JPH05226007A - Power generating method and generating element used therefor - Google Patents

Power generating method and generating element used therefor

Info

Publication number
JPH05226007A
JPH05226007A JP4061168A JP6116892A JPH05226007A JP H05226007 A JPH05226007 A JP H05226007A JP 4061168 A JP4061168 A JP 4061168A JP 6116892 A JP6116892 A JP 6116892A JP H05226007 A JPH05226007 A JP H05226007A
Authority
JP
Japan
Prior art keywords
storage chamber
temperature side
working medium
solid electrolyte
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4061168A
Other languages
Japanese (ja)
Inventor
Kotaro Tanaka
耕太郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP4061168A priority Critical patent/JPH05226007A/en
Publication of JPH05226007A publication Critical patent/JPH05226007A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hybrid Cells (AREA)

Abstract

PURPOSE:To eliminate needs for a pump for circulating a medium thereby remarkably simplifying the shape of a device by providing storage chambers for a working solvent while having a solid electrolyte containing electrode membranes on both sides and placing them at a high temperature side or at a low temperature side reciprocally, followed by moving the solvent. CONSTITUTION:Solid electrolyte 2 containing electrode membranes 3 and 4 respectively at both end surfaces are intervened in a vessel 1 which constitutes a generating element, and storage chambers 5 and 6 for a working solvent are formed respectively at both ends of the vessel 1. First, the storage chamber 5, in which the working solvent is filled, is placed at the high temperature side while the storage chamber 6 at the low temperature side, and subsequently generation is performed while the solvent in the storage chamber 5 is transferred to the storage chamber 6 passing through the electrolyte 2. Next, the storage chamber 6 is placed at the high temperature side while the storage chamber 5 at the low temperature side, generation is performed while the solvent in the storage chamber 6 is transferred to the storage chamber 5 passing through the electrolyte 2. Accordingly, no pump is used for moving the solvent and DC power can be provided to an external circuit provided between the electrode membranes 3 and 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、熱エネルギーから直
接電気エネルギーに変換する発電方法の改良とこれに使
用する発電素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a power generation method for directly converting thermal energy into electric energy and a power generation element used therefor.

【0002】[0002]

【従来の技術】この発明が対象とする発電方式は、アル
カリ金属熱電方式或はナトリウムヒートエンジンと呼ば
れ、その発電原理は1969年J.T.Kummerらにより提案され
たものである(米国特許3,458,356)。
2. Description of the Related Art The power generation system targeted by the present invention is called an alkali metal thermoelectric system or a sodium heat engine, and the power generation principle was proposed by JT Cummer et al. In 1969 (US Pat. No. 3,458,356).

【0003】この発電方式は、1.発電装置の電極面積
当たりの出力が大きい、2.単位重量当たりの出力が大
きい、3.エネルギー変換効率が高い、4.発電規模の
選択が自由にできる、5.あらゆる熱源に対応が可能で
ある、6.直接発電のため作動部がなく、振動、騒音が
なく、また信頼性も高い、などの数多くの利点を備え、
将来性の高い発電方式として注目されている。
This power generation system is 1. 1. Large output per electrode area of power generator 2. Large output per unit weight 3. 3. High energy conversion efficiency 4. The power generation scale can be freely selected. 5. Can be used with any heat source. It has a lot of advantages such as no operating part, no vibration and noise, and high reliability because it directly generates electricity.
It is attracting attention as a power generation method with high potential.

【0004】この発電原理を利用した発電装置は今迄に
いくつか報告されている。第3図は従来の発電装置を示
すものであり、装置内にはβアルミナ或はβ”アルミナ
等の固体電解質2、固体電解質の+側には正極電極膜1
0、正極電極膜10に対向して高温側熱源8がそれぞれ設
けられ、またその下方には低温側コンデンサ9、循環用
ポンプ11が設けられ、更に正極電極膜10とこれと反対側
の固体電解質2を結ぶ外部回路7が設けられている。
There have been several reports of power generators utilizing this power generation principle. FIG. 3 shows a conventional power generator, in which the solid electrolyte 2 such as β-alumina or β ″ -alumina, and the positive electrode film 1 on the + side of the solid electrolyte.
0, a high temperature side heat source 8 is provided so as to face the positive electrode film 10, and a low temperature condenser 9 and a circulation pump 11 are provided below the high temperature side heat source 8 and the positive electrode film 10 and the solid electrolyte on the opposite side. An external circuit 7 connecting the two is provided.

【0005】ナトリウム等の作動媒体は低温側コンデン
サ9で液相の状態にした後、そのまま液相の状態で正極
電極膜10とは反対側の固体電解質2に供給される。
The working medium such as sodium is brought into a liquid phase state by the low temperature side condenser 9, and then is supplied as it is to the solid electrolyte 2 on the side opposite to the positive electrode film 10 in the liquid phase state.

【0006】固体電解質2の左側(正極電極膜10と反対
側)に供給されたナトリウム等の作動媒体は電解質界面
において電子を放出してイオン化され、正極電極膜10に
移動し、正極電極膜10では電子を受け取って還元される
と同時に、高温側熱源8からの熱で蒸発する。
The working medium such as sodium supplied to the left side of the solid electrolyte 2 (on the side opposite to the positive electrode film 10) releases electrons at the electrolyte interface and is ionized, and moves to the positive electrode film 10 to move to the positive electrode film 10. Then, the electrons are received and reduced, and at the same time, they are evaporated by the heat from the high temperature side heat source 8.

【0007】更に気相となった作動媒体は低温側コンデ
ンサ9に移動し、ここで凝縮され、液相となった作動媒
体は循環用ポンプ11により最初の状態である正極電極膜
2とは反対側の固体電解質2に供給される。このような
サイクルを構成することにより、外部回路7に直流電力
を発生させることができる。
Further, the working medium in the vapor phase moves to the low temperature side condenser 9, is condensed there, and the working medium in the liquid phase is opposite to the positive electrode film 2 in the initial state by the circulation pump 11. Is supplied to the solid electrolyte 2 on the side. By configuring such a cycle, it is possible to generate DC power in the external circuit 7.

【0008】[0008]

【発明が解決しようとする課題】アルカリ金属熱電変換
方式の大きな問題点の一つはポンプの特性にある。上述
のような従来の装置においてはポンプ11には通常電磁ポ
ンプが使用される。
One of the major problems of the alkali metal thermoelectric conversion system is the characteristics of the pump. In the conventional device as described above, the pump 11 is usually an electromagnetic pump.

【0009】電磁ポンプは稼働部がなく、シールの問題
の少ない等の特徴をもつが、その効率は低く、また大流
量、低圧力差に適しているため、アルカリ金属熱電変換
のように小流量、高圧力差が要求される仕様とは性能が
一致しない。
The electromagnetic pump has features such as no moving parts and less problems of sealing, but its efficiency is low, and it is suitable for large flow rate and low pressure difference. Therefore, it has a small flow rate like alkali metal thermoelectric conversion. The performance does not match the specifications that require a high pressure difference.

【0010】即ち、アルカリ金属熱電変換では最低1〜
2気圧の圧力差を必要とし、このことはポンプ内の流路
長とコイル部を大きくし、また小流量ではポンプの効率
を著しく低いものとする。また、電磁ポンプの代りに機
械式ポンプを使用した場合にはシールに問題がある。
That is, in alkali metal thermoelectric conversion, at least 1 to
A pressure difference of 2 atm is required, which increases the flow path length and the coil section in the pump, and makes the efficiency of the pump remarkably low at a small flow rate. Also, if a mechanical pump is used instead of the electromagnetic pump, there is a problem with the seal.

【0011】また、このアルカリ金属熱電変換による出
力電力は低電圧・高電流を特徴とし、実用の際には発電
素子を直列に接続する必要があるが、その際に従来のポ
ンプを使用する方式では、各発電素子自体の作動媒体の
流路(ポンプから固体電解質への供給路)を電気的に絶
縁する必要がある。そのためにはこの間の配管並びに作
動媒体の両者の絶縁が必要であるが、配管は通常金属製
であるため、絶縁するためにはセラミック等の絶縁物を
流路の途中に設ける必要がある。このことは接続部のシ
ールの問題を生ずる。
The output power of the alkali metal thermoelectric conversion is characterized by low voltage and high current, and it is necessary to connect power generating elements in series in practical use. At that time, a conventional pump is used. Then, it is necessary to electrically insulate the flow path (the supply path from the pump to the solid electrolyte) of the working medium of each power generating element itself. For that purpose, it is necessary to insulate both the pipe and the working medium between them, but since the pipe is usually made of metal, it is necessary to provide an insulating material such as ceramic in the middle of the flow path for insulation. This gives rise to sealing problems at the connection.

【0012】更に、上述の発電方式では作動媒体として
ナトリウム等の電気導電性の媒体を使用するため、配管
の中の作動媒体の絶縁も必要であり、液相の作動媒体を
絶縁する方法としては、作動媒体との間に気相部分を挿
入する方式があるが、この方式では構造的に装置を複雑
にし、更に気相として絶縁した部分に凝縮による液相が
付着して絶縁が破壊される可能性が高い等の難点があ
る。
Furthermore, in the above-mentioned power generation system, since an electrically conductive medium such as sodium is used as the working medium, it is necessary to insulate the working medium in the pipe, and as a method for insulating the working medium in the liquid phase, Although there is a method of inserting a gas phase portion between the working medium and this method, this method structurally complicates the device, and the liquid phase due to condensation adheres to the insulated portion as a gas phase to break the insulation. There are difficulties such as high possibility.

【0013】また、一つの発電素子ごとに独立してポン
プを備えることにより発電素子を直列接続することも可
能であるが、この場合個々の発電素子に備えられるポン
プの特性に問題がある。
It is also possible to connect the power generating elements in series by independently providing a pump for each power generating element, but in this case, there is a problem in the characteristics of the pump provided in each power generating element.

【0014】即ち、一つの発電素子の発電出力は固体電
解質の大きさに制約され、その発電出力を1000W と仮定
した場合でも作動媒体の移動量は一分間に30cc程度であ
り、前述のような従来使用されている電磁ポンプの大流
量、低圧力差の特性とは全く整合せず、ポンプの効率は
全く低いものとなるので、個々の発電素子に適合するよ
うにポンプを小型化する必要があるが、この小型化が極
めて難しい問題である。
That is, the power generation output of one power generation element is restricted by the size of the solid electrolyte, and even if the power generation output is assumed to be 1000 W, the movement amount of the working medium is about 30 cc per minute, Since it does not match the large flow rate and low pressure difference characteristics of the conventional electromagnetic pump, and the efficiency of the pump is extremely low, it is necessary to miniaturize the pump to suit each power generating element. However, this miniaturization is an extremely difficult problem.

【0015】[0015]

【課題を解決するための手段】以上の課題を解決するた
め、発電素子を構成する容器内には一面に第1電極を、
他面に第2電極を有する固体電解質を介在させて、該容
器内を作動媒体の第1収容室と第2収容室に区劃し、先
ず作動媒体の装填された第1収容室を高温側に位置さ
せ、他の収容室を低温側に位置させ、第1収容室の作動
媒体を上記電極と固体電解質を通過して第2収容室に移
動させる間に発電を行ない、次に第2収容室を高温側に
位置させ、第1収容室を低温側に位置させ、第2収容室
の作動媒体を上記電極と固体電解質を通過して第1収容
室に移動させる間に発電を行なうようにした発電方法と
これに使用する発電素子を提案するものである。
In order to solve the above problems, a first electrode is provided on one surface in a container forming a power generating element.
A solid electrolyte having a second electrode on the other surface is interposed, and the inside of the container is divided into a first storage chamber and a second storage chamber for the working medium. First, the first storage chamber loaded with the working medium is placed on the high temperature side. The other storage chamber on the low temperature side, power is generated while the working medium in the first storage chamber moves to the second storage chamber through the electrode and the solid electrolyte, and then the second storage chamber. The chamber is positioned on the high temperature side, the first storage chamber is positioned on the low temperature side, and power is generated while the working medium in the second storage chamber is moved to the first storage chamber through the electrode and the solid electrolyte. The proposed power generation method and the power generation element used for this method are proposed.

【0016】[0016]

【作用】この発明においては、第1収容室内に装填され
た作動媒体は、高温側の熱源で加熱されて第1電極を通
過して固体電解質内に供給される。この際、電解質の界
面で電子を放出しイオン化され、更に第2電極に移動
し、ここでは電子を受け取って還元され、更に第2電極
を通過した作動媒体は第2収容室に到達し、ここで低温
側で冷却される。
In the present invention, the working medium loaded in the first chamber is heated by the heat source on the high temperature side, passes through the first electrode, and is supplied into the solid electrolyte. At this time, electrons are emitted at the interface of the electrolyte and ionized, further move to the second electrode, where they are received and reduced, and the working medium that has passed through the second electrode reaches the second storage chamber, where It is cooled on the low temperature side.

【0017】次に、第2収容室を高温側に位置させ、第
1収容室を低温側に位置させることにより、第2収容室
の作動媒体は高温側で加熱されて第2電極を通過して固
体電解質内に供給され、この際電解質の界面で電子を放
出してイオン化され、更に第1電極に移動し、ここでは
電子を受け取って還元され、更に第1電極を通過した作
動媒体は第1収容室に到達し、ここで低温側で冷却され
る。
Next, by positioning the second storage chamber on the high temperature side and the first storage chamber on the low temperature side, the working medium in the second storage chamber is heated on the high temperature side and passes through the second electrode. Are supplied into the solid electrolyte, at which time electrons are emitted at the interface of the electrolyte to be ionized, further move to the first electrode, where they are received and reduced, and the working medium passing through the first electrode is It reaches the first chamber, where it is cooled on the low temperature side.

【0018】このように、この発明では作動媒体の移動
にポンプを使用することなく、第1、第2電極間に設け
られた外部回路に直流電力を発生させることができる。
As described above, according to the present invention, DC power can be generated in the external circuit provided between the first and second electrodes without using a pump for moving the working medium.

【0019】なお、第1収容室乃至第2収容室の位置を
高温側から低温側に移動する方法としては、高温乃至低
温側の位置を固定して、第1収容室と第2収容室の位置
を入れ替えるようにしてもよく、逆に第1収容室と第2
収容室の位置を固定して、高温側と低温側の位置を入れ
替えるようにしてもよい。
As a method of moving the positions of the first storage chamber and the second storage chamber from the high temperature side to the low temperature side, the positions of the high temperature side and the low temperature side are fixed, and the first storage chamber and the second storage chamber are fixed. The positions may be interchanged, and conversely, the first storage chamber and the second storage chamber may be replaced.
The position of the storage chamber may be fixed, and the positions of the high temperature side and the low temperature side may be switched.

【0020】したがって、この発明では装置の簡素化が
可能である。具体的には、ポンプの省略のみならず、ポ
ンプにつながる作動媒体の配管、ポンプの制御系、電源
も省略することが可能であり、更に簡素化により装置の
信頼性を高めることができる。
Therefore, according to the present invention, the device can be simplified. Specifically, not only the pump can be omitted, but also the piping of the working medium connected to the pump, the control system of the pump, and the power source can be omitted, and further simplification can improve the reliability of the device.

【0021】また、この発明ではポンプを使用せずに作
動媒体を移動させることができるため、発電素子の気密
性を高めることができる。
Further, in the present invention, since the working medium can be moved without using a pump, the airtightness of the power generating element can be enhanced.

【0022】更に、この発明による発電素子は小さく密
閉した容器に収めることが可能であり、したがって発電
素子を含む容器を周囲と絶縁することにより、容易に且
つ確実に直列接続が可能となる。これは実用上、発電素
子を直列接続して使用する場合に極めて大きな効果を発
揮する。
Further, the power generating element according to the present invention can be housed in a small and hermetically sealed container. Therefore, by insulating the container including the power generating element from the surroundings, the series connection can be easily and surely performed. In practice, this is extremely effective when the power generating elements are connected in series.

【0023】以下、この発明を図示の実施例に基づいて
詳細に説明する。図1は、この発明の一実施例を示すも
ので、1は発電素子を構成する縦長の容器で、容器1内
の中央にはβアルミナ或はβ”アルミナ等の固体電解質
2が設けられ、固体電解質2の上面と下面の両面には第
1電極膜3と第2電極膜4が設けられ、更に固体電解質
2で区劃された容器1内の上部と下部には第1収容室5
と第2収容室6が形成される。
The present invention will be described below in detail with reference to the illustrated embodiments. FIG. 1 shows an embodiment of the present invention, in which 1 is a vertically long container constituting a power generating element, and a solid electrolyte 2 such as β-alumina or β ″ -alumina is provided in the center of the container 1. A first electrode film 3 and a second electrode film 4 are provided on both upper and lower surfaces of the solid electrolyte 2, and further, a first storage chamber 5 is provided at the upper and lower parts of the container 1 separated by the solid electrolyte 2.
The second storage chamber 6 is formed.

【0024】また、第1電極膜3と第2電極膜4とには
外部回路7が接続され、更に第1収容室5の外周には高
温側熱源8と第2収容室6の外周には低温側コンデンサ
9を設ける。
An external circuit 7 is connected to the first electrode film 3 and the second electrode film 4, and the high temperature side heat source 8 and the outer circumference of the second storage chamber 6 are connected to the outer circumference of the first storage chamber 5. A low temperature side capacitor 9 is provided.

【0025】なお、固体電解質2の両面の形状は、この
実施例では平板状であるが、この他円筒状、波板状など
自由に選択することができる。
The shape of both surfaces of the solid electrolyte 2 is flat plate in this embodiment, but other shapes such as cylindrical shape and corrugated plate shape can be freely selected.

【0026】以上の収容室のうちこの実施例では第1収
容室5に作動媒体を装填する。作動媒体としては、固体
電解質のイオン導電率の高い媒体が選定される。例え
ば、βアルミナ、或はβ”アルミナ等の固体電解質を使
用する場合には、ナトリウム、カリウム、セシウム等の
アルカリ金属或は水銀等を使用することができ、この他
の固体電解質を使用することにより、他の作動媒体の使
用も可能である。
In this embodiment, of the above-mentioned storage chambers, the working medium is loaded in the first storage chamber 5. A medium having a high solid electrolyte ionic conductivity is selected as the working medium. For example, when a solid electrolyte such as β-alumina or β ″ -alumina is used, an alkali metal such as sodium, potassium, cesium or mercury can be used, and other solid electrolytes should be used. Thus, the use of other working media is also possible.

【0027】以上の構成において、第1収容室5内に収
容された作動媒体は高温側熱源8に加熱され、第1電極
膜3、固体電解質2、第2電極膜4を通過して下方に移
動して第2収容室6に収容され、ここで低温側コンデン
サ9により冷却され、第2収容室6に溜る。
In the above structure, the working medium contained in the first containing chamber 5 is heated by the high temperature side heat source 8, passes through the first electrode membrane 3, the solid electrolyte 2 and the second electrode membrane 4 and is moved downward. It moves and is stored in the second storage chamber 6, where it is cooled by the low temperature side condenser 9 and is stored in the second storage chamber 6.

【0028】そして、作動媒体は固体電解質2の界面で
電子を放出してイオン化し、更に第2電極膜4で電子を
受け取って還元され、これにより外部回路7には直流電
力が発生する。
Then, the working medium releases electrons at the interface of the solid electrolyte 2 to be ionized, and further receives and is reduced by the second electrode film 4, whereby DC power is generated in the external circuit 7.

【0029】作動媒体の移動により第1収容室5の作動
媒体の量が少なくなり、第2収容室6の作動媒体の量が
多くなった時点で、容器1の上下位置を逆転させ、第2
収容室6が高温側熱源8に、第1収容室5が低温側コン
デンサ9に位置させる。
When the amount of the working medium in the first storage chamber 5 decreases due to the movement of the working medium and the amount of the working medium in the second storage chamber 6 increases, the vertical position of the container 1 is reversed and the second position is set.
The accommodation chamber 6 is located at the high temperature side heat source 8, and the first accommodation chamber 5 is located at the low temperature side condenser 9.

【0030】これにより、第2収容室6に溜った温度の
低い作動媒体は高温側熱源8から熱を受けて温度上昇
し、固体電解質2に送入され、前記同様に固体電解質2
の界面で電子を放出してイオン化し、第1電極膜3で電
子を受け取って還元され、これにより外部回路7に直流
電力が発生する。
As a result, the working medium having a low temperature accumulated in the second storage chamber 6 receives heat from the high temperature side heat source 8 and rises in temperature, and is sent to the solid electrolyte 2, and the solid electrolyte 2 is the same as above.
Electrons are emitted and ionized at the interface of, and the electrons are received by the first electrode film 3 and reduced, whereby DC power is generated in the external circuit 7.

【0031】第1電極膜3を通過した作動媒体は第1収
容室5に到達し、ここで冷却側コンデンサ9で冷却され
る。このようにして、ポンプなしで発電することができ
る。
The working medium that has passed through the first electrode film 3 reaches the first accommodating chamber 5, where it is cooled by the condenser 9 on the cooling side. In this way, electricity can be generated without a pump.

【0032】なお、この発明では作動媒体の温度を急激
に上昇乃至下降させることになるが、この場合固体電解
質の部分の温度を急激に変化させると、固体電解質2に
温度差に起因する応力によりクラックの成長が予想され
る。
In the present invention, the temperature of the working medium is rapidly raised or lowered, but in this case, when the temperature of the solid electrolyte portion is rapidly changed, the solid electrolyte 2 is stressed due to the temperature difference. Crack growth is expected.

【0033】そこで、図1にも示すように固体電解質2
の部分は常に高温側熱源8の方に位置させるようにし
て、温度変化を最小限に抑えることが必要である。
Therefore, as shown in FIG. 1, the solid electrolyte 2
It is necessary to minimize the temperature change by always arranging the part of (1) toward the high temperature side heat source 8.

【0034】図2は他の実施例を示すものであり、この
場合は発電素子を構成する容器1として逆U字状の容器
を使用し、その中央には図1と同様にそれぞれ端面に第
1電極膜3と第2電極膜4を有する固体電解質2を介在
させ、その両端に作動媒体の第1収容室5と第2収容室
6を設け、第1収容室5の外周には高温側熱源8と第2
収容室6の外周には低温側コンデンサ9を設ける。
FIG. 2 shows another embodiment. In this case, an inverted U-shaped container is used as the container 1 which constitutes the power generating element, and the center of the container is the same as that of FIG. The solid electrolyte 2 having the first electrode film 3 and the second electrode film 4 is interposed, the first storage chamber 5 and the second storage chamber 6 for the working medium are provided at both ends thereof, and the high temperature side is provided on the outer periphery of the first storage chamber 5. Heat source 8 and second
A low temperature side condenser 9 is provided on the outer periphery of the accommodation chamber 6.

【0035】そして、この実施例では第1収容室5に装
填された作動媒体は高温側熱源8により加熱されて気相
状態となり、固体電解質2に供給され、上記同様に発電
して第2収容室6に収容され、ここで低温側コンデンサ
9により冷却されて凝縮される(図2A)。
Then, in this embodiment, the working medium loaded in the first storage chamber 5 is heated by the high temperature side heat source 8 to be in a gas phase state, supplied to the solid electrolyte 2 and generated in the same manner as above to generate the second storage. It is housed in the chamber 6, where it is cooled and condensed by the low-temperature condenser 9 (FIG. 2A).

【0036】次に、容器1をそのままにして第1収容室
5の外周に低温側コンデンサ9を、第2収容室6の外周
に高温側熱源8を位置させると、第2収容室6に溜った
作動媒体は気相状態で固体電解質2に供給され、上記同
様に発電が行なわれる(図2B)。
Next, when the low temperature side condenser 9 is placed on the outer circumference of the first storage chamber 5 and the high temperature side heat source 8 is placed on the outer circumference of the second storage chamber 6 while keeping the container 1 as it is, the heat is accumulated in the second storage chamber 6. The working medium is supplied to the solid electrolyte 2 in the gas phase, and power generation is performed in the same manner as above (FIG. 2B).

【0037】[0037]

【発明の効果】以上要するに、この発明によれば、従来
必要であった作動媒体循環用ポンプが不要となり、装置
形状が大幅に簡略化することが可能である。
In summary, according to the present invention, the working medium circulating pump, which has been necessary in the past, is not required, and the shape of the device can be greatly simplified.

【0038】また、従来のポンプ使用に低効率、シール
等の問題を解決することができ、エネルギー収支上もこ
の発明の方法が有利となる。
Further, problems such as low efficiency and sealing in the conventional pump use can be solved, and the method of the present invention is also advantageous in terms of energy balance.

【0039】更に、この発明により発電素子の直列接合
が容易となることは大きな効果である。
Further, it is a great effect that the present invention facilitates series connection of the power generating elements.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を示す概略図FIG. 1 is a schematic diagram showing an embodiment of the present invention.

【図2】この発明の他の実施例を示す概略図で、図2A
は作動媒体を第1収容室から第2収容室へ供給する態様
を示す図、図2Bは作動媒体を第2収容室から第1収容
室へ供給する態様を示す図
2 is a schematic diagram showing another embodiment of the present invention, FIG.
FIG. 2 is a diagram showing a mode in which the working medium is supplied from the first storage chamber to the second storage chamber, and FIG. 2B is a diagram showing a mode in which the working medium is supplied from the second storage chamber to the first storage chamber.

【図3】従来の発電方式の概略図FIG. 3 is a schematic diagram of a conventional power generation method.

【符号の説明】[Explanation of symbols]

1 容器 2 固体電解質 3 第1電極膜 4 第2電極膜 5 第1収容室 6 第2収容室 7 外部回路 8 高温側熱源 9 低温側コンデンサ 1 Container 2 Solid Electrolyte 3 First Electrode Membrane 4 Second Electrode Membrane 5 First Containment Chamber 6 Second Containment Chamber 7 External Circuit 8 High Temperature Side Heat Source 9 Low Temperature Side Capacitor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 発電素子を構成する容器内には一面に第
1電極を、他面に第2電極を有する固体電解質を介在さ
せて、該容器内を作動媒体の第1収容室と第2収容室に
区劃し、先ず作動媒体の装填された第1収容室を高温側
に位置させ、他の収容室を低温側に位置させ、第1収容
室の作動媒体を上記電極と固体電解質を通過して第2収
容室に移動させる間に発電を行ない、次に第2収容室を
高温側に位置させ、第1収容室を低温側に位置させ、第
2収容室の作動媒体を上記電極と固体電解質を通過して
第1収容室に移動させる間に発電を行なうようにしたこ
とを特徴とする発電方法。
1. A solid electrolyte having a first electrode on one surface and a second electrode on the other surface is interposed in a container constituting a power generating element, and a second storage chamber for a working medium and a second storage chamber are provided in the container. First, the first storage chamber in which the working medium is loaded is located on the high temperature side, the other storage chamber is located on the low temperature side, and the working medium in the first storage chamber is divided into the electrode and the solid electrolyte. Electric power is generated while passing through and moving to the second storage chamber, then the second storage chamber is positioned on the high temperature side, the first storage chamber is positioned on the low temperature side, and the working medium of the second storage chamber is set to the electrode. A power generation method is characterized in that power is generated while passing through the solid electrolyte and moving to the first storage chamber.
【請求項2】 容器内には一面に第1電極を、他面に第
2電極を有する固体電解質を介在させて、該容器内を作
動媒体の第1収容室と第2収容室に区劃し、且つ第1、
第2電極間には外部回路を接続したことを特徴とする発
電素子。
2. A solid electrolyte having a first electrode on one surface and a second electrode on the other surface is interposed in the container to divide the container into a first storage chamber and a second storage chamber for a working medium. And the first,
An electric power generation element characterized in that an external circuit is connected between the second electrodes.
JP4061168A 1992-02-17 1992-02-17 Power generating method and generating element used therefor Pending JPH05226007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4061168A JPH05226007A (en) 1992-02-17 1992-02-17 Power generating method and generating element used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4061168A JPH05226007A (en) 1992-02-17 1992-02-17 Power generating method and generating element used therefor

Publications (1)

Publication Number Publication Date
JPH05226007A true JPH05226007A (en) 1993-09-03

Family

ID=13163350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4061168A Pending JPH05226007A (en) 1992-02-17 1992-02-17 Power generating method and generating element used therefor

Country Status (1)

Country Link
JP (1) JPH05226007A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02101976A (en) * 1988-10-05 1990-04-13 Mitsubishi Heavy Ind Ltd Alkali metal thermoelectric converter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02101976A (en) * 1988-10-05 1990-04-13 Mitsubishi Heavy Ind Ltd Alkali metal thermoelectric converter

Similar Documents

Publication Publication Date Title
US5187030A (en) Electrochemical battery having high energy per unit mass
US5228922A (en) High voltage alkali metal thermal electric conversion device
US4260014A (en) Ebullient cooled power devices
JP3787625B2 (en) Thermoelectric converter
JPH05226007A (en) Power generating method and generating element used therefor
JP2601889B2 (en) Alkali metal thermoelectric converter
JP4147299B2 (en) Combined power generation element and combined power generation system comprising thermoelectric power generation element and alkali metal thermoelectric conversion element
CN100414730C (en) Heat engine of alkali metals
JP3453159B2 (en) Thermoelectric generator
RU2080528C1 (en) Barogalvanic converter
RU2000116664A (en) THERMOEMISSION ELECTRIC GENERATING MODULE FOR THE ACTIVE ZONE OF A NUCLEAR REACTOR WITH AN EXTENDED THERMOEMISSION SYSTEM OF TRANSFER OF HEAT ENERGY IN ELECTRIC
JPH0634603B2 (en) Solid electrolyte type thermoelectric converter
JPH07163167A (en) Alkali metal thermoelectric power generator
RU2061984C1 (en) Thermoelectric generator
JPH057725Y2 (en)
JP2637442B2 (en) Thermoelectric converter
RU2440539C1 (en) Method to convert thermal energy of sun and/or biogas into electric energy
JP2887253B1 (en) Thermoelectric conversion generator
RU2715733C1 (en) Working medium vaporizer for thermionic converters
JP2866926B2 (en) Power generator
RU2355075C1 (en) Thermoelectrochemical generator
RU2073284C1 (en) Thermionic converter with small interelectrode gap
KR101877844B1 (en) Amtec apparatus having detachable amtec cell
JPH0364950A (en) Electrically insulated heat pipe
JP3448094B2 (en) Composite thermoelectric converter