoring system for a pulsed laser power supply circuit.

(従来の技術) 近年、TEA及びTEMACO2レーザを始め、エキシ
マレーザ、銅蒸気レーザ等、各種レーザの産業への使用
が検討されてあり、同時にこれらのレーザのための、優
れたパルス電源が要求される様になっている。また、同
様の電源が加速器のFast Pu1sed )iag
nets用としても求められている。
(Prior Art) In recent years, various lasers such as TEA and TEMACO2 lasers, excimer lasers, and copper vapor lasers have been considered for industrial use, and at the same time, excellent pulse power sources for these lasers have been required. It looks like this. In addition, a similar power supply is used for accelerator Fast Pulsed)iag
It is also sought after for use on the internet.

この様な大電流・パルス電源には、早い電流の立上り(
100KA/ 1t sec )、大電流(〜10KA
)、高電圧(〜150KV ) 、低いインピーダンス
高リアクタンス比を有する可飽和リアクトル(数MH2
以上で十分に応答し、しかも飽和時と非飽和時で大きい
インダクタンスの比を有する特性)、非常に狭いパルス
幅(ioonsec ) 、ジッタ時間(数+n5ec
以下)、長寿命(108〜11程度以上)等の条件が要
求されている。
Such a large current/pulse power supply requires a fast current rise (
100KA/1t sec), large current (~10KA
), high voltage (~150KV), saturable reactor (several MH2) with low impedance and high reactance ratio
The characteristics described above are sufficient to respond, and have a large ratio of inductance between saturation and non-saturation), very narrow pulse width (ioons), and jitter time (several + n5ec).
(below) and long life (approximately 108 to 11 or more).

上記の目的で考え出されたのが第2図に示す電気回路で
ある。第2図の電気回路において、パルス変圧器11の
低圧側が、パルス電流を発生するためのスイッチ回路で
あり、高圧側は磁気パスル圧縮回路(Magnetic
 Pu1se Compression= M P C
回路)と呼ばれる電気回路である。
The electric circuit shown in FIG. 2 was devised for the above purpose. In the electric circuit shown in FIG. 2, the low voltage side of the pulse transformer 11 is a switch circuit for generating pulse current, and the high voltage side is a magnetic pulse compression circuit (Magnetic pulse compression circuit).
Pulse Compression = MPC
It is an electrical circuit called a circuit.

第2図のパルス変圧器1の低圧側に形成されたスイッチ
回路において、充電電源1には、充電用リアクトル2〜
4、及び整流器5〜7を介してコンデンサ8〜10が接
続され、パルス変圧器11の低圧側に3並列に接続され
ている。また、スイッチ素子であるサイリスタ12〜1
4はドライバ15により点弧されるようになっている。
In the switch circuit formed on the low voltage side of the pulse transformer 1 shown in FIG.
4 and rectifiers 5 to 7, and three capacitors 8 to 10 are connected in parallel to the low voltage side of the pulse transformer 11. In addition, thyristors 12 to 1, which are switching elements,
4 is adapted to be ignited by a driver 15.

この様なスイッチ回路の動作としては、まず充N電源1
によって、充電用リアクトル2,3.4及び整流器5,
6.7を介して、コンデンサ8゜9.10を常時一定の
電圧に充電しておく。ここでドライバ15により、電源
全体として必要とされる周波数になるように、サイリス
タ12〜14を次々と点弧することよにり、パルス変圧
器11の低圧側には必要な繰返し数でパルス電流が発生
する。
The operation of such a switch circuit is as follows: First, the charging N power supply 1
Accordingly, the charging reactor 2, 3.4 and the rectifier 5,
6.7, the capacitor 8°9.10 is always charged to a constant voltage. Here, by firing the thyristors 12 to 14 one after another by the driver 15 so that the frequency required for the entire power supply is achieved, the low voltage side of the pulse transformer 11 is supplied with a pulse current at the required number of repetitions. occurs.

なお、第2図の例ではサイリスタの数は3個(即ら、パ
ルス変圧器の低圧側に接続する回路は3並列)としであ
るが、これは電源として要求される繰返しのパルス数と
サイリスタの能力に応じて、適当な数を選ぶことになる
。例えば、一般のサイリスタは、数百Hz、1kllZ
程度の繰返し周波数で使用するのが限界で必る。従って
、例えば繰返し周波数が5 kHzの場合にはサイリス
タの並列数は7〜10個以上となる。
In the example shown in Figure 2, the number of thyristors is three (that is, the circuit connected to the low voltage side of the pulse transformer is three in parallel), but this is due to the number of repeated pulses required for the power supply and the number of thyristors. Choose an appropriate number depending on your abilities. For example, a general thyristor has a frequency of several hundred Hz, 1kllZ
It is necessary to use it at a repetition frequency of about 100%. Therefore, for example, when the repetition frequency is 5 kHz, the number of thyristors in parallel is 7 to 10 or more.

なお、第2図では繰返しパルス電流を発生するためのス
イッチ素子としては、特にサイリスタに限定されるもの
ではないが、上記のように厳しい条件に対して、そのス
イッチ素子として機械的スイッチを使用することは寿命
やジッタの点で問題があり、結局サイリスタが最も適し
ている。
In addition, in Fig. 2, the switching element for generating a repetitive pulse current is not limited to a thyristor, but a mechanical switch is used as the switching element under the severe conditions described above. However, there are problems in terms of lifespan and jitter, and in the end thyristors are the most suitable.

この様なスイッチ回路に使用するスイッチ素子は、一定
のパルス幅でエネルギーを充電電源からMPC回路側に
送る役割を果たすものであり、このスイッチ素子として
サイラトロン或は半導体が最適と考えられるが、前記の
ような高電圧の電源回路ではスイッチの責務が大きく、
それだけ大型のスイッチを使用せざるを得ない。
The switch element used in such a switch circuit plays the role of transmitting energy from the charging power supply to the MPC circuit side with a constant pulse width, and a thyratron or a semiconductor is considered to be optimal for this switch element, but the above-mentioned In high voltage power supply circuits such as
Therefore, a large switch must be used.

一方、パルス変圧器11の高圧側のMPCl路は適当な
値のコンデンサ16.17と可飽和リアクトル18、1
9が2段に組み合わせられており、この各段の回路によ
って、パルス変圧器11の低圧側から入力された電流の
時間幅が順次圧縮されるように構成されている。この様
な構成から、パルス変圧器の低圧側から入力された電流
の時間幅を百分の一程度にすることにより、電流の上昇
率を前記した100kA /μsec以上とするもので
ある。
On the other hand, the MPCl path on the high voltage side of the pulse transformer 11 is connected to capacitors 16 and 17 of appropriate values and saturable reactors 18 and 1.
9 are combined in two stages, and the time width of the current input from the low voltage side of the pulse transformer 11 is sequentially compressed by the circuits in each stage. With this configuration, by reducing the time width of the current input from the low voltage side of the pulse transformer to about 1/100, the rate of increase in current can be increased to the above-mentioned 100 kA/μsec or more.

この様なパルス変圧器11の高圧側の動作を詳細に述べ
れば、パルス変圧器11の高圧側に電圧が発生すると、
この電圧に比例して第一段のコンデンサ16の極間電圧
が上昇する。この結果、コンデンサ16の極間電圧に比
例して、第1段の可飽和リアクトル18には僅かな電流
が流れ出すがこの電流がある値に達すると可飽和リアク
トル18の鉄心内の磁束が飽和磁束密度以上にいたり、
可飽和リアクトル18は飽和状態となり、急激にインダ
クタンスが低下し、コンデンサ16に蓄えられたエネル
ギーは可飽和リアクトル18を介して第二段のコンデン
サ17に転移する。この場合、各段の可飽和リアクトル
18.19の非飽和時及び飽和時のインダクタンスを順
次小さくすることにより、各段をながれる電流の周波数
を順次高周波にすることが出来る。
To describe the operation of the high voltage side of the pulse transformer 11 in detail, when voltage is generated on the high voltage side of the pulse transformer 11,
The interelectrode voltage of the first stage capacitor 16 increases in proportion to this voltage. As a result, a small amount of current flows into the first stage saturable reactor 18 in proportion to the voltage between the poles of the capacitor 16, but when this current reaches a certain value, the magnetic flux in the iron core of the saturable reactor 18 becomes saturated magnetic flux. If you are above the density,
The saturable reactor 18 becomes saturated, the inductance rapidly decreases, and the energy stored in the capacitor 16 is transferred to the second stage capacitor 17 via the saturable reactor 18. In this case, by sequentially decreasing the inductance of the saturable reactors 18 and 19 in each stage during non-saturation and saturation, the frequency of the current flowing through each stage can be sequentially increased to a higher frequency.

ところで、第一段のコンデンサ16と、第一段の可飽和
リアクトル18と、第二段のコンデンサ17との関係は
、可飽和リアクトル18が非飽和のとき、このループに
ながれる電流の周波数における第一段のコンデンサ16
のインピーダンスと、第一段の可飽和リアクトル18の
非飽和時のインピーダンスを適正な値にすることにより
、第一段のコンデンサ16から第二段のコンデンサ17
ヘエネルギーが移転する時期を調整することが出来、可
飽和リアクトル18が飽和のときにながれる電流周波数
における第二段のコンデンサ17のインピーダンスより
可飽和リアクトル18の飽和時のインピーダンスを十分
に大きくすることにより、第一段のコンデンサ16のほ
ぼ全エネルギーをコンデンサ17に転移させることが出
来る。
By the way, the relationship between the first-stage capacitor 16, the first-stage saturable reactor 18, and the second-stage capacitor 17 is such that when the saturable reactor 18 is non-saturated, the frequency of the current flowing through this loop is single stage capacitor 16
By setting the impedance of the first stage saturable reactor 18 and the non-saturated impedance of the first stage saturable reactor 18 to appropriate values, the first stage capacitor 16 to the second stage capacitor 17
The timing at which energy is transferred to the saturable reactor 18 can be adjusted, and the impedance when the saturable reactor 18 is saturated is made sufficiently larger than the impedance of the second stage capacitor 17 at the current frequency flowing when the saturable reactor 18 is saturated. Accordingly, almost all the energy of the first stage capacitor 16 can be transferred to the capacitor 17.

同じ様に可飽和リアクトル19が飽和するとコンデンサ
17に転移したエネルギーはレーザ装@27の方に流れ
てレーザ放電をつける。
Similarly, when the saturable reactor 19 is saturated, the energy transferred to the capacitor 17 flows toward the laser device @ 27 and generates a laser discharge.

(発明が解決しようとする課題) 以上のように、インピーダンスの関係により工ネルギー
転移を行うが、実際に動作をしているか、レーザ装置に
正しい動作でエネルギーを送っているかは、外部からは
判断出来なかった。磁気圧縮回路の動作が正常に行われ
ていないとレーザ装置を破損させるおそれがあった。
(Problem to be solved by the invention) As described above, energy transfer is performed depending on the impedance relationship, but it cannot be judged from the outside whether it is actually operating or whether energy is being sent to the laser device in the correct operation. I could not do it. If the magnetic compression circuit did not operate normally, there was a risk of damaging the laser device.

そこで、本発明は以上の欠点を除去するために提案され
たもので、その目的は、磁気圧縮回路の動作を外部より
監視して異常を早期に検出し、レーザ装置を保護するこ
とができるパルスレーザ用電源を提供することにある。
Therefore, the present invention was proposed in order to eliminate the above-mentioned drawbacks.The purpose of the present invention is to monitor the operation of the magnetic compression circuit from the outside, detect abnormalities at an early stage, and protect the laser device. Its purpose is to provide power supplies for lasers.

(発明の構成) (課題を解決するための手段) 本発明のパルスレーザ用電源は、磁気圧縮回路のコンデ
ンサを分圧器とし、可飽和リアクトルに電圧をモニタす
るモニター用巻線を設けると共に、各段のコンデンサと
アース間に電流モニターを設けることにより、磁気圧縮
回路入力周波数、動作電圧、また、可飽和リアクトルの
動作状態を検出するように構成したものである。
(Structure of the Invention) (Means for Solving the Problems) The pulse laser power supply of the present invention uses a capacitor of a magnetic compression circuit as a voltage divider, and a saturable reactor is provided with a monitoring winding for monitoring the voltage. A current monitor is provided between the stage capacitor and ground to detect the magnetic compression circuit input frequency, operating voltage, and operating state of the saturable reactor.

(作 用) 上のような構成を有する本発明によれば、磁気圧縮回路
の各段の動作状態と各段の可飽和リアクトルの動作を検
出することが出来、動作異常を早期発見することが可能
となる。
(Function) According to the present invention having the above configuration, the operating state of each stage of the magnetic compression circuit and the operation of the saturable reactor of each stage can be detected, and abnormalities in operation can be detected at an early stage. It becomes possible.

(実施例) 以下本発明の一実施例を第1図に基づいて置体的に説明
する。なお、第2図に示した従来のものと同一の部分は
同一の符号をつけ説明を省略する。
(Embodiment) An embodiment of the present invention will be described below based on FIG. 1. Note that the same parts as in the conventional one shown in FIG. 2 are given the same reference numerals, and the explanation will be omitted.

本実施例においては、第1図の回路図に示したように、
磁気圧縮回路の各段のコンデンサ16.17を分圧器と
して用いて、各コンデンサ16.17に立ち上がる電圧
に比例している電圧を出力する。磁気圧縮回路の各コン
デンサ16.17とアースを接続しているリード線には
カレント・トランスフォーマ(CT)20.21を設は
各回路に流れる電流により、電荷の移動状態を電圧出力
として出力する。
In this embodiment, as shown in the circuit diagram of FIG.
The capacitors 16, 17 in each stage of the magnetic compression circuit are used as a voltage divider to output a voltage that is proportional to the voltage rising across each capacitor 16, 17. A current transformer (CT) 20.21 is installed on the lead wire connecting each capacitor 16.17 of the magnetic compression circuit to the ground, and the current flowing through each circuit outputs the state of charge movement as a voltage output.

各可飽和リアクトル18.19には可飽和リアクトル1
8、19の鉄心にモニター用巻線22.23を数回巻き
つけ主回路側に流れる電流により発生する磁束により電
圧出力を保護インピーダンス24.25を介して出力す
る。あのおのの出力はモニター装置26に入力する。最
終段のコンデンサ17に蓄積されたエネルギーは可飽和
リアクトル19の動作によりレーザ装置27に送られる
Each saturable reactor 18.19 has a saturable reactor 1
The monitor windings 22 and 23 are wound several times around the iron cores 8 and 19, and a voltage output is outputted via the protective impedance 24 and 25 by the magnetic flux generated by the current flowing to the main circuit side. The output of that ax is input to a monitoring device 26. The energy stored in the final stage capacitor 17 is sent to the laser device 27 by the operation of the saturable reactor 19.

この様な構成を有する本実施例のパルスレーザ電源にお
いては、第1図示す磁気圧縮回路の各段コンデンサ16
.17の電圧の変化を常にモニター出来、同様に各コン
デンサ16.17に流れる電流をモニターすることがで
きる。また、可飽和リアクトル18.19に流れる電流
により発生する磁束によりモニター用巻線22.23に
発生する電圧を常にモニータすることで各段の可飽和リ
アクトル18.19の動作を知ることが出来る。
In the pulse laser power supply of this embodiment having such a configuration, each stage capacitor 16 of the magnetic compression circuit shown in FIG.
.. 17 can be constantly monitored, and in the same way, the current flowing through each capacitor 16 and 17 can be monitored. Further, by constantly monitoring the voltage generated in the monitor winding 22.23 by the magnetic flux generated by the current flowing through the saturable reactor 18.19, the operation of the saturable reactor 18.19 in each stage can be known.

この様に、本実施例のパルスレーザ電源を用いると、磁
気圧縮回路の各段の電流・電圧・可飽和リアク1ヘルの
動作について常時モニターすることで回路動作の異常を
早期に検知できる。以上により、磁気圧縮回路の動作を
絶えず監視し、電源の異常によるレーザ装置の破損を防
ぐパルスレーザ用電源を得ることが出来る。
In this way, when the pulse laser power supply of this embodiment is used, abnormalities in circuit operation can be detected early by constantly monitoring the current, voltage, and operation of the saturable reactor at each stage of the magnetic compression circuit. As described above, it is possible to obtain a pulsed laser power supply that constantly monitors the operation of the magnetic compression circuit and prevents damage to the laser device due to abnormalities in the power supply.

〔発明の効果〕〔Effect of the invention〕

以上述ぺたように、本発明によれば、磁気圧縮回路の動
作を常時監視でき、回路動作の異常を早期に検知でき、
電源の異常によるレーザ装置の破損を防ぐパルスレーザ
用電源を提供することが出来る。
As described above, according to the present invention, the operation of the magnetic compression circuit can be constantly monitored, abnormalities in the circuit operation can be detected early,
It is possible to provide a pulsed laser power supply that prevents damage to the laser device due to power supply abnormalities.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のパルスレーザ電源回路の1実施例を示
す回路図で、第2図は、従来のパルスレーザ電源回路の
一例を示す回路図でおる。 1・・・スイッチ回路の充電電源、 8〜10・・・コンデンサ、 11・・・パルストランス、 12〜14・・・スイッチ素子(サイリスタ)、15・
・・ドライバ、 20、21・・・カレント・トランスフォーマ、18、
19・・・可飽和リアクトル、 22、23・・・モニター用巻線、
FIG. 1 is a circuit diagram showing one embodiment of a pulsed laser power supply circuit of the present invention, and FIG. 2 is a circuit diagram showing an example of a conventional pulsed laser power supply circuit. DESCRIPTION OF SYMBOLS 1... Charging power supply of switch circuit, 8-10... Capacitor, 11... Pulse transformer, 12-14... Switch element (thyristor), 15...
...Driver, 20, 21...Current transformer, 18,
19... Saturable reactor, 22, 23... Monitor winding,

Claims (1)

【特許請求の範囲】[Claims]  充電電源に接続されたコンデンサにスイッチ素子を接
続したスイッチ回路と可飽和リアクトルとコンデンサを
レーザ放電部に接続してなる磁気パルス圧縮回路とを有
するパルスレーザ用電源において、磁気パルス圧縮回路
におけるコンデンサを電圧モニターとして用いたことを
特徴とするパルスレーザ電源回路。
In a pulsed laser power supply having a switch circuit in which a switch element is connected to a capacitor connected to a charging power supply, and a magnetic pulse compression circuit in which a saturable reactor and a capacitor are connected to a laser discharge section, the capacitor in the magnetic pulse compression circuit is A pulsed laser power supply circuit characterized in that it is used as a voltage monitor.
JP25578088A 1988-10-13 1988-10-13 Power source for pulsed laser Pending JPH02103977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25578088A JPH02103977A (en) 1988-10-13 1988-10-13 Power source for pulsed laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25578088A JPH02103977A (en) 1988-10-13 1988-10-13 Power source for pulsed laser

Publications (1)

Publication Number Publication Date
JPH02103977A true JPH02103977A (en) 1990-04-17

Family

ID=17283526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25578088A Pending JPH02103977A (en) 1988-10-13 1988-10-13 Power source for pulsed laser

Country Status (1)

Country Link
JP (1) JPH02103977A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994004970A1 (en) * 1992-08-21 1994-03-03 British Nuclear Fuels Plc Apparatus for pulsed electrical power circuitry
WO1995034927A1 (en) * 1994-06-16 1995-12-21 Komatsu Ltd. Laser gas controller and charging-discharging device for discharge-excited laser
US7962003B2 (en) 2008-08-29 2011-06-14 Kabushiki Kaisha Toshiba Video-audio reproducing apparatus, and video-audio reproducing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994004970A1 (en) * 1992-08-21 1994-03-03 British Nuclear Fuels Plc Apparatus for pulsed electrical power circuitry
EP0609420A1 (en) * 1992-08-21 1994-08-10 British Nuclear Fuels Plc Apparatus for pulsed electrical power circuitry.
WO1995034927A1 (en) * 1994-06-16 1995-12-21 Komatsu Ltd. Laser gas controller and charging-discharging device for discharge-excited laser
US5754579A (en) * 1994-06-16 1998-05-19 Komatsu Ltd. Laser gas controller and charging/discharging device for discharge-excited laser
US7962003B2 (en) 2008-08-29 2011-06-14 Kabushiki Kaisha Toshiba Video-audio reproducing apparatus, and video-audio reproducing method

Similar Documents

Publication Publication Date Title
KR100346940B1 (en) Method and apparatus for eliminating reflected energy due to stage mismatch in nonlinear magnetic compression modules
US5138622A (en) Apparatus and method for generating high-power, high-voltage pulses, particularly for te gas lasers
US4061899A (en) Arrangement for stabilization and ignition of welding arcs by ignition pulses
JP2584567B2 (en) Pulse generator
US3277342A (en) Overload sensing circuit for line type modulator
JPH02103977A (en) Power source for pulsed laser
JP3803482B2 (en) Pulse power supply
JP4038927B2 (en) Pulse power supply
US3253184A (en) Arc initiating system for an arc welder
GB762097A (en) Improvements in and relating to ignition systems
JPH02105479A (en) Pulsed laser power source
SU760416A1 (en) Klystron protection device
JP3011435B2 (en) Magnetic pulse compression circuit and magnetic reset method of saturable reactor for magnetic pulse compression
JP4329415B2 (en) Pulse power supply
JPS63229786A (en) Power device for highly repetitive pulsed laser
JP2800029B2 (en) High voltage pulse generation circuit
JPH02116184A (en) Pulse laser power source device
RU2138904C1 (en) Pulse generator using inductance power accumulators
RU1812022C (en) Arc exciting and feed power source
JPH02105480A (en) Power supply for pulsed laser
SU468722A1 (en) Arc Welding Equipment
SU750109A1 (en) Method of ensuring spark-proof performance of a.c. power supply systems
RU2207713C1 (en) Output stage of continuous action transmitter in family of four devices
SU1252098A1 (en) Exciter and stabilizer of electric arc
GB1459509A (en) Supplying electric power for electro-erosion