JPH02101976A - Alkali metal thermoelectric converter - Google Patents

Alkali metal thermoelectric converter

Info

Publication number
JPH02101976A
JPH02101976A JP24995088A JP24995088A JPH02101976A JP H02101976 A JPH02101976 A JP H02101976A JP 24995088 A JP24995088 A JP 24995088A JP 24995088 A JP24995088 A JP 24995088A JP H02101976 A JPH02101976 A JP H02101976A
Authority
JP
Japan
Prior art keywords
container
metal
solid electrolyte
tube
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24995088A
Other languages
Japanese (ja)
Other versions
JP2601889B2 (en
Inventor
Tamotsu Sano
佐野 保
Masao Sumi
角 正夫
Kikuo Nakamura
喜久男 中村
Katsuhiko Hamada
浜田 勝彦
Naoaki Ikeda
池田 直昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP24995088A priority Critical patent/JP2601889B2/en
Publication of JPH02101976A publication Critical patent/JPH02101976A/en
Application granted granted Critical
Publication of JP2601889B2 publication Critical patent/JP2601889B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Hybrid Cells (AREA)

Abstract

PURPOSE:To enable continuous generation of power through alternate repetition of open cycle by arranging metal wicks on the inner wall face of a container and the separation wall face for beta''-alumina solid electrolyte then arranging a rotary rod in the central section at the outside of a tubular container and enabling vertical exchange of the tubular container through rotation. CONSTITUTION:A container tube 2 comprises an insulating central tube 3 and metallic opposite end tubes 4, 5, where liquid Na 6 is vacuum encapsulated in the container tube 2. Metal wicks 7 are arranged on the opposite faces of beta''-alumina solid electrolyte 1 arranged as a separation wall in the center of the container tube 2, and the metal wick 8 is also arranged on the inner surface of the container 2. A rotary rod 13 is fixed near the center of the container tube 2, and when the liquid Na 6 moves from heating side 10 to cooling side 11 the rotary rod 13 is rotated and the container 2 is exchanged vertically. When the operation is repeated intermittently, power can be generated continuously.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、アルカリ金属熱電変換装置に関し、例えば宇
宙用機器の電源システム等として使用される上記装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an alkali metal thermoelectric conversion device, and relates to the above device used, for example, as a power supply system for space equipment.

[従来の技術] アルカリ金属熱電変換装置(Alkali  Iget
alThcrmo  )!1ectric  Conv
ertor−以下、AMT EC)の原理は、第2図に
示すように、高温加熱側で600〜1000℃に加熱さ
れたアルカリ金属(例えば、Na)  (Naの上記温
度における蒸気圧は、0.08〜2.6ata)が、β
ζアルミナ固体電解質(アルカリ金属イオンを選択的に
透過する作用がある)中を透過し、電極(+)面で電子
を得て中和し、蒸発しくβ′−アルミナ固体電解質は充
分薄く、従っ−C電極は高温となっており、中和したア
ルカリ金属はこの電極で加熱され蒸発する) 、 10
0〜500℃(蒸気圧10−@〜10−″aLm)の低
温側で液化する。
[Prior art] Alkali metal thermoelectric conversion device (Alkali Iget)
alThcrmo)! 1etric Conv
As shown in Fig. 2, the principle of the ertor (hereinafter referred to as AMT EC) is that an alkali metal (e.g., Na) heated to 600 to 1000°C on the high temperature heating side (the vapor pressure of Na at the above temperature is 0. 08-2.6ata) is β
It passes through the ζ-alumina solid electrolyte (which has the effect of selectively permeating alkali metal ions), acquires electrons on the electrode (+) surface, neutralizes it, and evaporates. -C electrode is at a high temperature, and the neutralized alkali metal is heated and evaporated by this electrode), 10
It liquefies on the low temperature side of 0 to 500°C (vapor pressure 10-@ to 10-''aLm).

このβ′−アルミナ固体電解質間のNaの蒸気圧差によ
り、外部回路が開いている場合は電極(+)面に電荷が
集積し、Ha’イオンの流れを止める方向に解放電圧が
発生する。外部回路が閉じると、Na’イオンは電極(
±)面において電子を得て中性化し、気孔性のある電極
を通り真空(中性化したNaの速やかな蒸発を図るため
真空引きしている)槽中に蒸発し、低温凝縮面で液化す
る。
Due to the Na vapor pressure difference between the β'-alumina solid electrolyte, when the external circuit is open, charges are accumulated on the (+) electrode surface, and a release voltage is generated in the direction of stopping the flow of Ha' ions. When the external circuit is closed, Na' ions are transferred to the electrode (
It is neutralized by acquiring electrons on the ±) surface, passes through a porous electrode, evaporates into a vacuum tank (vacuum is applied to ensure rapid evaporation of neutralized Na), and liquefies on the low-temperature condensation surface. do.

[発明が解決しようとする課題] 上記した従来のAMTEC方式では、次のような問題が
ある。
[Problems to be Solved by the Invention] The conventional AMTEC system described above has the following problems.

(])高温側Haは、最終的には低温側に移行するため
、高温側にNaがなくなってしまい、発電が停止してし
まう。
(]) Since the high-temperature side Ha eventually shifts to the low-temperature side, Na runs out on the high-temperature side, and power generation stops.

この対策として、従来は、第3図(A)(全体図)、(
B)(平面図)に示すように、ポンプを使用して低温側
のNaを高温側に還流させる方法により、連続発電でき
るようにしているが、システム、構造が複雑であるのみ
ならず、駆動部(機械式ポンプの場合のみ、電磁ポンプ
の場合は問題ない)を持つため信頼性に問題がある。
As a countermeasure for this, conventionally, Fig. 3 (A) (overall view), (
As shown in B) (plan view), continuous power generation is possible by using a pump to circulate Na from the low-temperature side to the high-temperature side, but the system and structure are not only complicated, but the drive (Only for mechanical pumps, no problem for electromagnetic pumps), so there is a problem with reliability.

(2)系全体は密閉系でないため、加熱側、冷却側で次
の問題がある。
(2) Since the entire system is not a closed system, there are the following problems on the heating and cooling sides.

■冷却側では真空系システムが必要であり、複雑なシス
テムとなる。
■A vacuum system is required on the cooling side, resulting in a complex system.

■加熱側ではHaが活性であるため、アルゴンガス等の
カバーガスシステムを必要とし、かつ高温Naより発生
するミストの除去トラップも必要となる。
(2) Since Ha is active on the heating side, a cover gas system such as argon gas is required, and a trap for removing mist generated from high-temperature Na is also required.

(3)上記(1)、 (2)により、熱電変換部を完全
密閉系のクローズドサイクルにすることには、外部との
シール性やシステム構成の都合等により種々の問題があ
る。
(3) According to (1) and (2) above, there are various problems in making the thermoelectric conversion part a completely sealed closed cycle system due to the sealing performance with the outside, the system configuration, etc.

そこで、本発明は、完全密閉系とはするが、クローズド
サイクルとはしないで、オーブンサイクルを交互に繰り
返すことにより連続発電するAMTEC装置を提案する
ことを目的とするものである。
Therefore, an object of the present invention is to propose an AMTEC device that is a completely closed system but does not use a closed cycle, but continuously generates electricity by repeating an oven cycle alternately.

「課題を解決するための手段] 本発明は、」二記目的を、全体が完全密閉系の筒状容器
の一端と多端が電気的に絶縁されるよう中央部に絶縁筒
を配置し、該筒状容器の外部中央部に回転ロッドを設置
して該筒状容器を回転により上下入換え自在とし、該筒
状容器内中央にβ′−アルミナ固体電解質を隔壁として
設置し、該筒状容器内にアルカリ金属を真空封入し、前
記絶縁部を除く容器内壁面及びβ′−アルミナ固体電解
質隔壁面に金属ウィックを配設すると共にこれら金属ウ
ィックを部分的につながるようにしたことを特徴とする
アルカリ金属熱電変換装置により達成するものである。
``Means for Solving the Problems'' The present invention achieves the second object by arranging an insulating cylinder in the center so that one end and the other end of a completely sealed cylindrical container are electrically insulated. A rotating rod is installed in the center of the outside of the cylindrical container so that the cylindrical container can be turned up and down by rotation, and a β'-alumina solid electrolyte is installed as a partition in the center of the cylindrical container. An alkali metal is vacuum-sealed inside the container, and metal wicks are provided on the inner wall surface of the container excluding the insulating part and on the β'-alumina solid electrolyte partition wall surface, and these metal wicks are partially connected. This is achieved using an alkali metal thermoelectric conversion device.

[作用] 本発明装置においては、筒状容器の一端を加熱側とし、
他端を冷却側とし、容器内部に真空封入されている液状
のアルカリ金属を加熱蒸発させる。
[Function] In the device of the present invention, one end of the cylindrical container is the heating side,
The other end is the cooling side, and the liquid alkali metal sealed inside the container is heated and evaporated.

このとき、容器内壁やβζアルミナ固体電解質壁に配設
されている金属ウイック(毛細管力を有するウール状の
金属)の毛細管作用により、液状のアルカリ金属が上方
へ吸い上げられる。
At this time, the liquid alkali metal is sucked upward by the capillary action of the metal wick (wool-like metal having capillary force) disposed on the inner wall of the container and the wall of the βζ alumina solid electrolyte.

上記の加熱側は、この液状アルカリ金属を吸い」−げた
金属ウィック部を加熱することになるため、所謂、ヒー
トバイブとして作用し、極めて効果的な加熱を行う。
The heating side heats the metal wick that absorbs this liquid alkali metal, so it acts as a so-called heat vibrator and performs extremely effective heating.

このNa蒸気は、前記のAMTECの原理通り、容器内
中央部に隔壁として設置されているβ′−アルミナ固体
電解質を透過し、冷却側に至り、冷却凝縮されて、ここ
に溜まる。
This Na vapor passes through the β'-alumina solid electrolyte installed as a partition in the center of the container, reaches the cooling side, is cooled and condensed, and accumulates there, in accordance with the principle of AMTEC described above.

このようにして、加熱側の液体Naが冷却側に移動して
しまったら、回転ロッドを回転させ、容器の上下を入換
える。
In this way, once the liquid Na on the heating side has moved to the cooling side, the rotating rod is rotated and the containers are turned upside down.

そして、今まで加熱側であった部分を冷却側として、冷
却側であった部分を加熱側として作用させ、液体Naを
移動させることな(、連続して発電を行うことができる
Then, the part that was previously on the heating side is made to act as a cooling side, and the part that was on the cooling side is made to act as a heating side, so that power generation can be performed continuously without moving liquid Na.

「実施例」 第1図は、本発明装置の一実施例を示す説明図である。"Example" FIG. 1 is an explanatory diagram showing an embodiment of the apparatus of the present invention.

同図において、β′−アルミナ固体電解質1を容器筒2
の中央に隔壁として支持具14により設置する。
In the same figure, the β'-alumina solid electrolyte 1 is placed in a container cylinder 2.
A support member 14 is used as a partition wall at the center of the wall.

容器筒2は中央筒3がセラミックス等の絶縁物製で、両
端筒4,5がステンレスやインコネル等の金属製である
The container tube 2 has a central tube 3 made of an insulating material such as ceramics, and both end tubes 4 and 5 made of metal such as stainless steel or Inconel.

この容器筒2内部には、アルカリ金属(ここではNa)
 6が真空封入されている。
Inside this container cylinder 2, an alkali metal (here Na) is
6 is vacuum sealed.

また、βζアルミナ固体電解質1の両表面には、金属ウ
ィック(電極を兼ねる)7が配置されており、容器2の
内表面にも金属ウィック8が配置されている。
Furthermore, metal wicks (which also serve as electrodes) 7 are arranged on both surfaces of the βζ alumina solid electrolyte 1, and a metal wick 8 is also arranged on the inner surface of the container 2.

この金属ウィック7と金属ウイック8とは、部分的にブ
リッジ(液体Naを自由に通す)9されている。
The metal wick 7 and the metal wick 8 are partially bridged (allowing liquid Na to freely pass therethrough).

同図では、容器2の上部が加熱側lOで、下部が冷却側
1】であり、負荷1zは高温(加熱)側1oと低温(冷
却)側11の金属製筒4,5に接続されている。
In the figure, the upper part of the container 2 is the heating side lO, the lower part is the cooling side 1], and the load 1z is connected to the metal tubes 4 and 5 on the high temperature (heating) side 1o and the low temperature (cooling) side 11. There is.

また、容器筒2中央付近に回転ロブド13が取り付けら
れ、これを回転させることにより、該容器筒2の上下を
入れ換え自在に構成されている。
Further, a rotating rod 13 is attached near the center of the container cylinder 2, and by rotating this, the container cylinder 2 is configured to be interchangeable vertically.

このような構成の本発明装置において、液体Na6は金
属ウィック8の毛細管作用により上方へ吸い上げられる
。この状態で加熱側】0を加熱させると、加熱側10は
、所謂、ヒートパイプの作用を有することになり、加熱
側10のどこを加熱しても液体Na6を加熱することが
できる。
In the apparatus of the present invention having such a configuration, liquid Na6 is sucked upward by the capillary action of the metal wick 8. When the heating side 0 is heated in this state, the heating side 10 has the function of a so-called heat pipe, and liquid Na6 can be heated no matter where on the heating side 10 is heated.

加熱された液体Na6は、蒸発し、前述のAMTECの
原理通り、β′−アルミナ固体電解質Iを通り、冷却側
11に至り、凝縮し、冷却側月面に溜まる。
The heated liquid Na6 evaporates, passes through the β'-alumina solid electrolyte I, reaches the cooling side 11, condenses, and accumulates on the lunar surface of the cooling side, in accordance with the AMTEC principle described above.

このようにして、加熱側10の液体Na6がなくなると
、発電の電圧や電流が低下する。
In this way, when the liquid Na6 on the heating side 10 runs out, the voltage and current for power generation decrease.

これを電気的に検知し、回転ロッド13を回転させ、容
器筒2を回転させ、容器筒2の上下を逆にする。
This is electrically detected, the rotating rod 13 is rotated, the container tube 2 is rotated, and the container tube 2 is turned upside down.

すると、今まで下部に存在し冷却側+1として作用し液
体Naを貯溜していた部分】1がに部に移動し、加熱側
として作用し、上部に存在し加熱側10として作用して
いた部分lOが下部に移動し、冷却側として作用するこ
とになる。
Then, the part 1 that existed at the bottom and acted as the cooling side + 1 and stored liquid Na moved to the bottom and acted as the heating side, and the part that existed at the top and acted as the heating side 10. IO will move to the bottom and act as a cooling side.

すなわち、加熱側11は、ここに貯溜され金属ウィック
7、ブリッジ9、金属ウィック8の毛細管の作用により
上方へ吸い上げられた液体Na6を加熱し、蒸発させて
、βζアルミナ固体電解質■を通過させ、冷却側10に
移動させる。Na蒸気は、この冷却側】Oで冷却され、
凝縮I2、冷却側10表面に溜まる。
That is, the heating side 11 heats and evaporates the liquid Na6 stored here and sucked up by the capillary action of the metal wick 7, bridge 9, and metal wick 8, and causes it to pass through the βζ alumina solid electrolyte (2). Move to the cooling side 10. Na vapor is cooled on this cooling side ]O,
Condensation I2 accumulates on the surface of the cooling side 10.

以」二の操作を間欠的に繰り返し、発電を連続的に行う
ことができる。
By repeating the above two operations intermittently, power generation can be performed continuously.

なお、本例では、加熱側の液体Nagの消失を電気的に
検知しているが、他の検知手段、例えば液位計等により
検知するようにしてもよい。
In this example, the disappearance of the liquid Nag on the heating side is detected electrically, but it may be detected by other detection means, such as a liquid level meter.

[発明の効果] 以」二詳述した本発明装置によれば、次のような効果を
奏することができる。
[Effects of the Invention] According to the apparatus of the present invention described in detail below, the following effects can be achieved.

(1)密閉容器であるため、余分なシステムが不要であ
り、しかも内部に封入する活性な液体金属の純度を効果
的に維持する。
(1) Since it is a closed container, no extra system is required, and the purity of the active liquid metal sealed inside is effectively maintained.

(2)また液体金属移動用の駆動部がないため、信頼性
が高い。
(2) Also, since there is no drive unit for moving the liquid metal, reliability is high.

(3)構成が簡単であるため装置コストが低度である上
、装置の故障も極めて少ない。
(3) Since the configuration is simple, the cost of the device is low, and failures of the device are extremely rare.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の一実施例を示す説明図、第2図は
AMTECの原理を示す図、第3図は従来の装置の一例
を示す図で、第3図(A)が全体図、第3図(B)が平
面図である。 第1 図
Fig. 1 is an explanatory diagram showing an embodiment of the device of the present invention, Fig. 2 is a diagram showing the principle of AMTEC, Fig. 3 is a diagram showing an example of a conventional device, and Fig. 3 (A) is an overall view. , FIG. 3(B) is a plan view. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 全体が完全密閉系の筒状容器の一端と多端が電気的に絶
縁されるよう中央部に絶縁筒を配置し、該筒状容器の外
部中央部に回転ロッドを設置して該筒状容器を回転によ
り上下入換え自在とし、該筒状容器内中央にβ″−アル
ミナ固体電解質を隔壁として設置し、該筒状容器内にア
ルカリ金属を真空封入し、前記絶縁部を除く容器内壁面
及びβ″−アルミナ固体電解質隔壁面に金属ウイックを
配設すると共にこれら金属ウイックを部分的につながる
ようにしたことを特徴とするアルカリ金属熱電変換装置
An insulating tube is placed in the center of the cylindrical container so that one end and the other end of the cylindrical container are electrically insulated, and a rotating rod is installed in the center of the outside of the cylindrical container. A β″-alumina solid electrolyte is installed in the center of the cylindrical container as a partition wall, and an alkali metal is vacuum sealed in the cylindrical container, and the inner wall surface of the container excluding the insulating portion and β ″-An alkali metal thermoelectric conversion device characterized in that metal wicks are disposed on the alumina solid electrolyte partition wall surface and these metal wicks are partially connected.
JP24995088A 1988-10-05 1988-10-05 Alkali metal thermoelectric converter Expired - Lifetime JP2601889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24995088A JP2601889B2 (en) 1988-10-05 1988-10-05 Alkali metal thermoelectric converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24995088A JP2601889B2 (en) 1988-10-05 1988-10-05 Alkali metal thermoelectric converter

Publications (2)

Publication Number Publication Date
JPH02101976A true JPH02101976A (en) 1990-04-13
JP2601889B2 JP2601889B2 (en) 1997-04-16

Family

ID=17200594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24995088A Expired - Lifetime JP2601889B2 (en) 1988-10-05 1988-10-05 Alkali metal thermoelectric converter

Country Status (1)

Country Link
JP (1) JP2601889B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05226007A (en) * 1992-02-17 1993-09-03 Agency Of Ind Science & Technol Power generating method and generating element used therefor
WO2011142541A3 (en) * 2010-05-10 2012-01-12 동국대학교 산학협력단 Thermoelectric conversion device using a solvating material
CN103440994A (en) * 2010-12-20 2013-12-11 西安航科等离子体科技有限公司 Thermal insulation device for alkali metal thermoelectric converter
JP2014100042A (en) * 2012-10-17 2014-05-29 Honda Motor Co Ltd Alkali metal thermoelectric transducer and operating method thereof
JP2014192935A (en) * 2013-03-26 2014-10-06 Honda Motor Co Ltd Alkali metal thermoelectric converter
JP2014191878A (en) * 2013-03-26 2014-10-06 Honda Motor Co Ltd Alkali metal thermoelectric converter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101336941B1 (en) * 2013-01-22 2013-12-04 한국에너지기술연구원 Amtec cell with partially opened internal electrode and method for manufacturing the amtec cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05226007A (en) * 1992-02-17 1993-09-03 Agency Of Ind Science & Technol Power generating method and generating element used therefor
WO2011142541A3 (en) * 2010-05-10 2012-01-12 동국대학교 산학협력단 Thermoelectric conversion device using a solvating material
US8802251B2 (en) 2010-05-10 2014-08-12 Dongguk University Industry-Academic Cooperation Foundation Thermoelectric conversion device using a solvating material
CN103440994A (en) * 2010-12-20 2013-12-11 西安航科等离子体科技有限公司 Thermal insulation device for alkali metal thermoelectric converter
JP2014100042A (en) * 2012-10-17 2014-05-29 Honda Motor Co Ltd Alkali metal thermoelectric transducer and operating method thereof
JP2014192935A (en) * 2013-03-26 2014-10-06 Honda Motor Co Ltd Alkali metal thermoelectric converter
JP2014191878A (en) * 2013-03-26 2014-10-06 Honda Motor Co Ltd Alkali metal thermoelectric converter

Also Published As

Publication number Publication date
JP2601889B2 (en) 1997-04-16

Similar Documents

Publication Publication Date Title
EP0163391B1 (en) A thermoelectric generator for converting heat energy to electrical energy
US4005297A (en) Vacuum-type circuit interrupters having heat-dissipating devices associated with the contact structures thereof
US4857421A (en) Alkali metal thermoelectric genreator
US3543841A (en) Heat exchanger for high voltage electronic devices
JPH02101976A (en) Alkali metal thermoelectric converter
US4505991A (en) Sodium heat engine electrical feedthrough
US4430588A (en) MHD Electrode and wall constructions
KR850001098B1 (en) Boiling / cooling system
CN101604931A (en) Alkali metal thermo-electric direct converter
JP3787625B2 (en) Thermoelectric converter
JP4147299B2 (en) Combined power generation element and combined power generation system comprising thermoelectric power generation element and alkali metal thermoelectric conversion element
JPH06163089A (en) Alkali metal thermoelectric generating device
US5066337A (en) Thermal power transfer system using applied potential difference to sustain operating pressure difference
CN100414730C (en) Heat engine of alkali metals
JP2004257682A (en) Evaporator
JPH05226007A (en) Power generating method and generating element used therefor
JPH0364950A (en) Electrically insulated heat pipe
JPS61258666A (en) Generator
JP3448094B2 (en) Composite thermoelectric converter
JPH0634603B2 (en) Solid electrolyte type thermoelectric converter
RU2355075C1 (en) Thermoelectrochemical generator
JPS56122151A (en) Semiconductor device
SU1195397A1 (en) High-voltage semiconductor module
SU1643858A1 (en) Liquid coolant feed device
SU1128088A1 (en) Heat pipe