JPS6041737B2 - Boron isotope ratio measurement method - Google Patents

Boron isotope ratio measurement method

Info

Publication number
JPS6041737B2
JPS6041737B2 JP52011136A JP1113677A JPS6041737B2 JP S6041737 B2 JPS6041737 B2 JP S6041737B2 JP 52011136 A JP52011136 A JP 52011136A JP 1113677 A JP1113677 A JP 1113677A JP S6041737 B2 JPS6041737 B2 JP S6041737B2
Authority
JP
Japan
Prior art keywords
boron
measuring
mass spectrometer
gas
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52011136A
Other languages
Japanese (ja)
Other versions
JPS5396889A (en
Inventor
規夫 川竹
昇 世良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP52011136A priority Critical patent/JPS6041737B2/en
Publication of JPS5396889A publication Critical patent/JPS5396889A/en
Publication of JPS6041737B2 publication Critical patent/JPS6041737B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Description

【発明の詳細な説明】 本発明は無機ホウ素化合物のホウ素同位体比の測定方法
、特に原子炉の減速材(Moderator)として使
用される濃紐旧。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the boron isotope ratio of an inorganic boron compound, in particular to a method for measuring the boron isotope ratio of an inorganic boron compound, particularly for use as a moderator in nuclear reactors.

C中に含有するIOBとIIBの同位体比測定方法に関
する。従来からホウ素の同位体比測定方法としては、(
1)表面電離型質量分析計を用いる方法、(2)試料を
BF3ガスとして質量分析計に導入し、BF3ガスを電
子衝撃法によりイオン化し生成したBF2*イオンを測
定する方法てある。
This invention relates to a method for measuring the isotope ratio of IOB and IIB contained in C. Traditionally, the method for measuring boron isotope ratios is (
There are two methods: 1) using a surface ionization mass spectrometer; and (2) introducing a sample as BF3 gas into a mass spectrometer, ionizing the BF3 gas by an electron impact method, and measuring the generated BF2* ions.

(1)の方法試料をテトラホウ酸ナトリウム(No、。Method (1) Samples were prepared using sodium tetraborate (No.

B、O、)の形に化学処理した後、水溶液の状態で数1
0μダの量をフィラメント上に塗布し、その後フィラメ
ントに電通を通して乾固させ、得られた微量のNa2B
、O、を表面電離化方式の質量分析計によりイオン化し
て、生じたNa。印。゛イオンを測定する方法である。
この方法はメモリー効果が殆んどなく、測定精度は高い
が装置が大型でかつ高価であること、また、試料の前処
理として八酸化ウラン(U3O、)を必要とすること、
B(5Naが1:1となるようにホウ酸をNaOH溶液
に吸収させる・こと、さらにはNa。B、O、水溶液を
フィラメント上に適当量塗布することの困難などいくつ
かの欠点がある。(2)の方法は、試料をBF。
After chemical treatment to the form of B, O,), the number 1
A small amount of Na2B was applied on the filament, and then the filament was passed through an electric current and dried to dryness.
, O, is ionized using a surface ionization mass spectrometer. mark. This is a method of measuring ions.
This method has almost no memory effect and has high measurement accuracy, but the equipment is large and expensive, and it requires uranium octoxide (UO) as sample pretreatment.
There are several drawbacks, such as the difficulty in absorbing boric acid into a NaOH solution in a 1:1 ratio of Na, B, O, and aqueous solutions onto the filament. In method (2), the sample is BF.

ガスに調製してから質量分析計に入れ、BF。ガスを電
子衝撃法でイオン化し、生じたBF。゛イオンを測定す
る方法である。この方法は腐蝕性のガスてあるBF3を
比較的多量に使用するためメモリー効果を引き起し、そ
の結果測定精度を低下させる欠点があつた。
After preparing the gas, put it into the mass spectrometer and BF. BF produced by ionizing gas by electron impact method. This is a method of measuring ions. This method has the drawback of using a relatively large amount of BF3, which is a corrosive gas, which causes a memory effect, which reduces measurement accuracy.

これを改良するため、測定の前後にBCI’3ガスを流
して試料導入系やイオン源を洗浄する方法や試料導・入
装置の改良等を行なつているが、分析操作が複雑となり
、尚かつ充分な効果が得られていなかつた。本発明は、
これらの欠点を解決することを目的とするもので、近年
普及のめざましいガスクロ直・結形質量分析計を用いて
、短時間で比較的精度よく、ホウ素の同位体比を測定す
る簡便法を提供するものである。
In order to improve this problem, methods have been developed to clean the sample introduction system and ion source by flowing BCI'3 gas before and after measurement, and to improve the sample introduction/introduction device. Moreover, sufficient effects were not obtained. The present invention
The aim is to solve these shortcomings by providing a simple method for measuring boron isotope ratios in a short time and with relatively high accuracy using gas chromatography direct-coupled mass spectrometers, which have become rapidly popular in recent years. It is something to do.

本発明は、質量分析計を用いて無機ホウ素化合物中のホ
ウ素の同位比を測定するにあたり、無機ホウ素化合物を
処理してホウ酸または酸化ホウ素とし、次いで、これら
とコバルト、アンチモン、水銀、及び銀から選ばれた少
なくとも1種の弗化物を密閉容器に入れ、その容器を質
量分析計に装着した後、その容器の圧力を10−1〜1
0−3w!NHyに減圧すると共に温度90〜200℃
に加熱し、BF3ガスを発生させながら連続的に質量分
析計に導入し、これをイオン化し、そのイオンをイオン
検出器により測定することを特徴とする。
In measuring the isotope ratio of boron in an inorganic boron compound using a mass spectrometer, the present invention processes the inorganic boron compound to form boric acid or boron oxide, and then combines these with cobalt, antimony, mercury, and silver. Put at least one fluoride selected from
0-3w! Reduce the pressure to NHy and increase the temperature to 90-200℃
BF3 gas is continuously introduced into a mass spectrometer while generating it, ionized, and the ions are measured by an ion detector.

以下さらに本発明の詳細な説明する。The present invention will be further explained in detail below.

本発明において測定可能な無機ホウ素化合物としては特
に制限はないが、具体的にはB4Clフェロボロン、ア
ルミナボロンカーバイドの焼結ペレットなどがあげられ
る。
The inorganic boron compound that can be measured in the present invention is not particularly limited, but specific examples include sintered pellets of B4Cl ferroboron and alumina boron carbide.

これらをアルカリ溶融してホウ酸または酸化ホウ素とし
て試料とするが、これらの中、ホウ酸の操作が簡便さの
点から好ましい。また無機弗化物としてはCOF3,S
bF5,SbF3,Hf2,H臣F2,AgF′2など
があげられこれらを1種又は2種以上併用することがて
きる。一般的にBF3ガスの調製法としてホウ素化合物
と弗化物を大気圧下、115〜190′Cで加熱してB
F3ガスを捕集することが知られているが(米国特許第
2622014号)、本発明は密閉した容器で10−1
〜10−3TWLHy位の真空に引きながら加熱して、
BF3ガスを発生させながら同時に質量分析計に導入し
イオン化して測定することに特徴がある。本発明は、加
熱しながらBF3ガスを徐々に発生させるため定量は困
難であるが極めて微量のBF3,ガスを用いて測定する
ことができる。
These are melted in an alkali and used as a sample as boric acid or boron oxide, but among these, boric acid is preferred from the viewpoint of ease of operation. In addition, as inorganic fluoride, COF3,S
Examples include bF5, SbF3, Hf2, HoshiF2, AgF'2, and these can be used alone or in combination of two or more. Generally, BF3 gas is prepared by heating a boron compound and fluoride at 115 to 190'C under atmospheric pressure.
Although it is known to collect F3 gas (U.S. Pat. No. 2,622,014), the present invention is capable of collecting F3 gas in a sealed container.
Heat while drawing a vacuum to ~10-3TWLHy,
The feature is that while BF3 gas is generated, it is simultaneously introduced into a mass spectrometer, ionized, and measured. In the present invention, BF3 gas is gradually generated while heating, so it is difficult to quantify it, but it is possible to measure using an extremely small amount of BF3 gas.

密閉容器中で発生したBF3ガスを電子衝撃法によりイ
オン化し、生成したホウ素イオン(108F2+,11
BF2つは多種イオン検出器(MultipIeIOn
DetectOr)によりオシログラフあるいはペンレ
コーダー上に記.録する。本発明では、ホウ素イオンの
検出に優れた多種イオン検出器を利用するが、多種イオ
ン検出器は他種イオンに対する弁別能力が優れているた
め、ノイズレベルが抑えられ、S/N比が大となり高・
感度検出が可能となる。得られた数値は後述する算式に
代人して同位体比を求められる。以下、本発明をさらに
具体的に説明する。
Boron ions (108F2+, 11
Two BFs are multi-type ion detectors (MultipIeIOn).
DetectOr) to record on the oscillograph or pen recorder. Record. In the present invention, a multi-species ion detector that is excellent in detecting boron ions is used. Since the multi-species ion detector has excellent discrimination ability for other species ions, the noise level is suppressed and the S/N ratio is large. High・
Sensitive detection becomes possible. The obtained value is substituted into the formula described later to determine the isotope ratio. The present invention will be explained in more detail below.

なお試料としてホウ酸と三弗化コバルトを用いた例によ
り説明するが、これに限られるものではない。本発明に
おいて用いるガスクロ直結形質量分析計は例えば(株)
島津製作所RLKB9O叩形ョがあげられる。これは曲
率半径20cm、60形偏向の単収束形、イオン源は電
子衝撃形でレニウムフィラメントを用いたものである。
ます試料の調製は、0.05〜0.1y程度のB4Cを
白金ルツボに入れ、その10倍量のNa2cO3でアル
カリ溶融を行なう。
Although an example using boric acid and cobalt trifluoride as samples will be explained, the present invention is not limited to this. The gas chromatography direct-coupled mass spectrometer used in the present invention is manufactured by, for example, Co., Ltd.
Shimadzu's RLKB9O hammer type is mentioned. This is a single focusing type with a radius of curvature of 20 cm and a 60-shape deflection, and the ion source is an electron impact type using a rhenium filament.
To prepare a mass sample, approximately 0.05 to 0.1y of B4C is placed in a platinum crucible, and alkali melting is performed with 10 times the amount of Na2cO3.

数時間後B4Cはテトラホウ酸ナトリウム(Na2B4
O7)の形となる。
After several hours, B4C becomes sodium tetraborate (Na2B4
O7).

この水溶液を陽イオン交換樹脂を詰めたカラムの中を通
して最終的にはホウ酸の水溶液として回収し、この水溶
液の1部を濃縮してホウ酸(H3BO3)の白色粉末を
得る。得られたH3BO3の数Mgと三弗化コバルト(
COF3)の数Mgとを容器に入れ、よく混せた後、こ
の容器をセパレーター入口に接続する。第1図は試料容
器の一例(米国コーニングガラス社登録商標:1P.y
r′ExJ)であり、シリコンゴム栓2で栓をした内容
積20cc程度の容器1に試料とCOF3を入れ、第2
図のようにセパレーター部4にステンレス製の袋ナット
5で接続して密閉化する。
This aqueous solution is passed through a column packed with a cation exchange resin and finally recovered as an aqueous solution of boric acid, and a portion of this aqueous solution is concentrated to obtain a white powder of boric acid (H3BO3). The obtained H3BO3 number Mg and cobalt trifluoride (
COF3) and several Mg of COF3) are placed in a container, mixed well, and then the container is connected to the separator inlet. Figure 1 shows an example of a sample container (U.S. Corning Glass Co., Ltd. registered trademark: 1P.y
r′ExJ), put the sample and COF 3 into a container 1 with an internal volume of about 20 cc and stoppered with a silicone rubber stopper 2, and
As shown in the figure, it is connected to the separator part 4 with a stainless steel cap nut 5 to seal it.

次に、セパレーターとイオン源の間にあるバルブを閉じ
たままの状態で、かつロータリポンプと油拡散ポンプで
10−1〜10−3?Hyの真空に引きながら、95〜
100′Cの温度で試料容器を7〜8分間加熱脱気する
Next, while keeping the valve between the separator and the ion source closed, use the rotary pump and oil diffusion pump to 10-1 to 10-3? While drawing the vacuum of Hy, 95~
Heat and degas the sample container at a temperature of 100'C for 7-8 minutes.

この後バルブを開け、3〜5度C/Minの昇温速度で
150℃迄加熱する。
After that, open the valve and heat to 150° C. at a temperature increase rate of 3 to 5° C/Min.

BF3ガスの発生は昇温と共に増加し、およそ120′
Cでピークを示す。この反応式は次のように考えられる
。州。
The generation of BF3 gas increases with increasing temperature, and reaches approximately 120'
The peak is indicated by C. This reaction formula can be considered as follows. state.

BO3+2C0F3処酌2BF3↑+CO2O3+31
(20以上の操作条件でイオン源内の真空度はおよそ1
0−1T0rr以下である。BF3ガスの腐蝕性に基因
するメモリー効果のような測定精度上マイナス因子にな
るファクターをできるだけ小さくするためには、イオン
源に入れるBF3量はより微量であることが必要である
BO3+2C0F3 2BF3↑+CO2O3+31
(The degree of vacuum inside the ion source is approximately 1 under operating conditions of 20 or more.
It is 0-1T0rr or less. In order to minimize factors such as memory effects caused by the corrosivity of BF3 gas, which are negative factors in measurement accuracy, it is necessary that the amount of BF3 introduced into the ion source be as small as possible.

実際の測定では、この条件ても多種イオン検出器の検出
部の測定レンジには103〜104の余裕がある。しか
しながら固体試料を迅速に再現性よく秤るためには数M
gが限度であると考え、本発明では一回の測定には数M
gの試料を用いた。
In actual measurement, even under this condition, there is a margin of 103 to 104 in the measurement range of the detection section of the multi-species ion detector. However, in order to quickly and reproducibly weigh solid samples, several M
Considering that g is the limit, the present invention uses several M for one measurement.
A sample of g was used.

レコーダーには直線性の精度が高いペンレコーダを採用
した。
A pen recorder with high linearity accuracy was used as the recorder.

得られた測定チャートを第3図に示す。第3図は、10
BF2イオンの曲線1と11BF2イオンの曲線■およ
び基線■からなり、それぞれのイオン強度と時間あるい
は温度との関係を示している。
The obtained measurement chart is shown in FIG. Figure 3 shows 10
It consists of curve 1 for BF2 ion, curve 1 for BF2 ion, and base line 2, and shows the relationship between each ion intensity and time or temperature.

また、Aは基線■から曲線1のピークP1までの高さを
、Bは基線■から曲線■のピークP2までの高さを示す
。第4図は、COF3のみの測定チャートである。
Further, A indicates the height from the base line ■ to the peak P1 of the curve 1, and B indicates the height from the base line ■ to the peak P2 of the curve ■. FIG. 4 is a measurement chart of only COF3.

質量数48の曲線1と質量数49の曲線2と基線3から
なり、xは基線3からら曲線1のピークPxまての高さ
を、Yは基線3から曲線2のピークPyまでの高さを示
す。ホウ素の同位体比を手計算で求めるには、それぞれ
のピークをノギスを使つて求め、得られた数値を次式に
代人して算出する。
It consists of curve 1 with mass number 48, curve 2 with mass number 49, and base line 3, where x is the height from base line 3 to peak Px of curve 1, and Y is the height from base line 3 to peak Py of curve 2. Show that. To manually calculate the boron isotope ratio, use calipers to find each peak, and substitute the obtained values into the following formula.

A:10BF2イオンのピーク高さ B:11BF2イオンのピーク高さ X:質量数48の空試験値 Y:質量数49の空試験値 質量数48と49の空試験値はCOF3単独を数回測定
した平均値を当てればよい。
A: Peak height of 10BF2 ion B: Peak height of 11BF2 ion You can guess the average value.

標準試料として用いられるNatiOTlaIBure
auOfSt2indards(7)Standard
BeferenceMaterial95l及び952
の10B濃度は19.827±0.013at0mic
%及び94.949±0.005at0mic%である
NatiOTlaIBure used as standard sample
auOfSt2indards (7) Standard
Beference Material 95l and 952
The 10B concentration of is 19.827±0.013at0mic
% and 94.949±0.005at0mic%.

10B濃度B4Cを試料に選んで質量分析または一貫し
て測定した結果、n=10で0.14%の測定精度が得
られる。
As a result of selecting 10B concentration B4C as a sample and performing mass spectrometry or consistent measurement, a measurement accuracy of 0.14% is obtained at n=10.

記録計には通常のペンレコーダを採用し、ピークの高さ
をノギスで求めているため、分析値の有効数字は3桁で
あつた。ホウ素の同位体比をマイクロコンピューターに
より計算て求めるには、多種イオン検出器の出力を、A
/D変換し、マイクロコンピューターデジタルインター
フェースに任意の間隔で取込み、(1)式で示した計算
を行ないプリンターにアウトプットさせればよい。
An ordinary pen recorder was used as the recorder, and the height of the peak was determined using a caliper, so the effective figures of the analytical values were three digits. To calculate the boron isotope ratio using a microcomputer, the output of the multi-species ion detector is A
/D conversion, input it into a microcomputer digital interface at arbitrary intervals, perform the calculation shown in equation (1), and output it to a printer.

なお、測定中に最も重要なことは、各イオンのマッチン
グ(イオンに対する加速電圧の一致度)であるが、この
操作は、ピークの前後で行うこと、及び質量数48と4
9の空試験値はCOF3を数回測定したものを用いるこ
とである。
The most important thing during the measurement is the matching of each ion (the degree of matching of the accelerating voltage to the ion), but this operation must be performed before and after the peak, and when the mass numbers are 48 and 4.
The blank test value of No. 9 was obtained by measuring COF3 several times.

以上、説明したように本発明は無機ホウ素化合物例えば
B4Cを化学処理して、H3BO3やB2O3の形に変
え、COF3,SbF5,HgF2,AgF′2等の弗
化物試薬と反応させることにより、発生する極く微量の
BF3を直ちにイオン化してホウ素の同位体比を測定す
る方法であつて、分析装置の形式には特に制約がなく、
試料容器を加熱できる適当なオープンを備えたものであ
ればよい。
As explained above, the present invention chemically treats an inorganic boron compound such as B4C to convert it into H3BO3 or B2O3, and reacts it with a fluoride reagent such as COF3, SbF5, HgF2, AgF'2, etc. It is a method that immediately ionizes a very small amount of BF3 and measures the boron isotope ratio, and there are no particular restrictions on the type of analyzer.
Any device may be used as long as it has an appropriate opening that can heat the sample container.

操作が簡単なガスクロ直結形質量分析計をそのまま利用
して、短時間で精度よくホウ素の同位体比を測定するこ
とができる。以下実施例をあげてさらに具体的に説明す
る。
Using an easy-to-operate gas chromatography direct-coupled mass spectrometer, boron isotope ratios can be measured quickly and accurately. The present invention will be described in more detail below with reference to Examples.

実施例1試料の調製は、B4CO.lyを白金ルツボに
入れ、これにNa2CO3l.2yを加えてアルカリ溶
融を行つた。冷却後、水に溶解して、陽イオン交換樹脂
を通し、得られた液を濃縮して、白金粉末のホウ酸とし
た。次に、試料容器にこのホウ酸5m9とCOF38m
9を入れシリコンゴムで栓をした後、十分混合し、質量
分析計のセパレーター入口にステンレス製の袋ナットを
用いて装着した。
Example 1 Sample preparation was carried out using B4CO. ly into a platinum crucible, and add Na2CO3l. 2y was added to perform alkali melting. After cooling, it was dissolved in water, passed through a cation exchange resin, and the resulting liquid was concentrated to obtain platinum powder of boric acid. Next, put 5 m9 of this boric acid and 38 m COF into a sample container.
9 was added and the mixture was plugged with silicone rubber, mixed thoroughly, and attached to the separator inlet of a mass spectrometer using a stainless steel cap nut.

95℃で5〜1紛間脱気後、5℃/分で、150℃迄昇
温してBF3ガスを発生させ、直ちに、MIZ48lO
BF2+イオンとMlZ49llBF2+イオンを捕獲
してマイクロコンピュータ・によりホウ素の同位体比を
求めた。
After degassing 5 to 1 particles at 95°C, the temperature was raised to 150°C at 5°C/min to generate BF3 gas, and immediately MIZ481O
The BF2+ ion and the MlZ49llBF2+ ion were captured and the boron isotope ratio was determined using a microcomputer.

尚、標準試料にはNBS(7)SRM−1を使用した。
その測定結果は10B19.8at0m%(平均値)て
あつた。
Note that NBS (7) SRM-1 was used as a standard sample.
The measurement result was 10B19.8at0m% (average value).

実施例2 濃縮B4Cについて実施例1と同様に測定し手計算によ
つてホウ素の同位体比を求めた。
Example 2 Concentrated B4C was measured in the same manner as in Example 1, and the boron isotope ratio was determined by hand calculation.

その結果を表に示す。この結果、3回目と4回目の結果
から、メモリー効果の影響は殆んど無視できることが判
つた。なおこのときの標準試料はSRM−2を用いた。
実施例3フェロボロンでは、試料0.3g,Na2C0
3/K2CO3=1ハのもの3yを白金ルツボに取り、
実施例1と同様に処理した。
The results are shown in the table. As a result, it was found from the results of the third and fourth tests that the influence of memory effects can be almost ignored. Note that SRM-2 was used as the standard sample at this time.
Example 3 For ferroboron, sample 0.3g, Na2C0
Take 3y of 3/K2CO3=1ha in a platinum crucible,
It was treated in the same manner as in Example 1.

その測定結果は、10B19.&1t0m%(平均値)
であつた。実施例4B4C−Ae2O3焼結体では試料
1.3y,N2/K2CO3=1ハのもの7yを白金ル
ツボに取り、十分混合して電気炉に入れ500′CXl
時間、700℃×1時間、及び1000℃×4時間と時
間を十分かけ、試料を完全に溶融した後、実施例1と同
様に処理し.た。
The measurement result is 10B19. &1t0m% (average value)
It was hot. Example 4 For the B4C-Ae2O3 sintered body, samples 1.3y and 7y of N2/K2CO3=1 were placed in a platinum crucible, thoroughly mixed, and placed in an electric furnace for 50'CXl.
After fully melting the sample at 700°C for 1 hour and at 1000°C for 4 hours, it was treated in the same manner as in Example 1. Ta.

:この測定結果は10B19.6at0m%(平均値)
であつ・た。
: This measurement result is 10B19.6at0m% (average value)
It was so hot.

実施例5 C0F3に代えてSbF5,HgF′2,AgF′2を
それぞれ用いて実施例1と同様に行つた結果実施例1と
同様の結果を得た。
Example 5 The same procedure as in Example 1 was carried out using SbF5, HgF'2, and AgF'2 in place of C0F3, and the same results as in Example 1 were obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に用いる試料容器の側面図、第
2図は試料容器の接続を示す側面図、第3図、第4図は
イオン強度と時間または温度との関係を示す線図である
。 1・・・試料容器、2・・・シリコンゴム栓、3・・・
試料と試薬、4・・・セパレーター部、5・・・袋ナッ
ト。
Fig. 1 is a side view of a sample container used in an example of the present invention, Fig. 2 is a side view showing the connection of the sample container, and Figs. 3 and 4 are lines showing the relationship between ionic strength and time or temperature. It is a diagram. 1...sample container, 2...silicone rubber stopper, 3...
Sample and reagent, 4... Separator part, 5... Cap nut.

Claims (1)

【特許請求の範囲】[Claims] 1 質量分析計を用いて、無機ホウ素化合物中のホウ素
の同位体比を測定するにあたり、無機ホウ素化合物を処
理してホウ酸または酸化ホウ素とし、次いでこれらとコ
バルト、アンチモン、水銀及び銀から選ばれた少くとも
1種の弗化物を密閉容器に入れ、その容器を質量分析計
に装着した後、その容器の圧力を10^−^1〜10^
−^3mmHgに減圧すると共に温度90〜200℃に
加熱し、BF_3ガスを発生させながら連続的に質量分
析計に導入し、これをイオン化し、そのイオンをイオン
検出器により測定することを特徴とするホウ素の同位体
比測定方法。
1. When measuring the isotopic ratio of boron in an inorganic boron compound using a mass spectrometer, the inorganic boron compound is processed to form boric acid or boron oxide, and then these are combined with cobalt, antimony, mercury, and silver. After putting at least one type of fluoride in a sealed container and attaching the container to a mass spectrometer, the pressure of the container is set to 10^-^1 to 10^.
- It is characterized by reducing the pressure to 3 mmHg and heating it to a temperature of 90 to 200 degrees Celsius, continuously introducing it into a mass spectrometer while generating BF_3 gas, ionizing it, and measuring the ions with an ion detector. A method for measuring boron isotope ratios.
JP52011136A 1977-02-03 1977-02-03 Boron isotope ratio measurement method Expired JPS6041737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52011136A JPS6041737B2 (en) 1977-02-03 1977-02-03 Boron isotope ratio measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52011136A JPS6041737B2 (en) 1977-02-03 1977-02-03 Boron isotope ratio measurement method

Publications (2)

Publication Number Publication Date
JPS5396889A JPS5396889A (en) 1978-08-24
JPS6041737B2 true JPS6041737B2 (en) 1985-09-18

Family

ID=11769597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52011136A Expired JPS6041737B2 (en) 1977-02-03 1977-02-03 Boron isotope ratio measurement method

Country Status (1)

Country Link
JP (1) JPS6041737B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102062755B (en) * 2010-10-18 2012-10-24 南京大学 Method for determining boron isotopic composition with static double-receiving method by positive thermal ionization mass spectrometry
JP5764433B2 (en) * 2011-08-26 2015-08-19 株式会社日立ハイテクノロジーズ Mass spectrometer and mass spectrometry method
CN103487497B (en) * 2013-09-30 2016-03-23 中国核动力研究设计院 A kind of boron isotope abundance measuring method using carbon nano-tube as emission of ions agent
CN108982646B (en) * 2018-08-01 2020-09-01 中国地质科学院矿产资源研究所 Method for reconstructing boron isotope composition of new-element ancient seawater by using boron isotope composition of carbonate rock

Also Published As

Publication number Publication date
JPS5396889A (en) 1978-08-24

Similar Documents

Publication Publication Date Title
US20090121129A1 (en) Pulse heating-time of flight mass spectrometric gas elements analyzer
CA1126879A (en) Trace water measurement
Salters 176Hf/177Hf determination in small samples by a high-temperature SIMS technique
Giles Jr et al. The effect of X-irradiation in oxygen and in hydrogen at normal and positive pressures on chromosome aberration frequency in Tradescantia microspores
CN110702773B (en) Method for measuring Pb isotope ratio in sulfide by using MC-ICP-MS
Sauer Jr et al. THE RADIOLYSIS OF ETHYLENE: DETAILS OF THE FORMATION OF DECOMPOSITION PRODUCTS1
JPS6041737B2 (en) Boron isotope ratio measurement method
Chang et al. The absolute isotopic composition of europium
Tu et al. Kinetics of the exchange of oxygen between carbon dioxide and carbonate in aqueous solution
Feldman Determination of traces of arsenic in siliceous materials
Copp et al. A mica window Geiger counter tube for measuring soft radiations
Melton et al. Improved Techniques for Isotopic Determination of Boron on Mass Spectrometer
Jackson et al. Direct counting of tritium-tagged solid and liquid samples
Lutz et al. Determination of carbon in sodium by photon activation analysis
Winchester et al. Determination of Carbon, Oxygen, and Silicon in Solids by Activation Analysis with 15. Mev Deuterons
Ewart et al. Oxygen potential measurements on irradiated oxide nuclear fuel
CN110412116A (en) The test method and its application of sulfur content
Steinnes Simultaneous determination of rubidium, cesium, chromium and phosphorus in rocks by neutron activation and a simple group separation
Kurosaki et al. In search of higher sensitivity: Pu isotopic analysis
Dupraw et al. Determination of Oxygen in Potassium.
Kudermann et al. Ultra trace analysis of high-purity aluminium
Kocur et al. Preparation of Relatively Clean Carbon Backings Used in Charged Particle Induced X-Ray Studies for X Rays below 4 keV
Jaworowski et al. The Determination of Oxygen in Lithium.
McAninch et al. Detection of 99 Tc by accelerator mass spectrometry: Preliminary investigations
SU1340334A1 (en) Method of determining content of deuterium in water