JPH02103813A - Compound superconducting wire and manufacture thereof - Google Patents

Compound superconducting wire and manufacture thereof

Info

Publication number
JPH02103813A
JPH02103813A JP63257604A JP25760488A JPH02103813A JP H02103813 A JPH02103813 A JP H02103813A JP 63257604 A JP63257604 A JP 63257604A JP 25760488 A JP25760488 A JP 25760488A JP H02103813 A JPH02103813 A JP H02103813A
Authority
JP
Japan
Prior art keywords
superconducting
conductor
stabilizing
situ
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63257604A
Other languages
Japanese (ja)
Inventor
Tsukasa Kono
河野 宰
Yoshimitsu Ikeno
池野 義光
Masaru Sugimoto
優 杉本
Kenji Goto
謙次 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP63257604A priority Critical patent/JPH02103813A/en
Publication of JPH02103813A publication Critical patent/JPH02103813A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To reduce ac loss by providing a superconducting part composed of an in-situ conductor in which multiple fiber superconducting filaments are arranged, a stabilized conductor divided into at least three parts, and a coated layer by which each stabilized conductor is partitioned. CONSTITUTION:The Sn of a plate 10 compounded outside of the in-situ rod 9 is diffused in the rod 9 to have it reacted with a Nb extra fine filament for the formation of a filament of a Nb3Sn superconducting intermetallic compound to provide a superconducting part 5. The wire B is of the structure in which a stabilized conductor 6 divided into eight parts outside the superconducting part 5, and a metallic layer 7 are arranged. When the superconducting part 5 is going to transpose to a normal conducting state, current is going to run in the stabilized conductor 6a, which, however, is separated by a coated layer 6b of higher resistance than that of the pure copper, and as the cross section is divided in fan-shaped ring compounds in the structure, ac loss to be generated in the conductor 6a can be reduced.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、超電導発電機用の界磁巻線などとして好適
な化合物系超電導線に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a compound-based superconducting wire suitable as a field winding for a superconducting generator.

「従来の技術」 超電導線においては量子磁束線の運動などに起因して発
熱を生じる場合があり、このような場合に超電導線に部
分的に常電導の芽が発生し、超電導線の全体が常電導状
態に転位するおそれがある。
``Prior art'' In superconducting wires, heat may be generated due to the movement of quantum magnetic flux lines, etc. In such cases, buds of normal conductivity occur partially in the superconducting wire, and the entire superconducting wire becomes There is a risk of transition to a normally conducting state.

そこで従来、このような磁気的不安定性および常電導転
位なとを防止して超電導線を安定化するために、以下に
記載ずろ技術が採用されている。
Therefore, in order to stabilize superconducting wires by preventing such magnetic instability and normal conductive dislocations, the shearing technique described below has been employed heretofore.

■超電導体を銅などの良導電性の安定化母材の内部に埋
設ずろ。特に、安定化母材を極低温において電気抵抗の
小さい高純度の銅から形成する。
■Superconductor is buried inside a stable base material with good conductivity such as copper. In particular, the stabilizing base material is formed from high-purity copper that has low electrical resistance at cryogenic temperatures.

■超電導体を数μ〜数10μmの径のフィラメント状に
極細化する。
(2) Ultra-fine superconductor into a filament with a diameter of several micrometers to several tens of micrometers.

■極細化した超電導フィラメントを有する多心線をツイ
スト加工する。
■Twisting multi-core wires containing ultra-fine superconducting filaments.

■編組や成形撚線の構造を採用する。■Use braided or formed stranded wire structures.

■超電導線を交流用として使用する場合、CuNi合金
などの高抵抗の金属材料から安定化母材を構成し、超電
導フィラメント間に生しる結合電流を抑制する。
(2) When using a superconducting wire for alternating current, a stabilizing base material is made of a high-resistance metal material such as a CuNi alloy to suppress the coupling current generated between superconducting filaments.

■化合物系などの超電導体は機械歪が加わると超電導特
性が劣化するので、超電導線に補強材を添設して機械歪
が加わることを阻止する。
■Since superconducting properties of compound-based superconductors deteriorate when mechanical strain is applied, reinforcing materials are attached to superconducting wires to prevent mechanical strain from being applied.

このような背景から、従来、交流用の化合物系超電導線
の一例として第5図に示す断面構造の超電導線Aが提供
されている。この超電導線Aは、銅からなる安定化母材
の内部に多数の化合物系超電導フィラメントを配して超
電導素線2を構成し、この超電導素線2を複数本、無酸
素銅製の安定化材3の周囲に撚線化して添設し、各超電
導素線2をはんだなどのろう付は金属4で安定化材3に
固定した構造となっている。
Against this background, a superconducting wire A having a cross-sectional structure shown in FIG. 5 has been provided as an example of an AC compound superconducting wire. This superconducting wire A comprises a superconducting strand 2 by arranging a large number of compound superconducting filaments inside a stabilizing base material made of copper, and a plurality of these superconducting strands 2 are connected to a stabilizing material made of oxygen-free copper. The structure is such that each superconducting element wire 2 is fixed to the stabilizing material 3 with a metal 4 by soldering or other brazing.

即ち、この構造の超電導線Δにあっては、安定化材3か
各超電導素線2の安定化をなすとともに超電導素線2の
補強材ともなっている。
That is, in the superconducting wire Δ having this structure, the stabilizing material 3 serves to stabilize each superconducting strand 2 and also serves as a reinforcing material for the superconducting strand 2.

[発明が解決しようとする課題」 ところで近年、超電導技術の電力エネルギー分野への応
用の一環として、超電導発電機の試作研究か進められ、
超電導発電機の界磁巻線として用いられろ交流用超電導
線の開発も進められている。
[Problem to be solved by the invention] In recent years, as part of the application of superconducting technology to the field of electric power and energy, research has been underway to create a prototype of a superconducting generator.
The development of AC superconducting wires for use as field windings in superconducting generators is also progressing.

ところが、第5図に示す構造の従来の超電導線Aを交流
用、特に超電導発電機の界磁巻線用として検討した場合
、安定化材3の外部に固定されている超電導素線2が、
ろう付は金属4を介して安定化十43に固定された構造
であるために、超電導特性の安定化の効果は十分ではな
い問題があり、交流用として更に望ましい構造の超電導
線の開発が進められている。
However, when considering the conventional superconducting wire A having the structure shown in FIG.
Since brazing is a structure in which the stabilizing wire is fixed to the stabilizer wire through the metal 4, there is a problem that the effect of stabilizing the superconducting properties is not sufficient, and the development of superconducting wires with a more desirable structure for AC use is progressing. It is being

本発明は、前記課題を解決するためになされたもので、
交流用として損失の少ない優れた構造の化合物系超電導
線を提供することを目的とする。
The present invention has been made to solve the above problems,
The purpose of the present invention is to provide a compound-based superconducting wire with an excellent structure and low loss for AC use.

1課題を解決するための手段」 請求項1に記載した発明は前記課題を解決するために、
繊維状の超電導フィラメントを金属基地の内部に多数配
してなるインサイチュ導体からなる超電導部と、この超
電導部を囲んで設けられた金属層と、この金属層を囲ん
で設けられた安定化導体部と、この安定化導体部を囲ん
で設けられた金属層を具備してなり、前記安定化導体部
は安定化導体部を周回りに3つ以上に分割して構成され
る純銅製の安定化導体と、これらの安定化導体の個々の
周面を覆い、各安定化導体を区分する高融点の高抵抗金
属の被覆層とから構成したものである。
In order to solve the problem, the invention described in claim 1 has the following features:
A superconducting part consisting of an in-situ conductor made of a large number of fibrous superconducting filaments arranged inside a metal base, a metal layer surrounding this superconducting part, and a stabilizing conductor part surrounding this metal layer. and a metal layer provided surrounding this stabilizing conductor part, and the stabilizing conductor part is made of pure copper and is constructed by dividing the stabilizing conductor part into three or more parts. It consists of conductors and a coating layer of a high-melting point, high-resistance metal that covers the individual peripheral surfaces of these stabilized conductors and partitions each stabilized conductor.

請求項2に記載した発明は前記課題を解決するために、
繊維状の超電導フィラメントを有する超電導部と、この
超電導部を囲んで設けられた安定化導体部と、この安定
化導体部を囲んで設けられた金属層を具備してなり、前
記超電導部は、超電導部を周回りに3つ以上に分割して
構成されたインサイチュ導体と、これらのインサイチュ
導体の各々を囲み、各インザイチュ導体を区分して設け
られた金属層を具備してなり、萌記インサイヂ。
In order to solve the above problem, the invention described in claim 2 has the following features:
A superconducting portion having a fibrous superconducting filament, a stabilizing conductor portion surrounding this superconducting portion, and a metal layer surrounding this stabilizing conductor portion, the superconducting portion comprising: The in-situ conductor is constructed by dividing a superconducting part into three or more parts, and a metal layer is provided surrounding each of these in-situ conductors and dividing each in-situ conductor. .

導体は金属基地の内部に多数の超電導フィラメントを配
してなる一方、前記安定化導体部は安定化導体部を周回
りに3つ以」−に分割して構成される純銅製の安定化導
体と、これらの安定化導体の個々の周囲を覆い、各安定
化導体を区分ずろ高融点の高抵抗金属の被覆層とから構
成したものである。
The conductor is made up of a large number of superconducting filaments arranged inside a metal base, while the stabilizing conductor section is a stabilized conductor made of pure copper that is divided into three or more parts surrounding the stabilizing conductor section. and a coating layer of a high-resistance metal having a relatively high melting point and surrounding each of these stabilizing conductors.

請求項3に記載した発明は前記問題を解決するために、
超電導金属間化合物を構成する元素のうち、少なくとム
1つの元素の樹枝状晶を金属基地の内部に分散してなる
インサイチュインゴットからなるインザイチク部Hの外
周に、超電導金属間化合物を構成゛1−ろ元素のうら、
残りの元素の被覆層を形成して複合相を形成するととも
に、純銅からなる安定化材の外周にTa、Nbなどの高
融点金属からなる被覆層を形成して安定化素材を形成し
、前記複合材の全周にわたり、前記安定化素材を配し、
更にその外方に金属管を被せた後に全体を縮径して素線
を作成し、次いでこの索線に拡散熱処理を施して被覆層
の元素を拡散させて超電導体を生成させるものである。
In order to solve the above problem, the invention described in claim 3 has the following:
A superconducting intermetallic compound is formed on the outer periphery of an in-situ part H consisting of an in-situ ingot in which dendrites of at least one element among the elements constituting the superconducting intermetallic compound are dispersed inside a metal base. -The back of the element,
A coating layer of the remaining elements is formed to form a composite phase, and a coating layer made of a high melting point metal such as Ta or Nb is formed on the outer periphery of the stabilizing material made of pure copper to form a stabilizing material. The stabilizing material is arranged all around the composite material,
Furthermore, after covering the outside with a metal tube, the diameter of the entire cable is reduced to create a wire, and then the wire is subjected to diffusion heat treatment to diffuse the elements of the coating layer to produce a superconductor.

「作用」 周回りに3つ以」二に分割した安定化導体を具備し、安
定化導体が超電導部を囲むために、交流損失が低減され
る。また、各安定化導体を覆った高融点金属の被覆層が
、化合物超電導体を生成させるために行う拡散熱処理時
に、安定化導体側への不要元素の拡散を防止する。更に
、被覆層は高抵抗の高融点金属からなり、安定化導体を
区分するために、安定化導体の交流損失も減少して安定
化の効果が高まる。超電導部は繊維状のフィラメントを
有するインサイチュ導体からなるために、機械加工性に
優れ、縮径が容易であるとともに、機械歪が作用した場
合でも超電導特性の劣化が少ない。安定化導体の外方に
設けられた金属層は超電導線を撚線化する場合の保護と
なるとともに、撚線化した後に交流通電した場合に、隣
接する超電導線どうしの間の結合損失を解消する。
"Function" Since the stabilizing conductor is divided into three or more parts around the circumference and the stabilizing conductor surrounds the superconducting part, AC loss is reduced. Further, the coating layer of a high melting point metal covering each stabilizing conductor prevents unnecessary elements from diffusing to the stabilizing conductor side during diffusion heat treatment performed to generate a compound superconductor. Furthermore, since the coating layer is made of a high-resistance, high-melting-point metal and separates the stabilizing conductor, the AC loss of the stabilizing conductor is also reduced and the stabilizing effect is enhanced. Since the superconducting portion is composed of an in-situ conductor having fibrous filaments, it has excellent machinability and can be easily reduced in diameter, and its superconducting properties are less likely to deteriorate even when mechanical strain is applied. The metal layer provided on the outside of the stabilizing conductor provides protection when the superconducting wires are stranded, and eliminates coupling loss between adjacent superconducting wires when AC current is applied after stranding. do.

以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.

一 第1図(A)は、N l) 3 S n系に適用した請
求項Jの発明の超電導線の一構造例を示し、第1図(B
)〜(M)は、N b3S n系に適用した本発明の超
電導線の製造方法を説明するためのものである。
1(A) shows an example of the structure of the superconducting wire of the invention of claim J applied to the Nl)3Sn system, and FIG.
) to (M) are for explaining the method for manufacturing a superconducting wire of the present invention applied to N b3S n system.

この例の超電導線Bは、金属基地の内部に化合物超電導
体のフィラメントを配してなる超電導部5と、この超電
導部5を囲んで設けられた金属層5aと、この金属層5
aを囲んで設けられた安定化導体部6と、この安定化導
体部6を囲んで設けられた金属層7を主体として構成さ
れている。
The superconducting wire B of this example includes a superconducting part 5 in which filaments of a compound superconductor are arranged inside a metal base, a metal layer 5a provided surrounding this superconducting part 5, and this metal layer 5.
It is mainly composed of a stabilizing conductor section 6 provided surrounding a portion a, and a metal layer 7 provided surrounding this stabilizing conductor section 6.

前記超電導部5はCuまたはCu−9n合金からなる基
地の内部に、Nb3Snの不連続の極細の繊維状の超電
導フィラメントを多数配して構成されている。また、前
記金属層5aはCu−Sn合金などから構成されている
。そして、前記安定化導体部6は安定化導体部6をその
周回りに複数に分割(この例では8分割)してなる断面
扇型環状体状の安定化導体6aと、これらの安定化導体
6aの周囲を個々に囲み、各安定化導体6aを仕切って
設けられた高融点の高抵抗金属材料からなる被覆層6b
から構成されている。前記安定化導体6aは純銅からな
り、被覆層6bはTa、Nbなどの800℃以上の融点
であって銅よりも電気抵抗の高い金属材料からなってい
る。更に、前記金属層7は、Cu5n合金、Cu−Zn
合金、Cu−N i合金などの銅合金から形成されてい
る。
The superconducting portion 5 is constructed by disposing a large number of discontinuous ultra-fine fibrous superconducting filaments of Nb3Sn inside a base made of Cu or Cu-9n alloy. Further, the metal layer 5a is made of a Cu-Sn alloy or the like. The stabilizing conductor portion 6 includes a stabilizing conductor 6a having a fan-shaped annular cross section formed by dividing the stabilizing conductor portion 6 into a plurality of parts (in this example, eight parts) around the circumference thereof, and these stabilizing conductors. A coating layer 6b made of a high-melting point, high-resistance metal material that individually surrounds the periphery of each stabilizing conductor 6a and partitions each stabilizing conductor 6a.
It consists of The stabilizing conductor 6a is made of pure copper, and the coating layer 6b is made of a metal material such as Ta or Nb, which has a melting point of 800° C. or more and has a higher electrical resistance than copper. Further, the metal layer 7 is made of Cu5n alloy, Cu-Zn
It is made of a copper alloy such as a Cu-Ni alloy.

前記構造の超電導線Bを製造するには、まず、所定成分
のCu−Nb合金を溶製して第1図(B)に示すインサ
イチュインゴット8を作製し、このインサイチュインゴ
ット8を縮径加工することにより第1図(C)に示すイ
ンサイチュロッド9を作成する。前記インサイチュイン
ゴットは、CuあるいはCu−8n合金製の金属基地の
内部に、Nbからなる無数の樹枝状晶が分散された構造
をなす加工性に富むものであり、このインサイチュイン
ゴット8を縮径することによりNbの樹枝状晶は不連続
の繊維状のフィラメントに変形される。
To manufacture the superconducting wire B having the above structure, first, a Cu-Nb alloy having a predetermined composition is melted to produce an in-situ ingot 8 shown in FIG. 1(B), and this in-situ ingot 8 is subjected to diameter reduction processing. As a result, an in-situ rod 9 shown in FIG. 1(C) is created. The in-situ ingot has a structure in which countless dendrites made of Nb are dispersed inside a metal base made of Cu or Cu-8n alloy, and has excellent workability, and the in-situ ingot 8 is reduced in diameter. The Nb dendrites are thereby transformed into discontinuous fibrous filaments.

次に前記インサイチュロッド9の周囲に、第1図(D)
に示すようにSnからなる板体lOを巻回し、第1図(
E)に示すようにインサイヂュロッド0の全面に被せ、
次いでその外方に第1図(F)に示ずようにCu−Sn
合金からなる管体11を被せろ。次いてこれを縮径して
第1図(G)に示す超電導部44I2を得る。
Next, around the in-situ rod 9, as shown in FIG.
A plate lO made of Sn is wound as shown in Fig. 1 (
Cover the entire surface of insitu rod 0 as shown in E),
Next, Cu-Sn is applied to the outside as shown in FIG.
Cover it with the tube body 11 made of alloy. Next, this is reduced in diameter to obtain a superconducting portion 44I2 shown in FIG. 1(G).

方、第1図(1−1)に示すような無酸素銅製の「lツ
ト状の安定化f’)祠I3の外周に、第1図(H)に示
4−ようにN bあるいは′I″aなどの銅より電気抵
抗がK < 、融点か800℃以−1−の加工性の良好
な高融I板金属からなる拡散防止管I4を被且゛て複合
体15を得ろ。ここで拡散防IL管14の構成材料とし
て′I″aあろL” ii N hを選択した理由は、
後工程で行う縮径加1曝\容易であることと、後工程で
施す超電導体生成用の拡散熱処理時に、安定化母材13
側にイく要な元素か拡散することを阻止して安定化Cl
祠13の汚染を防tl−する目的と、拡散熱処理時に安
定化+fl +A’ + 3の構成元素との間で不要な
化合物を生しないように1ろ目的て′I″aあろいはI
\■bを選択した。従ってこごて用いろ拡散防止管14
の(14成祠月は高融点金属で純銅より電気抵抗が高い
金属+41−1であれは、Ta、Nb以外にステンレス
などの金属材料を用いても良い。
On the other hand, N b or ' A composite body 15 is obtained by covering it with a diffusion prevention tube I4 made of a high-melting I plate metal having good workability and having an electric resistance K < than that of copper such as I''a and a melting point of 800 DEG C. or higher. Here, the reason why 'I''aAroL''IINh was selected as the constituent material of the anti-diffusion IL tube 14 is as follows.
The stabilizing base material 13 is easy to perform in the post-process for diameter reduction and during the diffusion heat treatment for producing superconductors in the post-process.
Stabilized Cl by preventing essential elements from diffusing to the side.
For the purpose of preventing contamination of the shrine 13 and to avoid forming unnecessary compounds between the constituent elements of stabilization + fl + A' + 3 during the diffusion heat treatment, the 'I'' a color is I.
I selected \■b. Therefore, use a iron to prevent diffusion tube 14.
(14) If the metal is a metal with a high melting point and has a higher electrical resistance than pure copper +41-1, a metal material such as stainless steel may be used in addition to Ta and Nb.

次に前記複合体15を縮径して第1図(I)に示す安定
化素材16を得、この安定化素材16を複数本(図面で
(18本)集合して前記超電導部+、1N2の外周に第
1図は)に示すように配置し、更に、Cu−Sn合金、
Cu−Zn合金、Cu−N i合金などの銅合金からな
る管体17に挿入して第1図(K)に示す2次複合体1
8を得る。次にこの2次複合体18を最終的に得るべき
超電導線の線径と同等になるまで縮径して第1図(I、
)に示す素線22を作製ずろ。ごの素線22にあっては
、その最外周部に銅合金からなる金属層7が形成さ、!
1、その内部側には安定化導体部6が形成され、さらに
その内側に超電導素材I2の圧密体が形成されてし)ろ
Next, the diameter of the composite body 15 is reduced to obtain the stabilizing material 16 shown in FIG. The Cu-Sn alloy,
The secondary composite body 1 shown in FIG. 1(K) is inserted into a tube body 17 made of a copper alloy such as a Cu-Zn alloy or a Cu-Ni alloy.
Get 8. Next, the diameter of this secondary composite 18 is reduced until it becomes equal to the wire diameter of the superconducting wire to be finally obtained, as shown in FIG.
) The strand 22 shown in Fig. A metal layer 7 made of a copper alloy is formed on the outermost periphery of the wire 22.
1. A stabilizing conductor portion 6 is formed on the inside thereof, and a consolidated body of superconducting material I2 is further formed on the inside thereof.

次にこの素線22を500〜700°Cに数IO〜数1
数100卯 ザイヂュロソ)・9の外側に複合されている板体10の
Snをインサイチュロッド9の内部に拡散さU゛てNb
の極細フィラメントと反応させ、N1)3S1−+超電
導金属間化合物のフィラメントを生成させて超電導部5
を形成し、第1図(M)と(A)に示す超電導線I3を
得ろ。この超電導線I3にあっては、インザイヂ,〔1
ソト9の外周に配したSnの板体10の5nfJインサ
イチュロツ19側と管体11側に拡散するので超電導部
5の外周部にはC u−8 n合金の金属層5aが残留
rる。
Next, this wire 22 is heated to several IO to several 1 at 500 to 700°C.
The Sn of the plate 10 composited on the outside of the in-situ rod 9 is diffused into the inside of the in-situ rod 9.
superconducting portion 5 by reacting with the ultrafine filaments of
to obtain the superconducting wire I3 shown in FIGS. 1(M) and 1(A). In this superconducting wire I3, Inzaiji, [1
Since it diffuses to the 5nfJ in-situ body 19 side and the tubular body 11 side of the Sn plate 10 arranged around the outer periphery of the superconducting portion 5, a metal layer 5a of Cu-8 n alloy remains on the outer periphery of the superconducting portion 5.

前記拡散熱処理時にインサイチュロッド9側に拡散され
ろSnは外方側にも拡散しようとするが、〃、走化導体
6aの内外周に存在才ろ被覆層6bによって拡散を阻止
され、安定化導体6aのSnによる175染か防止され
ろ。なお、安定化導体6aがSnで汚染ざイ1ろと極低
la. (こおける安定化導体6aの電気抵抗か」を昇
するので好ましくない。
During the diffusion heat treatment, Sn that is diffused toward the in-situ rod 9 side also tries to diffuse outward, but the diffusion is prevented by the thin coating layer 6b that exists on the inner and outer peripheries of the chemotactic conductor 6a, and the stabilizing conductor 175 staining due to Sn of 6a should be prevented. Note that the stabilizing conductor 6a is free from Sn contamination and has an extremely low la. This is not preferable because it increases the electrical resistance of the stabilizing conductor 6a.

以)−1のよ;)に製造された超電導線Bの超電導部5
は、インサイチ:10ット9を基に製造されているので
、臨界電流特性に優れ、機械歪を受けても超電導特性の
劣化が少ないなと機械強度の面でも優れている。また、
超電導線■3は超電導部5の外方に安定化導体部6と金
属層7を配しているのでこれらで補強された構造となっ
ており、機械強度も高い構造となっている。
Superconducting portion 5 of superconducting wire B manufactured in -1;)
Since it is manufactured based on Insitu: 10t9, it has excellent critical current characteristics and is also excellent in terms of mechanical strength, with little deterioration of superconducting characteristics even when subjected to mechanical strain. Also,
Since the superconducting wire 3 has a stabilizing conductor part 6 and a metal layer 7 arranged outside the superconducting part 5, it has a structure reinforced by these, and has a structure with high mechanical strength.

前記超電導線Bは液体ヘリウムなどのめ媒で極低温に冷
却された状態で使用されろ。そして、超電導部5の一部
が何等かの原因て常電導状態に転位しようとした場合に
安定化導体6aに電流を流して発熱を防雨できるように
なっている。
The superconducting wire B is used after being cooled to a cryogenic temperature using a medium such as liquid helium. If a part of the superconducting portion 5 attempts to transition to a normal conductive state for some reason, a current is passed through the stabilizing conductor 6a to prevent heat generation from rain.

更に、前記超電導線Bを交流用として使用し、超電導部
5の一部が常電導状態に転位し,1;うとした場合、安
定化導体6a に交流電流か流れようと4゛ろが、安定
化導体6aを純銅よりム高電気抵抗の被覆層6bで分離
し、しかち、断面扇型環状体ニ分W’lした構造となっ
ているために、安定化導体6a・・間に生じようとする
交流損失を減少することができる。このために超電導線
「)!」交流用として極めて優れた安定性を発揮ずろ。
Furthermore, if the superconducting wire B is used for alternating current and a part of the superconducting portion 5 is transposed to a normal conductive state and tries to do so, it will not be stable regardless of whether an alternating current flows through the stabilizing conductor 6a. The stabilizing conductor 6a is separated by a covering layer 6b which has a higher electric resistance than pure copper, and because the structure has a fan-shaped annular body in cross section, the stabilizing conductor 6a... AC loss can be reduced. For this reason, the superconducting wire ``)!'' exhibits extremely high stability when used for alternating current applications.

ところで前記の例では本発明の構造をNb3Sn系の超
電導線の構造に適用した例に着いて説明したが、本発明
の構造をV3Ga系、N b3 G e, N b3A
1などの化合物系超電導線の構造として適用できろこと
は勿論である。また、安定化導体6a(:18分割構造
に限る乙のではなく、3分割辺−1−の分;ill村い
告てあれば良0゜ 史に、この例では、第1図(1)(、r )(K )に
示ず断面円形状の安定化素材16を加工して断面扇型f
Lli状体の安定化導体6aを形成したが、安定化素+
4’ I 6を予め断面扇型環状体に成形加工した後に
超電導部+、l’12の外周に配置し、この後に縮径加
[、を施して第1図(1,)に示す素線22を作製して
し良い。
Incidentally, in the above example, the structure of the present invention was explained as an example in which the structure of the present invention was applied to the structure of a Nb3Sn-based superconducting wire.
Of course, it can be applied to the structure of compound-based superconducting wires such as No. 1. In addition, the stabilizing conductor 6a (not limited to the 18-divided structure, but the 3-divided side -1-; (,r) Not shown in (K), the stabilizing material 16 with a circular cross section is processed to have a fan-shaped cross section f.
Although the Lli-shaped stabilizing conductor 6a was formed, the stabilizing element +
4' I 6 was previously formed into a fan-shaped annular body in cross section, and then placed on the outer periphery of the superconducting part +, l'12, and then subjected to diameter reduction [, to form the wire shown in Fig. 1 (1,). 22 may be prepared.

第2図は本発明の超電導線Bを用いて構成された超電導
1へ線の一構造例を示している。
FIG. 2 shows an example of the structure of a superconducting wire 1 constructed using the superconducting wire B of the present invention.

この例の超電導撚線Cは超電導線BとCu13%Sn合
金からなろ線材30を交互に撚り合わせて構成した例で
ある。
The superconducting stranded wire C in this example is constructed by alternately twisting the superconducting wire B and the hollow wire 30 made of a Cu13%Sn alloy.

この構造の超電導撚線Cを製造するには、拡散熱処理n
ijの素線22を線材30と撚り合わせ、その後に拡散
熱処理ずろことにより製造される。このように製造する
理由はN1)3Snは極めて硬く脆いのでNbaSn生
成後の撚線加工が困難なたぬである。
To manufacture superconducting stranded wire C with this structure, diffusion heat treatment n
It is manufactured by twisting the strands 22 of ij with wire rods 30 and then subjecting them to diffusion heat treatment. The reason for manufacturing in this way is that N1)3Sn is extremely hard and brittle, making it difficult to strand the wire after forming NbaSn.

この例の超電導撚線Cは線材30 で超電導線B を補
強した構造であるのて撚線全体の機械強度を高めた構造
になっている。また、各超電導線Bの最外周には抵抗の
高い銅合金からなる金属層7が形成されているので、交
流通電時の超電導線B 間の結合損失を減少させること
ができろ。
The superconducting stranded wire C in this example has a structure in which the superconducting wire B is reinforced with a wire 30, thereby increasing the mechanical strength of the entire stranded wire. Further, since the metal layer 7 made of a high resistance copper alloy is formed on the outermost periphery of each superconducting wire B, it is possible to reduce the coupling loss between the superconducting wires B when AC current is applied.

また、超電導撚線の構造として第3図に示すように超電
導線Bのみを撚りあわせて超電導撚線りを製造しても良
い。
Further, as a structure of the superconducting stranded wire, as shown in FIG. 3, only the superconducting wires B may be twisted together to produce a superconducting stranded wire.

第3図に示す構造の超電導撚線りを製造する場合におい
ても第1図(L)に示した素線22を撚り合わせた後に
拡散熱処理を施すことにより製造することができる。
When manufacturing the superconducting stranded wire having the structure shown in FIG. 3, it can also be manufactured by performing diffusion heat treatment after twisting the strands 22 shown in FIG. 1(L).

第4図(A)はNb3Sn系に適用した請求項2の発明
の超電導線の一構造例を示し、第4図(B)〜(G)は
、この超電導線の製造方法を説明するためのものである
FIG. 4(A) shows an example of the structure of the superconducting wire of the invention of claim 2 applied to the Nb3Sn system, and FIG. It is something.

第4図(A)に示す超電導線Eは、化合物超電導体の極
細のフィラメントを有してなる超電導部35と、この超
電導部35を囲んで設はられた金属層35Aと、この金
属層35Δを囲んで設(′、lられだ安定化導体部36
と、この安定化導体部36を囲んで設はらA1に金属層
37を主体として構成されている。
The superconducting wire E shown in FIG. 4(A) includes a superconducting portion 35 having an extremely thin filament of a compound superconductor, a metal layer 35A provided surrounding this superconducting portion 35, and a metal layer 35Δ The stabilizing conductor portion 36 is
Surrounding this stabilizing conductor portion 36, a space A1 is mainly composed of a metal layer 37.

前記超電導線Eにおいて、金属層37と安定化導体部3
6は、先に説明した超電導線Bの金属層7と安定化導体
部6と同等の構造であるが、超電導部35の構造か異な
っている。
In the superconducting wire E, the metal layer 37 and the stabilizing conductor portion 3
6 has the same structure as the metal layer 7 and stabilizing conductor portion 6 of the superconducting wire B described above, but the structure of the superconducting portion 35 is different.

この超電導部35 tJ 、中心部に配した断面丸型の
インザイヂ、導体35aとその周囲に配置された断面扇
型環状体状のインサイチュ導体35t)とこれらの各導
体を囲み、各導体を仕切った被覆層35cとから構成さ
れている。
This superconducting part 35tJ, an in-situ conductor 35a with a round cross-section arranged in the center, an in-situ conductor 35t with a fan-shaped annular cross-section arranged around it, and surrounding these conductors and partitioning each conductor. It is composed of a covering layer 35c.

以」ユの構造の超電導線Eを製造するには、インサイチ
ュインゴソトを縮径して第4図(B)に示すインサイチ
ュロット40を作製し、このインザイヂ、〔lノド40
の外周にSnからなる管体41を披U、更に第4図(C
)に示すように複数本(図面では7本)集合してCu−
Sn合金、Cu−Zn合金、Cu−N i合金などの銅
合金からなる管体42を被せて縮径し、第4図(D)に
示す複合体43を作成する。次にこの複合体43の外周
に、先に説明した例で使用した安定化素材16を複数本
(図面では8本)配置し、更に、Cu−Sn合金、Cu
−Z n合金、Cu−N i合金などの銅合金からなる
管体45を被せて縮径12、第4図(F)に示す素線4
6を得る。次いでこの素線46に、先に説明した例と同
等の拡散熱処理を施してSnを拡散させ、超電導フィラ
メントを生成させることにより第4図(G)と(A)に
示す超電導線Eを得ることかできる。
In order to manufacture a superconducting wire E having the following structure, an in-situ ingot is reduced in diameter to produce an in-situ lot 40 shown in FIG. 4(B).
A tube body 41 made of Sn is attached to the outer periphery of the
) As shown in the figure, multiple pieces (7 pieces in the drawing) are assembled to
A tube body 42 made of a copper alloy such as a Sn alloy, a Cu-Zn alloy, or a Cu-Ni alloy is covered and the diameter is reduced to create a composite body 43 shown in FIG. 4(D). Next, a plurality of stabilizing materials 16 (eight in the drawing) used in the example described above are placed around the outer periphery of this composite 43, and Cu-Sn alloy, Cu
- The wire 4 shown in FIG.
Get 6. Next, this strand 46 is subjected to a diffusion heat treatment similar to the example described above to diffuse Sn and produce superconducting filaments, thereby obtaining the superconducting wire E shown in FIGS. 4(G) and (A). I can do it.

この構造の超電導線Eは前記超電導線Bと同等の効果を
奏する。また、超電導部が断面扇型環状体状の複数のイ
ンサイチュ導体35bにより構成されているために、超
電導部における交流損失も低減した構造となっている。
The superconducting wire E having this structure has the same effect as the superconducting wire B described above. Furthermore, since the superconducting section is constituted by a plurality of in-situ conductors 35b having a fan-shaped annular cross section, the structure has a structure in which AC loss in the superconducting section is also reduced.

「実施例1」 直径150 mm、長さ300mmのCu−N b合金
からなるインサイチュインゴットをろつぼ溶解法により
作成し、このインサイチュインゴットを直径50mmに
なるまで縮径してインザイヂニロッドを得た。次にこの
インサイチュロツドの全周に厚さ5mmのSn板を巻き
イ=j’ fJ、更に外径80mm、内径70mmのC
u−6%Sn合金からなる管体に挿入して直iJ、 5
0 mmになるまで縮径して超電導素材を得た。
"Example 1" An in-situ ingot made of Cu-Nb alloy with a diameter of 150 mm and a length of 300 mm was created by a crucible melting method, and this in-situ ingot was reduced to a diameter of 50 mm to obtain an in-situ rod. Ta. Next, wrap an Sn plate with a thickness of 5 mm around the entire circumference of this in-situ rod.
Directly inserted into a tube made of u-6%Sn alloy, 5
A superconducting material was obtained by reducing the diameter to 0 mm.

次に残留抵抗値RRRが200の無酸素銅からなる直径
50mmの棒体を用意し、この棒体の周囲に肉厚2mm
のTaからなる拡散防止管を被せ、スウエージング装置
により、外径30mmに縮径して安定化素材を得た。
Next, a rod with a diameter of 50 mm made of oxygen-free copper with a residual resistance value RRR of 200 is prepared, and a wall with a thickness of 2 mm is placed around the rod.
The tube was covered with a diffusion prevention tube made of Ta, and the outer diameter was reduced to 30 mm using a swaging device to obtain a stabilized material.

次いて前記超電導素材の外周に前記安定化素材を8本配
し、全体を外径135 mm、内径115mmのCu−
6%Sn合金からなる管体内に挿入し、適宜中間焼鈍処
理を施しなから冷間加工により縮径して外径0.4mm
の素線を得た。
Next, eight pieces of the stabilizing material were arranged around the outer circumference of the superconducting material, and the whole was made of a Cu-based material with an outer diameter of 135 mm and an inner diameter of 115 mm.
It is inserted into a tube made of 6% Sn alloy, subjected to appropriate intermediate annealing treatment, and then reduced in diameter by cold working to an outer diameter of 0.4 mm.
A strand of wire was obtained.

そして前記索線を600℃で200時間加熱する熱処理
を施してSnを拡散させ、Nb3Sn超電導金属間化合
物のフィラメントを生成させて超電導線を製造した。
Then, the cable wire was heat-treated at 600° C. for 200 hours to diffuse Sn and produce filaments of Nb3Sn superconducting intermetallic compound to produce a superconducting wire.

このようにして製造された超電導線は、安定化胴部分を
分割構造にしていない超電導線に比較して交流損失を数
分の−に低減ずろことができた。
The superconducting wire manufactured in this manner was able to reduce AC loss by several minutes compared to a superconducting wire whose stabilizing body portion did not have a divided structure.

「実施例2」 実施例■で用いたものと同等のインサイチュインゴット
を直径15mmになるまで縮径してインサイチュロソド
を得、このインサイチュロットの外周にSnからなるテ
ープを巻き付はて超電導素材を得、この超電導素材を7
本、第4図(C)に示す場合と同等に集合して外径80
mm、内径70mmの管体に挿入し、外径50mmにな
るまで縮径して超電導素材を得た。この超電導素材と実
施例1で用いた安定化素材を用いて実施例1と同等の方
法を実施して外径0.4mmの素線を得た。
"Example 2" An in-situ ingot equivalent to that used in Example (■) is reduced to a diameter of 15 mm to obtain an in-situ rod, and a tape made of Sn is wrapped around the outer circumference of this in-situ ingot to obtain a superconducting material. and this superconducting material to 7
This book is assembled in the same way as shown in Figure 4 (C) and has an outer diameter of 80 mm.
The superconducting material was inserted into a tube with an inner diameter of 70 mm and reduced in diameter to an outer diameter of 50 mm to obtain a superconducting material. Using this superconducting material and the stabilizing material used in Example 1, the same method as in Example 1 was carried out to obtain a wire having an outer diameter of 0.4 mm.

そして前記素線を600℃で200時間加熱する熱処理
を施してSnを拡散させ、Nb5sn超電導金属間化合
物のフィラメントを生成させて超電導線を製造した。
Then, the wire was heat-treated at 600° C. for 200 hours to diffuse Sn and produce a filament of Nb5sn superconducting intermetallic compound to produce a superconducting wire.

このようにして製造された超電導線は、安定化銅部分を
分割構造にしていない超電導線に比較して交流損失を数
分の−に低減することができた。
The superconducting wire manufactured in this manner was able to reduce AC loss to several times lower than that of a superconducting wire in which the stabilizing copper portion did not have a divided structure.

「発明の効梁j 以」−説明したように本発明は、周方向に3つ以上に分
割した分割型の安定化導体を具備し、安定化導体の内部
に超電導部を設けているので交流用として使用した場合
、交流損失を低減することができる。しかも超電導部は
機械加工性に優れるインザイチュ導体からなるので、縮
径加工が容易であり、超電導線に機械歪が加わった場合
でも超電導特性の劣化か少ない特徴がある。また、安定
化導体を高融点金属の被覆層で覆った構造の安定化導体
部で超電導部を覆った構造を採用しているので、拡散熱
処理時に安定化導体が拡散元素で汚染されろことが防1
ト、されるとともに、高融点で高電気抵抗の被覆層によ
り囲まれて安定化導体の結合損失も低減した構造となっ
ているので、この発明の超電導線は交流用として優れた
特徴がある。更に、超電導部の外側に純銅製の安定化導
体部と金属層が配されているので機械的に強く、かつ、
コンパクトな構造となっている。従ってこの発明の超電
導線は超電導発電機の界磁巻線などの交流用超電導線と
して極めて優れている。
"Effects of the Invention" - As explained, the present invention includes a split stabilizing conductor that is divided into three or more parts in the circumferential direction, and a superconducting part is provided inside the stabilizing conductor, so that AC When used for commercial purposes, AC loss can be reduced. Furthermore, since the superconducting portion is made of an in-situ conductor with excellent machinability, diameter reduction processing is easy, and even when mechanical strain is applied to the superconducting wire, there is little deterioration in superconducting properties. In addition, since we have adopted a structure in which the stabilizing conductor is covered with a coating layer of a high-melting point metal and the superconducting part is covered, the stabilizing conductor will not be contaminated with diffusion elements during diffusion heat treatment. Defense 1
The superconducting wire of the present invention has excellent characteristics for use in alternating current applications because it is surrounded by a coating layer with a high melting point and high electrical resistance, thereby reducing the coupling loss of the stabilizing conductor. Furthermore, a stabilizing conductor made of pure copper and a metal layer are arranged on the outside of the superconducting part, so it is mechanically strong and
It has a compact structure. Therefore, the superconducting wire of the present invention is extremely excellent as an AC superconducting wire such as a field winding of a superconducting generator.

また、本発明の方法によれば、分割構造であって、不要
元素による汚染のない安定化導体を備え、交流特性の優
れた超電導線を製造することができる。更に、インサイ
チュ導体を用いるために断線などのトラブルを起こすこ
となく縮径加工を行うことができ、極細の繊維状の超電
導フィラメントを有し、機械歪にも強い超電導線を得る
ことができる。
Further, according to the method of the present invention, it is possible to manufacture a superconducting wire that has a divided structure, has a stabilized conductor free from contamination by unnecessary elements, and has excellent AC characteristics. Furthermore, since an in-situ conductor is used, diameter reduction processing can be performed without causing troubles such as wire breakage, and a superconducting wire that has ultra-fine fibrous superconducting filaments and is resistant to mechanical strain can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)は請求項1に記載した発明の超電導線の一
構造例を示す拡大断面図、第1図(B)はインサイチュ
インゴットの断面図、第1図(C)はインサイチコロッ
ドの断面図、第1図(D)はインサイチュロッドに対す
る板体の巻き付は状態を示す断面図、第1図(E)は板
体をインサイヂュロツドに巻き付けた状態を示す断面図
、第1図(F)は板体の外方に管体を被せた状態を示す
断面図、第1図(G)は超電導素材の断面図、第1図(
H)は複合体の断面図、第1図(1)は安定化素材の断
面図、第1図(、■)は超電導索材の外周に安定化素材
を配した状態を示す断面図、第1図(K)は集合状態の
安定化素材を管体に挿入した状態を示す断面図、第1図
(r、)は素線の断面図、第1図(M)は超電導線の断
面図、第2図は超電導撚線の一例を示す斜視図、第3図
は超電導撚線の他の例を示す断面図、第4図(A)は請
求項2に記載した発明の超電導線の一構造例を示す拡大
断面図、第4図(B)はインサイチュロッ)・の断面図
、第4図(C)はインサイチュロットの集合状態を示す
断面図、第4図(D)は複合体の断面図、第4図(E)
は安定化素材の集合状態を示す断面図、第4図(F)は
素線の断面図、第4図(G)は超電導線の断面図、第5
図は従来の超7[導線の構造例を示す断面図である。 E 6b・ 8・・イ 超電導線、C,D  超電導撚線、 5 超電導部、5a・・金属層、 6 安定化導体部、6a・・・安定化導体、被覆層、7
.37 ・金属層、 ンサイヂュインゴット、 インサイチュロッ ト、 5a、35b インサイヂュ導体、 5 c・ 被覆層。
FIG. 1(A) is an enlarged sectional view showing an example of the structure of the superconducting wire of the invention described in claim 1, FIG. 1(B) is a sectional view of an in situ ingot, and FIG. 1(C) is an in situ rod. 1(D) is a sectional view showing the state in which the plate is wound around the in-situ rod. FIG. 1(E) is a sectional view showing the state in which the plate is wound around the in-situ rod. Figure 1 (F) is a cross-sectional view showing the state in which the tube body is covered on the outside of the plate, Figure 1 (G) is a cross-sectional view of the superconducting material, and Figure 1 (
H) is a sectional view of the composite, FIG. Figure 1 (K) is a cross-sectional view showing the state in which the stabilizing material in the assembled state is inserted into the tube body, Figure 1 (r,) is a cross-sectional view of the strand, and Figure 1 (M) is a cross-sectional view of the superconducting wire. , FIG. 2 is a perspective view showing an example of a superconducting stranded wire, FIG. 3 is a sectional view showing another example of a superconducting stranded wire, and FIG. FIG. 4(B) is an enlarged sectional view showing an example of the structure; FIG. 4(B) is a sectional view of an in-situ lot; FIG. 4(C) is a sectional view showing an assembled state of in-situ lots; FIG. 4(D) is a cross-sectional view of a composite Cross-sectional view, Figure 4 (E)
4(F) is a sectional view of the strand, FIG. 4(G) is a sectional view of the superconducting wire, and FIG.
The figure is a cross-sectional view showing an example of the structure of a conventional super 7 conductor wire. E 6b・ 8... A superconducting wire, C, D Superconducting stranded wire, 5 Superconducting part, 5a... Metal layer, 6 Stabilizing conductor part, 6a... Stabilizing conductor, coating layer, 7
.. 37 - Metal layer, in-situ ingot, in-situ lot, 5a, 35b in-situ conductor, 5 c- coating layer.

Claims (3)

【特許請求の範囲】[Claims] (1)繊維状の超電導フィラメントを金属基地の内部に
多数配してなるインサイチュ導体からなる超電導部と、
この超電導部を囲んで設けられた金属層と、この金属層
を囲んで設けられた安定化導体部と、この安定化導体部
を囲んで設けられた金属層を具備してなり、前記安定化
導体部は安定化導体部を周回りに3つ以上に分割して構
成される純銅製の安定化導体と、これらの安定化導体の
個々の周面を覆い各安定化導体を区分する高融点の高抵
抗金属の被覆層とからなることを特徴とする化合物系超
電導線。
(1) A superconducting section consisting of an in-situ conductor formed by disposing a large number of fibrous superconducting filaments inside a metal base;
A metal layer provided surrounding this superconducting portion, a stabilizing conductor portion provided surrounding this metal layer, and a metal layer provided surrounding this stabilizing conductor portion. The conductor part consists of a pure copper stabilizing conductor that is divided into three or more parts around the stabilizing conductor part, and a high melting point that covers the circumferential surface of each of these stabilizing conductors and divides each stabilizing conductor. A compound-based superconducting wire characterized by comprising a coating layer of a high-resistance metal.
(2)繊維状の超電導フィラメントを有する超電導部と
、この超電導部を囲んで設けられた安定化導体部と、こ
の安定化導体部を囲んで設けられた金属層を具備してな
り、前記超電導部は超電導部を周回りに3つ以上に分割
して構成されたインサイチュ導体と、これらのインサイ
チュ導体の各々を囲み、各インサイチュ導体を仕切って
設けられた金属層を具備してなり、前記インサイチュ導
体は金属基地の内部に多数の超電導フィラメントを配し
て構成されてなる一方、前記安定化導体部は安定化導体
部を周回りに3つ以上に分割して構成される純銅製の安
定化導体と、これらの安定化導体の個々の周面を覆い、
各安定化導体を区分する高融点の高抵抗金属の被覆層と
からなることを特徴とする化合物系超電導線。
(2) comprising a superconducting part having a fibrous superconducting filament, a stabilizing conductor part provided surrounding this superconducting part, and a metal layer provided surrounding this stabilizing conductor part; The superconducting section includes an in-situ conductor formed by dividing the superconducting section into three or more parts, and a metal layer surrounding each of these in-situ conductors and partitioning each in-situ conductor. The conductor is composed of a large number of superconducting filaments arranged inside a metal base, while the stabilizing conductor section is made of pure copper and is composed of three or more parts surrounding the stabilizing conductor section. covering the conductors and the individual circumferential surfaces of these stabilizing conductors;
A compound-based superconducting wire characterized by comprising a coating layer of a high-melting-point, high-resistance metal that separates each stabilizing conductor.
(3)超電導金属間化合物を構成する元素のうち、少な
くとも1つの元素の樹枝状晶を金属基地の内部に分散し
てなるインサイチュインゴットからなるインサイチュ部
材の外周に、超電導金属間化合物を構成する元素のうち
、残りの元素の被覆層を形成して複合材を形成するとと
もに、純銅からなる安定化材の外周にTa、Nbなどの
高融点金属からなる被覆層を形成して安定化素材を形成
し、前記複合材の全周にわたり、前記安定化素材を配し
、更にその外方に金属管を被せた後に全体を縮径して素
線を作成し、次いでこの素線に拡散熱処理を施して被覆
層の元素を拡散させて超電導体を生成させることを特徴
とする化合物系超電導線の製造方法。
(3) The elements constituting the superconducting intermetallic compound are placed on the outer periphery of an in-situ member consisting of an in-situ ingot in which dendrites of at least one of the elements constituting the superconducting intermetallic compound are dispersed inside a metal matrix. Among them, a coating layer of the remaining elements is formed to form a composite material, and a coating layer made of a high-melting point metal such as Ta or Nb is formed on the outer periphery of the stabilizing material made of pure copper to form a stabilizing material. Then, the stabilizing material is placed around the entire circumference of the composite material, and a metal tube is placed on the outside of the material, and the diameter of the entire material is reduced to create a strand, and then this strand is subjected to diffusion heat treatment. A method for manufacturing a compound-based superconducting wire, characterized in that a superconductor is produced by diffusing elements in a coating layer.
JP63257604A 1988-10-13 1988-10-13 Compound superconducting wire and manufacture thereof Pending JPH02103813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63257604A JPH02103813A (en) 1988-10-13 1988-10-13 Compound superconducting wire and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63257604A JPH02103813A (en) 1988-10-13 1988-10-13 Compound superconducting wire and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH02103813A true JPH02103813A (en) 1990-04-16

Family

ID=17308577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63257604A Pending JPH02103813A (en) 1988-10-13 1988-10-13 Compound superconducting wire and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH02103813A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4946886A (en) * 1972-08-04 1974-05-07
JPS51135493A (en) * 1975-05-20 1976-11-24 Toshiba Corp Manufacturing method of superconductive wire
JPS5624712A (en) * 1979-08-01 1981-03-09 Hitachi Ltd Composite superconductor and method of manufacturing same
JPS5790814A (en) * 1980-11-26 1982-06-05 Furukawa Electric Co Ltd Method of producing compound superconductive wire
JPS57194404A (en) * 1981-05-25 1982-11-30 Fujikura Ltd Method of producing compound series extrafine multicore superconductive wire
JPS58212012A (en) * 1982-06-02 1983-12-09 古河電気工業株式会社 Method of producing compound superconductive conductor
JPS62160608A (en) * 1986-01-09 1987-07-16 株式会社東芝 Compound superconductor
JPS637353A (en) * 1986-06-25 1988-01-13 Fujikura Ltd Production of fiber dispersion type superconductive wire

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4946886A (en) * 1972-08-04 1974-05-07
JPS51135493A (en) * 1975-05-20 1976-11-24 Toshiba Corp Manufacturing method of superconductive wire
JPS5624712A (en) * 1979-08-01 1981-03-09 Hitachi Ltd Composite superconductor and method of manufacturing same
JPS5790814A (en) * 1980-11-26 1982-06-05 Furukawa Electric Co Ltd Method of producing compound superconductive wire
JPS57194404A (en) * 1981-05-25 1982-11-30 Fujikura Ltd Method of producing compound series extrafine multicore superconductive wire
JPS58212012A (en) * 1982-06-02 1983-12-09 古河電気工業株式会社 Method of producing compound superconductive conductor
JPS62160608A (en) * 1986-01-09 1987-07-16 株式会社東芝 Compound superconductor
JPS637353A (en) * 1986-06-25 1988-01-13 Fujikura Ltd Production of fiber dispersion type superconductive wire

Similar Documents

Publication Publication Date Title
US4195199A (en) Superconducting composite conductor and method of manufacturing same
US20050178472A1 (en) Method for producing (Nb, Ti)3Sn wire by use of Ti source rods
US7476810B2 (en) Reinforcement of superconducting coils by high-strength materials
US4055887A (en) Method for producing a stabilized electrical superconductor
US4857675A (en) Forced flow superconducting cable and method of manufacture
JPS62103913A (en) Complex compound superconductor
US4646428A (en) Method of fabricating multifilament intermetallic superconductor
KR102427970B1 (en) Sub-elements based on nb-containing rod elements with powder-filled core tube for nbs-containing superconducting wire, and related manufacturing methods
JPH02103813A (en) Compound superconducting wire and manufacture thereof
JP2878390B2 (en) Method of manufacturing Nb (3) Sn superconducting wire for superconducting generator
JP2845905B2 (en) Compound conducting wire for alternating current
JP3585770B2 (en) Superconducting conductor and manufacturing method thereof
GB1569983A (en) Super conductor
JP3272017B2 (en) AC superconducting wire and method of manufacturing the same
JP2742436B2 (en) Method for producing compound superconducting stranded wire
JP2874955B2 (en) Method of manufacturing Nb (3) Sn superconducting wire for superconducting generator
JP2742421B2 (en) Superconducting wire and its manufacturing method
JPH02103811A (en) Compound superconducting wire
JP3045517B2 (en) Compound based superconducting stranded wire and method for producing the same
JP2719155B2 (en) Superconducting stranded wire manufacturing method
JP2742437B2 (en) Method for producing compound superconducting stranded wire
JP2644854B2 (en) Method of manufacturing compound superconducting wire
KR20240093610A (en) Niobium aluminum precursor wire, niobium aluminum precursor stranded wire, niobium aluminum superconducting wire, and niobium aluminum superconducting stranded wire
JPH09147635A (en) Type a15 superconducting wire and its manufacture
JPH087681A (en) A3b type compound superconductive wire rod and manufacture thereof