JPS5813633A - Extraction of water-soluble impurity from resin for encapsulating semiconductor - Google Patents

Extraction of water-soluble impurity from resin for encapsulating semiconductor

Info

Publication number
JPS5813633A
JPS5813633A JP11090681A JP11090681A JPS5813633A JP S5813633 A JPS5813633 A JP S5813633A JP 11090681 A JP11090681 A JP 11090681A JP 11090681 A JP11090681 A JP 11090681A JP S5813633 A JPS5813633 A JP S5813633A
Authority
JP
Japan
Prior art keywords
water
resin
powder
extraction
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11090681A
Other languages
Japanese (ja)
Other versions
JPH0229089B2 (en
Inventor
Shigeo Iiri
飯利 茂雄
Hiroshi Endo
博 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP11090681A priority Critical patent/JPS5813633A/en
Publication of JPS5813633A publication Critical patent/JPS5813633A/en
Publication of JPH0229089B2 publication Critical patent/JPH0229089B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To separate the water-soluble impurities from the powder of uncured resin for the encapsulation of semiconductors, by curing the powder under the same conditions as the molding of the product, pulverizing the cured product, and extracting the powder by heating in a closed vessel having inner walls coated with a fluorine-contained resin. CONSTITUTION:Only the uncured resin powder is put into a mold same as the mold for the molding of a product, and molded and cured preferably at 180 deg.C and 80kg/cm<2> for 10min. After the after-cure at 180 deg.C for 3hr, the cured product is pulverized, and put into a stainless steel vessel having a thickness of about 5mm. and coated its inner walls with a fluorine-contained resin (e.g. tetrafluoroethylene polymer) with a thickness of about 3mm.. Water is poured into the vessel, and stirred. The water-soluble impurities are separated by the extraction in the extractor at 140-220 deg.C for about 2hr.

Description

【発明の詳細な説明】 この発明は半導体封止用樹脂中の水溶性不純物抽出方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for extracting water-soluble impurities from a resin for semiconductor encapsulation.

エポキシ系樹脂、シリコーン系樹脂等の半導体素子封止
用樹脂は含有する不純物によって半導体素子特性を左右
する。半導体素子の表面状態はこの素子の電気特性に直
接影響を及ぼし、411PK表面不純物による汚染に敏
感である。例えば樹脂封止品は素子と直接樹脂に接触し
ており、樹脂は湿気を透過し、吸収する性質を有してい
る。この丸め浸入した水分及び水に溶解した不純物イオ
ン1特にハロゲンイオンと半導体素子電極及び配線に使
4.。
Resins for encapsulating semiconductor elements such as epoxy resins and silicone resins affect semiconductor element characteristics depending on the impurities they contain. The surface condition of a semiconductor device directly affects the electrical properties of the device and is sensitive to contamination by 411PK surface impurities. For example, in a resin-sealed product, the element is in direct contact with the resin, and the resin has the property of permeating and absorbing moisture. This rounded moisture and impurity ions dissolved in the water 1, especially halogen ions, are used in semiconductor device electrodes and wiring 4. .

用されているアルミニウムとの化学反応により、−′絶
縁性が低下する。また、これらによって配線中電極が腐
食し、断線する。し九がって樹脂自封に水溶性不純物が
僅少であることが望まれる。
Due to the chemical reaction with the aluminum used, -' insulation properties are reduced. Moreover, these corrode the electrodes in the wiring, causing wire breakage. Therefore, it is desirable that the resin self-sealing contain a small amount of water-soluble impurities.

このような要請に対してとられている例えば封止用樹脂
中の不純物抽出法による封止用樹脂の評価ではti>未
硬化樹脂粉体を60℃で硬化させた後、粉砕、した硬化
樹脂粉体を70〜120℃の熱水で抽出し、抽出水の水
素イオン濃度及び電気伝導度を測定する方法、(2)未
硬化樹脂粉体と、エアロジルs10:粉氷を混合し九粉
体を、まず140〜200℃で10分間加熱処理し硬化
させ九俵、粉砕し九硬化樹脂粉体と水を密閉容aK収納
し、140〜200℃で2時間抽出し、抽出水の・鴫気
伝導藏、塩素ナトリウム、カリウム、カルシウム、アン
チモン及びマグネシウム等の水溶性不純**度を測定す
る方法が知られている。しかし、(l)法で唸抽出に1
0〜50時間の長時間を要し、所要時間が長いため抽出
中に不純物汚染がさけられ、分析精度を低下し、又不純
物の抽出t4!にハロゲン抽出器が低く出る丸め樹脂の
評価法として不適である。その点(2)法は(1)法に
比べ有利である。一般に製品の成型は予じめマウントボ
ンディングされたリードフレームを成型用金型に入れ、
未硬化樹脂粉体を型内に流し込み、成型温度140〜1
90’0.成型圧力20〜too#/cd成型時間1〜
5分間成型、硬化・k1アフターキュアを140〜19
0”Oで3〜10時間行なっている。この成型条件下及
びアクターキュア中に樹脂中或いは充填剤に組み込まれ
た不純物が水溶性不純物に転化し、又は添加されている
峻燃剤に含まれている臭素及び酸化アンチモンが水溶性
臭素、水溶性アンチモンに転化する。これら工程中で生
成される水溶性不純*tの多少が半導体素子特性を左右
する。したがりして、抽出法による両正用樹脂の評価で
はこれら水溶性不純物が完全に採集されることが重要で
ある。(2)法では、これら水溶性不純物を抽出時の加
熱温度、及びこの加熱温度により密閉容器内で生じる4
、5〜20#/−の圧力で生成し抽出して得ようとして
いる。しかし、製品の成m条件と比較して明らかに加熱
時間及び圧力が不充分であるため、実際の製器成聾時に
生成される水溶性不純物量よりも低値を示すことは当然
である。また、硬化時に添加するエアロジルSiO2粉
末及び密閉容器の材質からの汚染がさけられないし、攪
拌操作等がなされていないために硬化粉体と水とがなじ
みに<<、完全に生成され死水溶性不純物が抽出されな
いばかりか分析精度が低下する。
For example, in the evaluation of sealing resin by the method of extracting impurities in sealing resin, which has been adopted in response to such requests, ti>cured resin that is obtained by curing uncured resin powder at 60°C and then pulverizing it. A method of extracting powder with hot water of 70 to 120°C and measuring the hydrogen ion concentration and electrical conductivity of the extracted water. (2) Mixing uncured resin powder and Aerosil S10: powdered ice to form nine powders. First, heat-treat at 140-200℃ for 10 minutes to harden it, crush it, store the cured resin powder and water in a sealed container aK, extract at 140-200℃ for 2 hours, and remove the extracted water and vapor. Methods for measuring water-soluble impurities such as conductivity, sodium chloride, potassium, calcium, antimony, and magnesium are known. However, with method (l), 1
It takes a long time from 0 to 50 hours, and because of the long time required, impurity contamination is avoided during extraction, reducing analytical accuracy, and impurity extraction t4! The halogen extractor is unsuitable as an evaluation method for rounded resins that produce low levels. In this respect, method (2) is more advantageous than method (1). Generally, when molding a product, a lead frame that has been mounted and bonded in advance is placed in a mold for molding.
Pour the uncured resin powder into the mold and set the molding temperature to 140-1
90'0. Molding pressure 20~too#/cd Molding time 1~
Mold for 5 minutes, harden and k1 after cure at 140-19
The process is carried out at 0"O for 3 to 10 hours. Impurities incorporated in the resin or filler are converted to water-soluble impurities during molding conditions and actor curing, or are contained in the added flame retardant. Bromine and antimony oxide are converted into water-soluble bromine and water-soluble antimony.The amount of water-soluble impurities*t generated during these steps affects the characteristics of semiconductor devices. When evaluating resins, it is important that these water-soluble impurities are completely collected.In the (2) method, these water-soluble impurities are collected at the heating temperature during extraction, and at
, 5 to 20 #/- and is intended to be obtained by extraction. However, since the heating time and pressure are clearly insufficient compared to the product forming conditions, it is natural that the amount of water-soluble impurities produced during actual molding is lower than the amount of water-soluble impurities produced during the actual molding process. In addition, contamination from the Aerosil SiO2 powder added during curing and the material of the sealed container is unavoidable, and because stirring operations are not performed, the hardened powder and water are not mixed together and are completely formed, resulting in dead water-soluble impurities. Not only will not be extracted, but the analysis accuracy will decrease.

この発明の目的はこのような抽出法による樹脂評価を確
実にするため不純物抽出法を改良し丸ものである。即ち
未硬化樹脂粉体を実際の製品の成型条件と同一条件下で
硬化後、アフターキエアを同様に行なうことにより、製
品成蓋時に生成する、11111 水溶性不純物量とり量を生成させ、攪拌でその生成した
水溶性不純物量を確実に抽出することができる。また抽
出器からの汚染を防止するため、内壁の全部をフッ素樹
脂で構成する密閉容器を用い九 そして、抽出を加速す
るため140〜200 ’0に加熱した。
The purpose of the present invention is to improve the impurity extraction method in order to ensure resin evaluation using such an extraction method. That is, after curing the uncured resin powder under the same conditions as the actual molding conditions of the product, after-cooling is performed in the same manner to generate the amount of 11111 water-soluble impurities that are generated when the product is finished, and then stirred. The amount of water-soluble impurities produced can be reliably extracted. In order to prevent contamination from the extractor, a closed container whose inner wall was entirely made of fluororesin was used.The container was heated to 140-200°C to accelerate extraction.

以下実施例について述べる。未硬化樹脂粉体のみを製品
と同様の成型用金型に流し込み、成型温f180℃、成
fJIi王カ80kg/、−n1成型時?trrlo分
間で成型、硬化後アフター千ニアを180’Oで3時間
行ない粉砕し九硬化粉体10gを図−1に示したよりな
内螢を厚み3龍の四フッ化エチレン重合体で被覆した肉
厚5關のステンレス製8a (直&600%深さ39i
n)内に収納した。次いで、これに水50mjと回転子
1個を入れ、内面を厚み5111の四フッ化エチレン重
合体で被覆した肉厚5@冨のステンレス製蓋をねじ嵌合
して冠着固定した後、攪拌して容器内の硬化粉と水とを
充分になじませる。次いで、この抽出器を180’Oに
温度調節されている乾燥4中に2時間放置し丸。このよ
うな抽出方法により得られた抽出水から、各水溶性不純
物成分量(ppm)及び電気伝導度(μ7/d)を測定
した。賭果を下表に示す。また、比較の世め同一試料で
従来法の硬化条件と同様に未硬化粉末10gと、平均粒
径1mμのエアロジル5102粉末を2gの割合で混合
し粉末を、180℃で10分間加熱逃理を施し硬化させ
死後、本発明と同条件で抽出し、同水溶性不純物成分量
(ppm)及び電気伝導f(μ/1)を測定した結果も
合せて表に示す。
Examples will be described below. Pour only the uncured resin powder into a mold similar to the product, molding temperature f180℃, molding weight 80kg/, -n1 when molding? After curing, 10 g of the nine-hardened powder was molded for 10 minutes, hardened, and then crushed at 180'O for 3 hours. 5mm thick stainless steel 8a (straight & 600% depth 39i
n). Next, 50 mj of water and one rotor were added to this, and a stainless steel lid with a wall thickness of 5@tm whose inner surface was coated with a polytetrafluoroethylene polymer with a thickness of 5111 mm was fitted with screws to secure the cap, and then stirred. to thoroughly mix the hardened powder and water in the container. Next, this extractor was left in a drying room whose temperature was controlled to 180'O for 2 hours. The amount of each water-soluble impurity component (ppm) and electrical conductivity (μ7/d) were measured from the extracted water obtained by such an extraction method. The bet results are shown in the table below. For comparison, the same sample was mixed with 10 g of uncured powder and 2 g of Aerosil 5102 powder with an average particle size of 1 mμ under the same curing conditions as the conventional method, and the powder was heat-released at 180°C for 10 minutes. After drying and curing, extraction was performed under the same conditions as in the present invention, and the results of measuring the amount of water-soluble impurity components (ppm) and electrical conductivity f (μ/1) are also shown in the table.

以下余白 表に示すように本法は従来法と比較して、良品樹脂は不
良品樹脂に対して各水溶性不純物量、特に塩素が少ない
し、電気伝導度も明らかに有意差が認められる。しかし
、従来法による各水浴性不純物量及び電気伝導度は良品
、不良品樹脂ともに低値を示し、本法の良品樹脂と従来
法の不良品樹脂の各水溶性不純vlJ菫及び電気伝導度
との有意差が認められない。これは、従来法が硬化時に
圧力を加えていないことと、アフターキエアがなされて
いない丸め、樹脂中の不純物が水浴性不純物に転化され
にくいからである。
As shown in the margin table below, in this method, compared to the conventional method, the non-defective resin has a lower amount of each water-soluble impurity, especially chlorine, and there is clearly a significant difference in electrical conductivity. However, the amounts of each water-soluble impurity and electrical conductivity of the conventional method were low for both good and defective resins, and the water-soluble impurities vlJ violet and electrical conductivity of the good resin of this method and the defective resin of the conventional method were low. No significant difference was observed. This is because in the conventional method no pressure is applied during curing, rounding is not performed after-squeeze, and impurities in the resin are difficult to convert into water-bathable impurities.

本発明の半導体封止用樹脂中の不純荀抽出方法によると
、製品成型時及びアフターキーア中に生成する水溶性不
純物を確実に抽出でき、めらゆる製品の成型条件、アク
ターキ為アの違いにも対応できる丸め、他の抽出法によ
る封止用樹脂評価よりも信頼性が高い。ま九、抽出法以
外によるテス′1゜ ト結釆から得られる樹脂評価と違 しない。
According to the method for extracting impurities in resin for semiconductor encapsulation of the present invention, water-soluble impurities generated during product molding and after-keying can be reliably extracted, making it possible to reliably extract water-soluble impurities that are generated during product molding and after-keying, and can be applied to various molding conditions and differences in actuator characteristics. It is also more reliable than evaluation of sealing resins using other extraction methods. Also, the evaluation of the resin is the same as that obtained from a test using methods other than extraction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に用いる密閉抽出器の一実施例の縦断面
図である。 +13・・・−!i   t2)・・・容器  (3)
・・・フッ巣#脂(4)・・・ねじ 第1図
FIG. 1 is a longitudinal cross-sectional view of an embodiment of a sealed extractor used in the present invention. +13...-! i t2)...container (3)
...Food nest #fat (4)...Screw diagram 1

Claims (1)

【特許請求の範囲】[Claims] 半導体封止用未硬化樹脂粉体を製品成型条件と同様条件
下で硬化させた後粉砕した硬化粉体を、少なくとも内壁
の全部をフッ素樹脂で構成する密閉抽出器に水とともに
収納し、攪拌し死後、140〜22 G ’Oに加熱し
て水溶性不純物を抽出することを特徴とする半導体封止
用樹脂中の水溶性不純物V抽出方法。
The uncured resin powder for semiconductor encapsulation is cured under the same conditions as the product molding conditions, and then the pulverized hardened powder is stored together with water in a sealed extractor whose inner wall is made of fluororesin, and then stirred. 1. A method for extracting water-soluble impurities V in a resin for semiconductor encapsulation, which comprises heating to 140 to 22 G'O after death to extract water-soluble impurities.
JP11090681A 1981-07-17 1981-07-17 Extraction of water-soluble impurity from resin for encapsulating semiconductor Granted JPS5813633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11090681A JPS5813633A (en) 1981-07-17 1981-07-17 Extraction of water-soluble impurity from resin for encapsulating semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11090681A JPS5813633A (en) 1981-07-17 1981-07-17 Extraction of water-soluble impurity from resin for encapsulating semiconductor

Publications (2)

Publication Number Publication Date
JPS5813633A true JPS5813633A (en) 1983-01-26
JPH0229089B2 JPH0229089B2 (en) 1990-06-27

Family

ID=14547654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11090681A Granted JPS5813633A (en) 1981-07-17 1981-07-17 Extraction of water-soluble impurity from resin for encapsulating semiconductor

Country Status (1)

Country Link
JP (1) JPS5813633A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63122406U (en) * 1987-02-02 1988-08-09
WO2002008325A1 (en) * 2000-07-24 2002-01-31 Daikin Industries, Ltd. Method for producing regenerated fluororesin and regenerated fluororesin article

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A LITERATURE SURVEY ON APPLICATIONS OF UNISEAL DECOMPOSITION VESSELS IN CHEMICAL ANALYSIS AND RESEARCH 1968-1982 *
NASA TECH BRIEF BRIEF 68-10104=1968 *
PHOSPHATE ROCK ANALYSIS=1974 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63122406U (en) * 1987-02-02 1988-08-09
WO2002008325A1 (en) * 2000-07-24 2002-01-31 Daikin Industries, Ltd. Method for producing regenerated fluororesin and regenerated fluororesin article
US7223800B2 (en) 2000-07-24 2007-05-29 Daikin Industries, Ltd. Method for producing regenerated fluororesin and regenerated fluororesin article

Also Published As

Publication number Publication date
JPH0229089B2 (en) 1990-06-27

Similar Documents

Publication Publication Date Title
CN103865271B (en) A kind of preparation method of the modified organosilicon heat conductive electronic pouring sealant of nano-hybrid material
JPS5813633A (en) Extraction of water-soluble impurity from resin for encapsulating semiconductor
CN204966272U (en) Pouring device of dry -type transformer coil
JPS60246568A (en) Manufacture of ribbed and grooved separator for fuel cell
JP2567065B2 (en) Method for extracting water-soluble impurities in semiconductor encapsulation resin
JPS6119625A (en) Epoxy resin composition for sealing semiconductor
JP3965536B2 (en) Method for producing fine spherical silica for insulating material
JPS5543120A (en) Preparation of improved resin composition
US2556830A (en) Graphite anode
US3415733A (en) Frames for electrodes for the electrolytic decomposition of hydrochloric acid and method for making such frames
JPS59203955A (en) Extracting method of water soluble impurity in thermosetting resin
JPS61190556A (en) Resin composition for sealing of electronic part
JPS6217604B2 (en)
JP2703632B2 (en) Optical semiconductor device and epoxy resin composition for encapsulating optical semiconductor used therein
US2879247A (en) Molded sealing element
JPS6117849B2 (en)
JPH0670121B2 (en) Epoxy resin molding material for semiconductor encapsulation
JPS59184232A (en) Filler for resin
JPS60229945A (en) Epoxy resin sealing material
JPS635908A (en) Manufacture of vacuum tablet
US1688500A (en) Method of producing plastic and moldable composition
Freebody et al. Nanodielectric structure-property relationships and design rules using chemometric methods
SU1133532A1 (en) Method of producing standard specimens for checking dielcometric moisture meters
US1221357A (en) Art of estimating the solid content of liquid food products.
JPS61258863A (en) Curable resin composition