JPH02102235A - Extraction of water-soluble impurity from resin for sealing semiconductor - Google Patents

Extraction of water-soluble impurity from resin for sealing semiconductor

Info

Publication number
JPH02102235A
JPH02102235A JP25374588A JP25374588A JPH02102235A JP H02102235 A JPH02102235 A JP H02102235A JP 25374588 A JP25374588 A JP 25374588A JP 25374588 A JP25374588 A JP 25374588A JP H02102235 A JPH02102235 A JP H02102235A
Authority
JP
Japan
Prior art keywords
water
resin powder
soluble impurities
sealing resin
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25374588A
Other languages
Japanese (ja)
Other versions
JP2567065B2 (en
Inventor
Hideki Matsunaga
秀樹 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63253745A priority Critical patent/JP2567065B2/en
Publication of JPH02102235A publication Critical patent/JPH02102235A/en
Application granted granted Critical
Publication of JP2567065B2 publication Critical patent/JP2567065B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:To make it possible to extract rapidly and high accurately water-soluble impurities by placing a semiconductor sealing resin powder and water in specified closed vessels and heating them by means of a microwave. CONSTITUTION:A semiconductor sealing resin powder 7 and pure water 8 are placed in closed vessels 1 and 2 wherein at least the inner face is constituted of a fluorinated resin and, if necessary, the structure is a double or a triple closed structure pref. with lids 3 and 4 fittable with screws 5 and 6, and heated by means of a microwave to extract water-soluble impurities from the resin powder 7.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は半導体封止樹脂の評価方法、さらに詳しくは
、半導体封止樹脂の水溶性不純物の抽出方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for evaluating semiconductor encapsulation resin, and more particularly to a method for extracting water-soluble impurities from semiconductor encapsulation resin.

(従来の技術) エポキシ系樹脂、シリコーン系樹脂等の半導体封止樹脂
は含有する不純物によって、半導体素子特性を左右する
。半導体素子の表面状態はこの素子の電気特性に直接影
響を及ぼし、特に表面不純物による汚染に敏感である。
(Prior Art) Semiconductor encapsulating resins such as epoxy resins and silicone resins affect the characteristics of semiconductor devices depending on the impurities they contain. The surface condition of a semiconductor device directly affects the electrical properties of the device and is particularly sensitive to contamination by surface impurities.

例えば封止樹脂は、直接素子と接触しており、樹脂は湿
気を透過し、吸収する性質を有してる。このため、侵入
した水分及び水に溶解した不純物イオン、特にハロゲン
イオンと半導体素子電極及び配線に使用されているアル
ミニウムとの化学反応により、絶縁性が低下する。また
、これらによって配線や電極が腐食し、断線する。した
がって樹脂自体に水溶性不純物ができるだけ少ないこと
が望まれる。
For example, the sealing resin is in direct contact with the element, and the resin has the property of permeating and absorbing moisture. Therefore, the insulating properties are reduced due to a chemical reaction between the entered moisture and impurity ions dissolved in the water, especially halogen ions, and aluminum used for the semiconductor element electrodes and wiring. Moreover, these corrode the wiring and electrodes, causing wire breakage. Therefore, it is desirable that the resin itself contains as few water-soluble impurities as possible.

このような要請に対してとられている封止樹脂の評価方
法は、従来、未硬化樹脂粉末を加熱処理し硬化させた後
、粉砕した効果樹脂粉体戸水を密閉容器に収納し、容器
全体を加熱し抽出して、抽出水の塩素、ナトリウム、カ
リウム、カルシウム、マグネシウム等の水溶性不純物濃
度を測定する方法であった。しかし、この方法では抽出
に2〜3時間の長時間を要し、また、所要時間が長いた
め抽出中に不純物汚染がさけられず、分析精度が悪いと
いう問題点があった。
Conventionally, the evaluation method for sealing resins that has been adopted in response to these demands is to heat-treat uncured resin powder, harden it, and then store the pulverized effective resin powder in an airtight container. This method involves heating and extracting the water and measuring the concentration of water-soluble impurities such as chlorine, sodium, potassium, calcium, and magnesium in the extracted water. However, this method requires a long time of 2 to 3 hours for extraction, and due to the long time required, impurity contamination cannot be avoided during extraction, resulting in poor analysis accuracy.

(発明が解決しようとする課題) 本発明は、上記従来の問題点を解決するためになされた
もので、半導体封止樹脂中の水溶性不純物を迅速かつ高
精度に抽出可能とした抽出方法を提供しようとするもの
である。
(Problems to be Solved by the Invention) The present invention has been made in order to solve the above-mentioned conventional problems, and provides an extraction method that enables rapid and highly accurate extraction of water-soluble impurities in semiconductor encapsulation resin. This is what we are trying to provide.

[発明の構成] (課題を解決するための手段及び作用)本発明は半導体
封止樹脂粉体を少なくとも内面をフッ素樹脂で構成する
密閉容器内に水とともに収納し、加熱して水溶性不純物
を抽出する方法において、マイクロ波加熱を用いたこと
を特徴とする半導体封止樹脂中の水溶性不純物の抽出方
法である。
[Structure of the Invention] (Means and Effects for Solving the Problems) The present invention stores semiconductor encapsulating resin powder together with water in an airtight container whose at least the inner surface is made of fluororesin, and heats it to remove water-soluble impurities. This is a method for extracting water-soluble impurities in a semiconductor sealing resin, characterized in that the method uses microwave heating.

密閉容器の構造は封止樹脂粉体と水を容易に出し入れで
き、かつマイクロ波を利用して加熱した時に、封止樹脂
粉体および水が漏れない構造であれば、いかなるもので
もよいが、ねじ嵌合できる蓋付きの密閉容器のものがよ
い。また、密閉容器は1つだけでなく、二重あるいは三
重の密閉構造になっている方が、加熱時に封止樹脂試料
や水の漏れおよび不純物汚染を防止するうえで望ましい
The structure of the sealed container may be any structure as long as it allows the sealing resin powder and water to be taken in and out easily, and the sealing resin powder and water do not leak out when heated using microwaves. A sealed container with a screw-fitting lid is best. Further, it is preferable to have not only one sealed container but also a double or triple sealed structure in order to prevent leakage of the sealing resin sample or water and impurity contamination during heating.

密閉容器の材質には、それが測定を目的とする封止樹脂
中の不純物の正確な1(1111定を直接的にも間接的
にも妨害するものでないかぎり、いかなるものであって
もよいが、全てフッ素樹脂、特にテフロンを用いること
が望ましい。テフロンは耐熱性、耐圧性及び耐酸性にす
ぐれているうえに、弗酸、硝酸などの紺産による洗浄に
よって、不純物を容易に除去することができ、かかる洗
浄を終えたものからの不純物の溶出が極めて少なく、本
発明の目的にかなった材質である。また、密閉容器内の
封止樹脂中不純物の溶出状態が外側から簡便に目視でわ
かるように透明なものが望ましい。
The material of the sealed container may be of any material as long as it does not directly or indirectly interfere with the accurate 1111 determination of impurities in the sealing resin to be measured. It is desirable to use a fluororesin, especially Teflon.Teflon has excellent heat resistance, pressure resistance, and acid resistance, and impurities can be easily removed by cleaning with hydrofluoric acid, nitric acid, etc. It is a material that meets the purpose of the present invention because there is extremely little elution of impurities from the product after such washing.In addition, the state of elution of impurities from the sealing resin in the sealed container can be easily visually confirmed from the outside. A transparent one is preferable.

マイクロ波の発生手段は封止樹脂粉体や水を効率よく簡
便に加熱できるものであればいかなるものでもよく、家
庭用電子レンジでもよい。
The microwave generating means may be any means as long as it can efficiently and easily heat the sealing resin powder or water, and may be a household microwave oven.

本発明では、原因は必ずしも明らかではないがマイクロ
波を利用することによって、水および封止樹脂粉体を効
率よく加熱することができる、封止樹脂中の水溶性不純
物を迅速かつ高精度に抽出することができる。
In the present invention, water and sealing resin powder can be efficiently heated by using microwaves, although the cause is not necessarily clear, and water-soluble impurities in sealing resin can be extracted quickly and with high precision. can do.

(実施例) 以下、本発明の実施例につい述べる。(Example) Examples of the present invention will be described below.

〈実施例1〉 封止樹脂粉体2gを純水10m1と回転子1個とともに
、第1図に示した厚さ3[lll11.容!30m1テ
フロン製密閉容器に入れ、テフロン製蓋でねじ嵌合した
<Example 1> 2 g of sealing resin powder was mixed with 10 ml of pure water and one rotor to a thickness of 3 [lll11. Yong! It was placed in a 30 ml Teflon airtight container and screwed onto a Teflon lid.

さらに、この容器を厚さ31111+1 、容量約60
m1のテフロン製密閉容器内に収納し、テフロン製蓋で
ねじ嵌合した。その後、撹拌した後、家庭用電子レンジ
に入れ、周波数2450MIIz 、出力tooowの
条件でマイクロ波による加熱を約10分間行なった。放
冷後、抽出される水溶性不純物を原子吸光法やイオンク
ロマトグラフ法で測定した。
Furthermore, this container has a thickness of 31111+1 and a capacity of approximately 60
It was stored in a Teflon airtight container of m1 size, and screwed together with a Teflon lid. Thereafter, after stirring, the mixture was placed in a household microwave oven and heated for about 10 minutes under the conditions of a frequency of 2450 MIIz and an output of too low. After cooling, extracted water-soluble impurities were measured by atomic absorption spectrometry or ion chromatography.

く比較例1〉 封止樹脂粉体2gを厚さ3IIII111容量30I1
11のテフロン製密閉容器に入れ、ふたをし、さらに、
この容器を厚さ5IIIII+容量約60m1のステン
レス製密閉容器に収納し、ステンレス製蓋でねじ嵌合し
て、冠着固定した。その後、撹拌した後、電気乾燥機に
て180℃で2時間加熱した。放冷後、抽出される水溶
性不純物を原子吸光法やイオンクロマトグラフ法で測定
した。
Comparative Example 1> 2g of sealing resin powder with a thickness of 3III111 and a volume of 30I1
Place it in a Teflon airtight container from step 11, cover it, and
This container was housed in a stainless steel airtight container with a thickness of 5III and a capacity of about 60 m1, and a stainless steel lid was fitted with screws and fixed with a cap. Thereafter, after stirring, the mixture was heated at 180° C. for 2 hours in an electric dryer. After cooling, extracted water-soluble impurities were measured by atomic absorption spectrometry or ion chromatography.

しかして、本実施例1および比較例1により得られた水
溶性不純物の繰返し3回ずつの測定結果を第1表に示す
Table 1 shows the results of three repeated measurements of the water-soluble impurities obtained in Example 1 and Comparative Example 1.

第1表 [発明の効果コ 以上述べたように、本発明によれば、半導体封止樹脂中
の水溶性不純物を迅速かつ精度よく抽出することができ
る。
Table 1 [Effects of the Invention] As described above, according to the present invention, water-soluble impurities in semiconductor encapsulation resin can be extracted quickly and accurately.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に用いる密閉容器の一実施例の縦断面図
である。 ■、2・・・密閉容器、3.4・・・蓋、5,6・・・
ねじ。 7・・・封止樹脂粉体、 8・・・純水べ環人弁理士 
則 近 憲 佑 同   松  山  光  之
FIG. 1 is a longitudinal sectional view of an embodiment of a closed container used in the present invention. ■, 2... Airtight container, 3.4... Lid, 5, 6...
screw. 7...Sealing resin powder, 8...Pure Water Bekan Patent Attorney
Noriyuki Noriyuki Yudo Matsuyama Hikaru

Claims (1)

【特許請求の範囲】[Claims] 半導体封止樹脂粉体を少なくとも内面をフッ素樹脂で構
成する密閉容器内に水とともに収納し、加熱して水溶性
不純物を抽出する方法において、マイクロ波加熱を用い
たことを特徴とする半導体封止樹脂中の水溶性不純物の
抽出方法。
A semiconductor encapsulation method characterized by using microwave heating in a method of storing semiconductor encapsulation resin powder together with water in an airtight container having at least the inner surface made of fluororesin and heating it to extract water-soluble impurities. Method for extracting water-soluble impurities in resin.
JP63253745A 1988-10-11 1988-10-11 Method for extracting water-soluble impurities in semiconductor encapsulation resin Expired - Lifetime JP2567065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63253745A JP2567065B2 (en) 1988-10-11 1988-10-11 Method for extracting water-soluble impurities in semiconductor encapsulation resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63253745A JP2567065B2 (en) 1988-10-11 1988-10-11 Method for extracting water-soluble impurities in semiconductor encapsulation resin

Publications (2)

Publication Number Publication Date
JPH02102235A true JPH02102235A (en) 1990-04-13
JP2567065B2 JP2567065B2 (en) 1996-12-25

Family

ID=17255551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63253745A Expired - Lifetime JP2567065B2 (en) 1988-10-11 1988-10-11 Method for extracting water-soluble impurities in semiconductor encapsulation resin

Country Status (1)

Country Link
JP (1) JP2567065B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002008325A1 (en) * 2000-07-24 2002-01-31 Daikin Industries, Ltd. Method for producing regenerated fluororesin and regenerated fluororesin article

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002008325A1 (en) * 2000-07-24 2002-01-31 Daikin Industries, Ltd. Method for producing regenerated fluororesin and regenerated fluororesin article
US7223800B2 (en) 2000-07-24 2007-05-29 Daikin Industries, Ltd. Method for producing regenerated fluororesin and regenerated fluororesin article

Also Published As

Publication number Publication date
JP2567065B2 (en) 1996-12-25

Similar Documents

Publication Publication Date Title
Aston et al. Thermodynamic properties of the three crystalline forms of methylammonium chloride
Smith Jr et al. Thermodynamic Properties of Technetium and Rhenium Compounds. I. Vapor Pressures of Technetium Heptoxide, Pertechnic Acid and Aqueous Solutions of Pertechnic Acid1, 2
Held et al. Thermodynamic Properties of Nonaqueous Solutions. I. Heats of Solution of Selected Alkali Metal Halides in Anhydrous N-Methylformamide1
JPH02102235A (en) Extraction of water-soluble impurity from resin for sealing semiconductor
Goetschel et al. Preparation and properties of perfluoroammonium tetrafluoroborate, NF4+ BF4-, and possible synthesis of nitrogen pentafluoride
Inaba An adiabatic calorimeter for use at intermediate and higher temperatures the heat capacity of synthetic sapphire (α-Al2O3) from 70 to 700 K
Phipps et al. TEMPERATURE-CONDUCTANCE CURVES OF SOLID SALTS I. THE HALIDES OF SODIUM
Higgins et al. THERMOCHEMICAL STUDY OF THE SODIUM AND AMMONIUM HYDROGEN FLUORIDES IN ANHYDROUS HYDROGEN FLUORIDE1
Quarterman et al. A Study of the Bromine-Bromine Trifluoride and Bromine Pentafluoride Systems, Primarily by Conductivity Methods
Ansel et al. About SnF2 Stannous Fluoride V.: Conduction Characteristics
Brandenberger et al. Determination of powder moisture by azeotropic distillation and near-infrared spectrophotometry
JPS5813633A (en) Extraction of water-soluble impurity from resin for encapsulating semiconductor
Wojtowicz et al. THE REACTION OF HYDROGEN ATOMS WITH LIQUID OZONE1
Amick et al. The Stabilization of Germanium Surfaces by Ethylation: II. Chemical Analysis
Simeon et al. Construction of a simple reaction calorimeter and heats of some standard reactions at 20° C
Tsutsumi et al. Direct measurement of the interaction energy between solids and gases. VIII. A high-temperature calorimeter for the determination of heats of adsorption from room temperature to 700 K.
Rodebush et al. The atomic heat capacities of iron and nickel at low temperatures
STEARNS et al. Dissociation energies of some high temperature molecules containing aluminum(Mass spectra and dissociation energies of high temperature gaseous molecules containing aluminum)
Owen et al. Electrical conduction in ammonium perchlorate
JPS6041737B2 (en) Boron isotope ratio measurement method
Watanabe et al. Pressure-volume technique for the calibration of ozone analyzers
Campbell et al. THE CONDUCTANCE OF MOLTEN LITHIUM CHLORATE AND THE EFFECT OF ADDITIONS OF TRACES OF NONELECTROLYTES ON THE CONDUCTANCE
JPH0525068B2 (en)
Perrino An electrolysis and conductivity study on ammonium dihydrogen arsenate
SU1075331A1 (en) Method of determining coefficients of secondary ion-ion emission for components of sample made of semiconductor material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 13