JPH02101802A - Planer antenna and manufacture of planer antenna - Google Patents

Planer antenna and manufacture of planer antenna

Info

Publication number
JPH02101802A
JPH02101802A JP25374488A JP25374488A JPH02101802A JP H02101802 A JPH02101802 A JP H02101802A JP 25374488 A JP25374488 A JP 25374488A JP 25374488 A JP25374488 A JP 25374488A JP H02101802 A JPH02101802 A JP H02101802A
Authority
JP
Japan
Prior art keywords
conductor
substrate
radiating elements
radiation
planar antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25374488A
Other languages
Japanese (ja)
Inventor
Tasuku Morooka
諸岡 翼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25374488A priority Critical patent/JPH02101802A/en
Publication of JPH02101802A publication Critical patent/JPH02101802A/en
Pending legal-status Critical Current

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

PURPOSE:To reduce the effect of undesired radiation by placing a spherical body whose surface is at least made of a conductor so as to surround the radiation element. CONSTITUTION:A slot 20 is formed to a substrate 1, a conductor 19 is formed to a lower face and a radiation element 21 and a feeder 22 feeding the element 21 are formed to the base 9. Moreover, plural conductor balls 23 are in contact so as to surround the radiation element 21. The plural conductor balls are in contact even at the lower face similarly. Conductor balls 60, 61 are in contact with conductors 19, 18. Since an electric wall is formed by the conductor 19, the conductor ball 60, the base 9, the conductor ball 61 and the conductor 18, the effect of undesired radiation on other radiation element and the feeder is relieved.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、不安放射を軽減させ量産性に適し九マイクロ
ストリシブ回路構成のス5ット形平面アンテナ及び平面
アンテナの製造方法に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Field of Application) The present invention provides a slit-shaped planar antenna and a planar antenna having a nine-microstrisive circuit configuration that reduces unstable radiation and is suitable for mass production. Regarding the manufacturing method.

(従来の技術) 最近、静止衛星(赤道上空36.000Km)によるS
HF帯(12GHz帯)を用い九衛星放送、多目的通信
衛星による衛星通信等が実用化されている。
(Prior art) Recently, geostationary satellites (36,000 km above the equator)
Nine satellite broadcasts using the HF band (12 GHz band), satellite communications using multipurpose communication satellites, etc. have been put into practical use.

衛星を利用して伝送される電波(マイクロ波)を受信す
るには1m根や壁に容易暑こ施行できる平面アンテナが
注目されている。
In order to receive radio waves (microwaves) transmitted by satellites, flat antennas that can be easily installed on a 1m root or wall are attracting attention.

このような平面アンテナとしては、放射素子又は、これ
らを多数配列してなるアレーアンテナを誘電体基板又は
誘電体フィルムに給電源と共に設けtいわゆるマイクロ
ストリシブ形の弔面アンテナが広く世の中で使用されて
いる。
As such a planar antenna, a so-called microstrisive type antenna is widely used in the world, in which a radiating element or an array antenna consisting of a large number of radiating elements arranged together with a power supply are provided on a dielectric substrate or a dielectric film. ing.

このアレーアンテナの放射素子は、ダイポール、矩形パ
ッチ、円形パッチアンテナ等スロットアンテナと呼ばれ
る矩形及び円形スロットが用いられ。
The radiating elements of this array antenna include rectangular and circular slots called slot antennas, such as dipoles, rectangular patch antennas, and circular patch antennas.

いずれも優rte放射素子である。このうち一般的には
、スロット形の放射素子を用いている。
Both are excellent RTE radiating elements. Among these, slot-shaped radiating elements are generally used.

スロvト形平面アンテナの構造は、給電線路の方式によ
りて異なるが、伝送損失の少ないトリプレート方式が、
平面アンテナに適し九給電構億として利用されている。
The structure of the slotted planar antenna differs depending on the feed line method, but the triplate method with less transmission loss is
It is suitable for planar antennas and is used as a nine-feed structure.

第4図に、トリプレート方式を用いた平面アンテナの断
面図が示されている。これは、平面アンテナの一放射素
子分だけを示しtものである。
FIG. 4 shows a cross-sectional view of a planar antenna using the triplate method. This shows only one radiating element of the planar antenna.

同図に示し九様に、第1の基板321こは、スロット3
0と下面に導体33が形成されている。第2の基板35
には、放射素子31とこれに給電する九めの給電線34
とが形成されている。まt、第3の基板37の上面には
、導体36が形成されでいる。この第2の基板35を中
心にして第1の基板32と第3の基板37とでサイドイ
ッチ状にはさみ込んだ構成となりている。送信時を考え
てみると、このトリプレート方式の平面アンテナでは、
電界分布が同図のBに示し定領域に表われていると8つ
、給電線34#こ電力が給電されtら。
As shown in the figure, the first board 321 is connected to the slot 3.
0 and a conductor 33 is formed on the lower surface. Second substrate 35
, there is a radiating element 31 and a ninth feeder line 34 that feeds it.
is formed. Also, a conductor 36 is formed on the upper surface of the third substrate 37. The structure is such that the second substrate 35 is sandwiched between the first substrate 32 and the third substrate 37 in the form of a side switch. Considering the time of transmission, with this triplate planar antenna,
If the electric field distribution appears in a fixed area as shown in B of the same figure, power is supplied to the eight power supply lines 34#.

互いに逆向きの電気力線38.39が生じて、両者でバ
ランスがとれt状態となる。
Electric lines of force 38 and 39 are generated in opposite directions, and the two are balanced, resulting in state t.

従りて、Bの領域内では給電fs34からの放射はない
。次にAの領域について即ち、放射素子31暑こ電磁的
に結付さa*スロy )30から電波が放射される時に
ついて考える。
Therefore, there is no radiation from the feed fs34 within the region B. Next, let us consider the region A, that is, when radio waves are radiated from the radiating element 31 (a*sloy) 30 which is electromagnetically connected.

電気力線は同じように、第30基板37方面からは生じ
る。一方、第1の基板32方面からの電気力線は、スロ
ット300部分が切りとられている之めに、発生しなく
なる。このIi@により、放射素子31からスロット3
0を介して電波が放射されることになる。しかし、この
部分で、t5?−分布は不平衡な状心となる。このスロ
ット30付近は、必ずしも電気力線の全てが電波となり
て外部Iこ放射されるものではなく、電界分布が不弔衡
であるから複雑なモードが発生している。特に同図に示
し九ごとく、給電線34#こ沿りて横方向に伝搬する波
40が存在しt横付、これが不要放射となり隣接する放
射素子や給電線の励振分布を乱す原因となる。
Similarly, electric lines of force are generated from the direction of the 30th substrate 37. On the other hand, electric lines of force from the direction of the first substrate 32 are no longer generated because the slot 300 portion is cut out. Due to this Ii@, from the radiating element 31 to the slot 3
Radio waves will be emitted through 0. However, in this part, t5? -The distribution becomes unbalanced. In the vicinity of this slot 30, not all of the electric lines of force become radio waves and are radiated to the outside, but because the electric field distribution is unbalanced, complex modes occur. In particular, as shown in the figure, there is a wave 40 that propagates laterally along the feeder line 34#, which becomes unnecessary radiation and causes disturbance of the excitation distribution of adjacent radiating elements and the feeder line.

この不要放射を防止する方法として、従来、第5図に示
しtように、スロットや放射素子が形成されている周囲
iこ針のよう醗こ細ぐ煩い導体棒を数本立てる方法を利
用してい友。同図(a)#こは、平面アンテナの一放射
素子分の全体図が示されており。
Conventionally, as a method to prevent this unnecessary radiation, as shown in Figure 5, a method has been used to erect several thin, cumbersome conductor rods like needles around the area where slots and radiating elements are formed. Good friend. In the same figure (a), the overall view of one radiating element of the planar antenna is shown.

同図(b)1こは、同図(a)のA−8間断面図が示さ
れているようすこ、@1の基板41と第2の基板42と
第3の:IS仮43によりて、第41辺に示しt様な平
面アンテナが構成されている。更に、放射素子44の周
囲を取り囲む様に、導体棒45,46,47,48゜4
9.50.51e設置シテイル。各導体n45 、46
 。
The same figure (b) 1 shows the cross-sectional view along A-8 in the same figure (a). , a t-shaped planar antenna is constructed as shown on the 41st side. Further, conductor rods 45, 46, 47, 48°4 are arranged to surround the radiating element 44.
9.50.51e installation site. Each conductor n45, 46
.

47.48,49,50.51は、第1の基板41と第
3の基板43とが導通されるよう第1の基板41から喚
3の基板43まで貫通させている。この導体棒によりて
、放射素子の周囲に強制的に電気的な管を設けている。
47, 48, 49, 50, and 51 are passed through from the first substrate 41 to the third substrate 43 so that the first substrate 41 and the third substrate 43 are electrically connected. This conductor rod forces an electrical tube around the radiating element.

ま友、各導体棒45,46,47゜48.49,50.
51夫々の間隔は、同図(b)蚤こ示し上様に、不要放
射波52を伝搬させない九めにも、力vトオフ波長の手
分以下の長さ番こしなければならないつ 以上の構成により不要放射波の影響にほとんどなくなる
、このことは嘉6図に示しt放射特性の測定匝から明ら
かである。1同図(a)には、導体棒を設置しt横付の
結果が示されている。同図(b)には、導体棒を設置し
ていない時り結果が示されている。
Mayu, each conductor bar 45, 46, 47° 48.49, 50.
51, the distance between each of them must be set to a length equal to or less than the force v to-off wavelength in order to prevent unnecessary radiation waves 52 from propagating, as shown in the figure (b). As a result, the influence of unnecessary radiation waves is almost eliminated.This is clear from the measurement diagram of the t radiation characteristics shown in Fig. 6. 1. Figure 1 (a) shows the results of installing a conductor bar and placing it horizontally. The same figure (b) shows the results obtained without the conductor rod installed.

この導体棒は、全体の放射指向性の乱れが少なく特に横
方向や放射方向の反対側へ洩れる放射が著しく改善され
る。しかし、導体棒の数はこの実験によれば5−放射素
子に対して6本以上必愛であることがわかりている。こ
の様な針のように、細く短い導体11!を数百、数千の
放射素子からなる平面アンテナの基板と一基板との間に
設けることは、困難であり、何らかの圧力により折れる
可能性もあ朱色 る。4呵44.導体俸が通るように3枚の基板に共通し
t数千、枚方の穴をあけなければならないので、製庸工
慢が複雑になり、量m tth gこも乏しかり九。
With this conductor rod, there is little disturbance in the overall radiation directivity, and in particular, radiation leaking in the lateral direction or the opposite side of the radiation direction is significantly improved. However, according to this experiment, it has been found that the number of conductor rods must be six or more for five radiating elements. A thin and short conductor 11 like this needle! It is difficult to provide a single substrate between the substrates of a planar antenna consisting of hundreds or thousands of radiating elements, and there is a possibility that the antenna will break due to some kind of pressure. 4 呵 44. Since several thousand holes had to be drilled in common on the three boards to allow the conductor to pass through, the fabrication process was complicated and the quantity was limited.9.

(色町が解決しようとする味題) 以上述べてき上様に、トリグレート講義のスロット形乎
面アンテナにおいて、給電7噸が上下にある導体にはさ
まれているトリグレート講義の部分では、電気力線のバ
ランスがとれているもののスロrト部と放射素子との間
では電気力線のバランスがくずれるので、こnから生じ
る不便放射が隣接rる放射素子や給4線に影響を与えて
いtoこnを解決するtめに導体111を各放射素子の
周囲を喉り囲むように設置して隣接する放射素子及び給
電線に不要放射の影響を与えないようにする方法が従来
とられていt、しかし、この方法では、多数のアンテナ
素子を備え九平面アンテナにおいて。
(The problem that Iromachi is trying to solve) As mentioned above, in the part of the trigrate lecture where the 7 feeders are sandwiched between the upper and lower conductors in the slot-shaped antenna of the trigrate lecture, Although the lines of electric force are balanced, the balance of the lines of electric force is lost between the slot section and the radiating element, so the inconvenient radiation generated from this will affect the adjacent radiating element and the 4 feed wires. In order to solve this problem, a conventional method has been taken in which a conductor 111 is installed so as to surround each radiating element so that the adjacent radiating elements and feeder lines are not affected by unnecessary radiation. However, this method uses a nine-plane antenna with a large number of antenna elements.

各放射素子の周囲を取り囲むように細かく短かい導体棒
を設置するには、各基板夫々共4tこ各放射素子の間り
に導体棒を通ttめの穴を形成さげなければならず、精
密さを要し、製置が複雑inなり。
In order to install fine and short conductor rods so as to surround each radiating element, it is necessary to form 4t holes on each board for passing the conductor rods between each radiating element, and to make a precision It requires a long time and the manufacturing process is complicated.

11産性に乏しかりた。ま九、何らかの圧力により導体
棒が折れる可能性がありt。
11 Fertility was poor. Also, there is a possibility that the conductor rod may break due to some kind of pressure.

そこで1本発明は、これらの点憂こ鑑みてなされtもの
で、基板と基板との間に放射素子の周囲を取り囲むよう
に少なくとも表面が導体でできでいる複数の球状体を接
着させるだけで精密な工程もいらないtめ製造が聞手で
かつ、陸産性に富んでいて不快放射の影響を@減させる
ことができる子面アンテナ及び平面アンテナの製造方法
の提供を目的とするものである。
In view of these concerns, the present invention has been made by simply bonding a plurality of spherical bodies whose at least surfaces are made of a conductor so as to surround a radiating element between two substrates. The object of the present invention is to provide a method for manufacturing a diagonal antenna and a planar antenna, which can be easily manufactured without requiring precise processes, can be produced on land, and can reduce the effects of unpleasant radiation. .

〔伯明の構成〕[Hakumei's composition]

(81!題を解決するtめ0手反) 上記目的を達成するために本箔明においては、第1の基
板に複数のスロットと片面全体に導体を形成させており
、第2の基板には、この複数のスロットと′¥ti的−
こ結付される位置に複数の放射素子及びこの放射素子に
給電する給電線が形成され、第3の基板暑こは、片面全
体に導体を形成させている。これらの基板を11r1次
積鳴しtトリグレート講義の平面アンテナである。
(81! 0 steps to solve the problem) In order to achieve the above purpose, the first board is formed with a plurality of slots and a conductor on the entire surface, and the second board is formed with a plurality of slots and a conductor on the entire surface. is this multiple slot and '\ti-
A plurality of radiating elements and a feeder line for feeding power to the radiating elements are formed at the positions where the radiating elements are connected, and a conductor is formed on the entire surface of the third substrate. These boards are used as a planar antenna for 11r primary stacking and tri-rate lectures.

この平面アンテナにεいて、複数の放射素子夫々の周囲
を取り囲むように第1の基板と第2の基板との間に複数
の球状体を設置する。この球状体は少なくとも表面が導
体で形成されているもので夫々はぼ同じ大きさDもので
ある。まt、第2の基板と第30基板との間に前述し上
体状体を設置している位置に相対する位置にも同様に球
状体を設置している。この様な構成にすることを特徴と
するものである。
On this planar antenna, a plurality of spherical bodies are installed between the first substrate and the second substrate so as to surround each of the plurality of radiating elements. These spherical bodies have at least the surface formed of a conductor, and each has approximately the same size D. Furthermore, a spherical body is similarly installed between the second substrate and the thirtieth substrate at a position opposite to the position where the upper body-like body is installed as described above. It is characterized by having such a configuration.

更着こ、平面アンテナの製造方法としては、@1の#成
体基板Iこ複数のスロVトを形成させ、この基板の片面
全体に導体をエツチングする放射板製造工程とこの複数
のスロットと’ga的Iこ結曾される複数の放射素子及
びこの放射素子に給電する給電線を第2の誘電体基板に
形成する給電板!!遣工程と、複数の放射素子夫々の周
囲を取り囲むように少なくともfi面が導体で形成され
たほぼ同じ大きさの球状体を第2の誘電体基板の表裏面
の相対する位置壷こ複数接着する球状体接着工程と第3
の誘電体基板の片面全体に導体を形成する地導体板製造
工程と、第1の誘電体基板と第2の誘電体基板と第3の
誘電体基板とを順次積層する基板積1工程とからなるこ
とを特徴とするものである。
Finally, the method for manufacturing a planar antenna involves forming a plurality of slots on a #1 adult substrate I, etching a conductor on the entire surface of one side of the substrate, and a radiating plate manufacturing process. A power feed plate for forming a plurality of radiating elements and a power feed line for feeding the radiating elements on a second dielectric substrate. ! At the same time, a plurality of spherical bodies having approximately the same size and having at least the fi plane formed of a conductor are bonded to each other at opposing positions on the front and back surfaces of the second dielectric substrate so as to surround each of the plurality of radiating elements. Spherical body adhesion process and third
A ground conductor plate manufacturing step in which a conductor is formed on the entire one side of the dielectric substrate, and a substrate lamination step in which a first dielectric substrate, a second dielectric substrate, and a third dielectric substrate are sequentially laminated. It is characterized by:

(作用) 本平面アンテナは、導体が形成されt第1の基板と第3
の基板とで、放射素子やこれ醗こ給電するための給tl
!iIが形成されている窮2の基板を挟んだトリグレー
ト構造である。第1の基板には、放射素子に電ε的に給
電されるようにスロットが形成されている。
(Function) This planar antenna has a conductor formed on the first substrate and the third substrate.
With the board of
! It has a trigrate structure sandwiching two substrates on which iI is formed. A slot is formed in the first substrate so that the radiating element is electrically fed.

この平面アンテナの第1の基板と′第3の基板との間に
、放射素子の周囲を取り囲むように、球状体を設置し、
かつ、第2の基板と第3の基板との閣の前述し九位置に
設置され電球状体と相対する立(置にも球状体を設置す
ることで不安放射を軽減させている。
A spherical body is installed between the first substrate and the third substrate of this planar antenna so as to surround the radiating element,
In addition, a spherical body is also installed in the vertical position facing the light bulb-shaped body, which is installed in the above-mentioned nine positions of the cabinet between the second and third substrates, thereby reducing anxiety radiation.

まt、平面アンテナの製造方法としては、不要放射を@
減させるtめに第2の基板の上述しt位置iこ球状体を
接着させるという簡単な工程で実現でき、スロット及び
放射素子の個数が多い平面ア(実施例) 以下1図面を参照して本発明の一実施例を説明する。第
1図1こは1本発明の一実施例が示されている。まず、
本発明の平面アンテナ製造方法の−ffjlについて以
下壷こ説明する。例えば、フ、J[脂?ガラスクロス、
アルミナ等から成る第1の基板1に形は限定されるもの
ではないが、−例として正方形の穴即ちスロツト2,3
,4,5,6.7を複数、この1台に6つ形成している
。まt同じく第1の基板10片面即ちこの場会下面ξζ
銅等の導体19を全面にエツチングしている。第1の基
板1と同様の素材からできている第2の基板9には5例
えば、上面−こ、鋼等の導体でてき九放射素子10.1
1.12,13,14.15をエツチング等φこより形
成し、この放射素子10.11.12.13.14゜1
5に給電するtめの導体でできt給電線8がエツチング
等憂こより形成されている。尚、後述する基板どおしの
納会に際しては、スロット2,3゜4’ 、 5 、6
 、7と放射素子10 、11 、12 、13 。
Also, as a manufacturing method for a flat antenna, unnecessary radiation @
This can be realized by a simple process of gluing the spherical body at the above-mentioned position i on the second substrate in order to reduce the amount of t. An embodiment of the present invention will be described. FIG. 1 shows one embodiment of the present invention. first,
-ffjl of the method for manufacturing a flat antenna according to the present invention will be explained below. For example, Fu, J [fat? Glass cloth,
The first substrate 1 made of alumina or the like has, but is not limited to, a square hole or slot 2, 3, for example.
, 4, 5, and 6.7, six of which are formed in this one unit. Similarly, one side of the first substrate 10, that is, the lower surface ξζ
A conductor 19 made of copper or the like is etched over the entire surface. A second substrate 9 made of the same material as the first substrate 1 has a radiating element 10.
1.12, 13, 14.15 are formed from φ by etching etc., and this radiation element 10.11.12.13.14゜1
A t feeder line 8 made of the tth conductor that feeds power to the t-th conductor 5 is formed by etching or the like. In addition, when transferring the boards together as described later, the slots 2, 3° 4', 5, 6
, 7 and radiating elements 10 , 11 , 12 , 13 .

14.15との夫々が1!磁的に結付される様な位置に
これらを形成させなければならない。
14.15 each is 1! These must be formed in such a position that they are magnetically coupled.

導体からなる球状体(以下略して導体球と記載する)1
6を複数例えばn1率が1に近い接着剤で放射素子が形
成されている面即ちこの暢曾、第2の基板9の上面に接
着させる。まtにの第2の基板9の下面にも、上面に導
体球16を接着させt位置と相対する位置に、前述しt
と同様の導体球を接着させる。尚、この導体球16は1
例えばガラス等の素材ででき電球状体1こ、白金等の導
体を蒸着させてつくられている。まt、この導体球16
の導体表面の厚さtI′i、、使用周波数が例えば、1
0GHzであるならばhO06μmあればよい。導体球
は、大きさが数mm程度のものを用いることにより基板
ど3しを結曾しt時にすき間があまりあかないようにし
ている。併せて、導体球を何百個、何千個も接着させt
時の′+平面アンテナ総重縫!′i、比較的怪くなる。
A spherical body made of a conductor (hereinafter abbreviated as a conductor sphere) 1
A plurality of substrates 6 are bonded to the upper surface of the second substrate 9 on which the radiating element is formed, for example, with an adhesive having an n1 ratio close to 1. A conductor ball 16 is also attached to the upper surface of the lower surface of the second substrate 9 at a position opposite to the position t, as described above.
Glue a conductor ball similar to the above. Incidentally, this conductor ball 16 is 1
For example, it is made of a light bulb-shaped body made of a material such as glass, and is made by vapor-depositing a conductor such as platinum. Well, this conductor ball 16
For example, if the operating frequency is 1
If it is 0 GHz, hO06 μm is sufficient. By using conductor balls with a size of several millimeters, the substrates are tied together so that there is not much gap at the time of t. At the same time, hundreds or thousands of conductive balls were glued together.
Time' + flat antenna full-heavy stitching! 'i, it becomes relatively suspicious.

基板結付の際に、導体球が基板どおしでサントイVテ状
にはさみこまれt時、上下基板に直接接触している方が
望ましい。
When connecting the boards, it is preferable that when the conductor balls are sandwiched between the boards in a V-tee shape, they are in direct contact with the upper and lower boards.

しかし、導体球と上下基板との間が数μm程反帷T7.
でいても、接着剤等の薄い絶縁体を塗布する等し6て、
これらの間が浮歇結付番こよりて鑞気的擾こ十分結付し
ていると考えられる程度なら差しつかえない。導体球と
導体球との間隔は、すき間がない程度110ち、導体球
どおしが接触されるように接着させるのが望ましいが、
少なくともこの放射素子に使用される同波数の波長の半
分以下の間隔にし上方がより不要放射を軽減させる効果
があられれる。次に、前述しtような素材からなる第3
の基板170片面即ち、この壜台上面に、銅等の導体1
8を全面にエツチング形成する。これらの工程を終了し
九基板を順次接着剤等で積層させる。
However, the distance between the conductive ball and the upper and lower substrates is several μm.
Even if it is, by applying a thin insulator such as adhesive, etc.
There is no problem as long as it is considered that there is a sufficient connection between them. It is preferable that the distance between the conductor balls be 110 mm without any gaps, and that the conductor balls be adhered so that they are in contact with each other.
If the spacing is at least half or less of the wavelength of the same wave number used in this radiating element, the effect of reducing unnecessary radiation will be greater if the upper direction is set. Next, a third material made of the above-mentioned material
A conductor 1 such as copper is placed on one side of the substrate 170, that is, on the top surface of this bottle stand.
8 is etched on the entire surface. After completing these steps, the nine substrates are sequentially laminated with adhesive or the like.

以上説明しt製造方法によって得らnt平面アンテナの
構成を用いることφこより、導体球をはさんだ上下の導
体により、この導体球が接着されt部分は、上下の導体
を同電位とさせるe?f)、成気的な壁が形成されて不
要放射が発生してもこの不要放射が、他の放射素子の方
向に伝搬することはほとんどなくなる。
By using the configuration of the nt planar antenna obtained by the above-described manufacturing method φ, the conductor sphere is bonded by the upper and lower conductors sandwiching the conductor sphere, and the upper and lower conductors are made to have the same potential at the t portion. f) Even if an atmospheric wall is formed and unnecessary radiation is generated, this unnecessary radiation will hardly propagate in the direction of other radiating elements.

従って以上説明してきた製造方法によると、導体球を基
板に接着させるだけの簡準な工程で不要放射を軽減でき
、基板と基板とを談着させ定時の安定性がよく、かつ量
産性憂こ適したものとなる。
Therefore, according to the manufacturing method described above, unnecessary radiation can be reduced through the simple process of bonding the conductive sphere to the board, and the stability of the set time is good by bonding the boards together, and there are no concerns regarding mass production. be suitable.

次に、第2図に示し定平面アンテナの一放射素子分の構
成図を用いて以下に構成を説明する。同図(a)には、
平面アンテナの一放射孝子分の構成図が示されている。
Next, the configuration will be explained below using the configuration diagram of one radiating element of the fixed planar antenna shown in FIG. In the same figure (a),
A configuration diagram of one radiation filtration component of a planar antenna is shown.

また、同図(b)には、同図(a)のA−B間断面図が
示されている。前述しt様に、第1の基板1にスロット
20が形成され、下図に導体19が形成されている。第
2の基板9には、放射素子21と、これに給電するtめ
の給電第22とがエツチング等で形成されている。ま九
、放射素子の周囲を噛り囲むより憂こ、複数の導体球2
3を接着させている。そして、これは、下面においても
同様番こ、接着されている。第3の基板17の上面には
、導体18が全面に形成されている。そして、これらの
基板を順次積層することでこの様な平面アンテナの一放
射素子分が構成される。
In addition, FIG. 5B shows a cross-sectional view taken along line AB in FIG. As described above, a slot 20 is formed in the first substrate 1, and a conductor 19 is formed as shown in the lower figure. On the second substrate 9, a radiation element 21 and a tth power supply 22 for feeding power to the radiation element 21 are formed by etching or the like. Nine, multiple conductor spheres surrounding the radiating element 2
3 is glued. This is also glued to the bottom surface in the same way. A conductor 18 is formed entirely on the upper surface of the third substrate 17. One radiating element of such a planar antenna is constructed by sequentially stacking these substrates.

第21ス(b)に示されている様に、第1の基板と第2
の基板90間は、導体球23#こよりてこの直匝分の間
隔がおいている。この間隔は、微妙な長さであり、数m
m程度である。同様に、第2の基板9と43の基板17
との間も、導体球の直匝分の間隔がおいている。導体球
60は、@1I7)基板1に形成されている導体19と
接しており、導体球61は%第3の基板171こ形成さ
れている導体18と接している。
As shown in the 21st step (b), the first substrate and the second substrate
The distance between the substrates 90 is equal to the distance of a lever from the conductor ball 23#. This interval is a delicate length, several meters
It is about m. Similarly, the second substrate 9 and the substrate 17 of 43
There is also an interval equal to the diameter of the conductor ball. The conductor ball 60 is in contact with the conductor 19 formed on the substrate 1, and the conductor ball 61 is in contact with the conductor 18 formed on the third substrate 171.

導体球60.61夫々は、第2の基板9と接しているも
のの、′電気的に接していない。しかし。
Although the conductor balls 60 and 61 are in contact with the second substrate 9, they are not in electrical contact with each other. but.

tX2の基板9は、薄いもので、誘電体でできているt
めに、電磁的に結合されている状態である。
The substrate 9 of tX2 is thin and made of dielectric material.
Therefore, they are electromagnetically coupled.

従って、導体19と導体球60と第2の基板9と導体球
61と導体18とによりて、電気的な壁が形成されtこ
とになる。他の導体球の部分でも同様の構成となりてい
る。これらの構成によって。
Therefore, an electrical wall is formed by the conductor 19, the conductor ball 60, the second substrate 9, the conductor ball 61, and the conductor 18. The other conductor spheres have similar configurations. By these configurations.

スロット20及び放射素子210部分で成像力線の不平
衡状態が起りても、前述しt1気的な吸によりて不要放
射が、他の放射素子や給鑞線に対して影響を与えるよう
なことを軽減できる。
Even if an unbalanced state of the imaging force lines occurs in the slot 20 and radiating element 210 portions, unnecessary radiation due to the t1 air absorption described above will not affect other radiating elements or feed lines. can be reduced.

以上説明してきt構成でできている下面アンテナの放射
特性が第3図に図示されている。第6図(a)に示され
ている導体棒を設置し九平面アンテナの特性図と比較し
てみると、はぼ回じ持・注が得られており、尚、かつ本
平面アンテナでは、放射方向の反対側へ洩れる放射特性
が改善されている。
The radiation characteristics of the bottom antenna made of the t configuration described above are illustrated in FIG. When the conductor rod shown in Fig. 6(a) is installed and compared with the characteristic diagram of the nine-plane antenna, it is found that the same characteristics are obtained. The radiation characteristics that leak to the opposite side of the radiation direction have been improved.

いずれにしても、従来ににぬ特性が得られ、かつ構成も
a漬方法も開学な下面アンテナを実現することができる
In any case, it is possible to realize a bottom antenna that has characteristics unprecedented in the prior art and that has an innovative structure and a method of dipping.

尚この下面アンテナは、前述してきt説明のように、放
射即ち送信を例にして説明してき之が。
Note that this bottom antenna has been explained using radiation, or transmission, as an example, as described above.

受旧においても同様の効果が奏せられるので%送受信共
3こ、使用することが可能である。
The same effect can be achieved in receiving and receiving, so it is possible to use 3% in both transmitting and receiving.

〔発明の効果〕〔Effect of the invention〕

以上詳述してきたように1本発明によれば、放射素子の
周囲+yり囲むよう番こ少なくとも表面が導体でできて
いる球状体を設置することによりて。
As described in detail above, according to one aspect of the present invention, a spherical body whose at least the surface is made of a conductor is provided so as to surround the radiating element.

スロット近傍で生じる不要放射をほとんど遮断すること
ができる。従りて1本発明の平面アンテナでは、この放
射素子の近傍−こある給tS及び放射素子に対しての不
便放射波の影響はほとんどなくなり、励振分布の乱れが
防止でき、所望の励振分布を実現し易くなる。
Almost all unnecessary radiation generated near the slot can be blocked. Therefore, in the planar antenna of the present invention, the influence of the inconvenient radiation waves on the radiating element and the radiating element near the radiating element is almost eliminated, and disturbances in the excitation distribution can be prevented, and the desired excitation distribution can be achieved. It becomes easier to realize.

まt、不発明では不安放射を防止するtめ齋こ、基板と
基板との間に放射素子の周囲を取り囲むよう球状体を接
着させるだけで、従来の導体棒より基板結付時の安定性
がよ<WR革な製造により実現できる。このことより従
来と同様不要放射が軽減でき製造が簡略比できるので、
を産性に適しf′?:、平面アンテナの製造方法を実現
することができる、併せて、不要放射波抑圧に重要な役
目をする球状体の配列方法も接着させる位置によりて制
御でき品質の高い平面アンテナを提供することができる
In addition, in order to prevent unstable radiation, simply attaching a spherical body between the substrates to surround the radiating element provides more stability when connecting the substrates than conventional conductor rods. This can be achieved through WR leather manufacturing. As a result, unnecessary radiation can be reduced and manufacturing can be simplified, just like in the past.
Is f′ suitable for productivity? : It is possible to realize a method for manufacturing a planar antenna, and in addition, it is possible to control the arrangement method of the spherical bodies, which plays an important role in suppressing unnecessary radiation waves, by controlling the bonding position, thereby providing a high-quality planar antenna. can.

4、 図面の111g革な説明 ′@1図は1本発明の一実施例を示しt図、第2図は1
本発明の下面アンテナの一放射素子部分を示しt図、篤
3図は、本発明の特性を示しe tq 。
4. Explanation of the 111g leather in the drawings'@1 Figure 1 shows an embodiment of the present invention, Figure 2 shows 1
Figures 1 and 3 show one radiating element portion of the bottom antenna of the present invention and show the characteristics of the present invention.

@4図%El 5図は、従来例を示しt図、第6図は。@Figure 4 %El Figure 5 shows the conventional example, and Figure 6 shows the conventional example.

従来の特性を示しt図である。It is a t diagram showing the conventional characteristics.

1・・・第1の基板、2.3,4,5,6.7・・・ス
ロット、8,22・・・給を組 9・・・第2の基板、
10 、 l 1 、 l 2 、13 、14 、1
5.21・・・放射素子、16,23.60.61・・
・導体球、17・・・第3の基板、18.19・・・導
体。
1... First board, 2.3, 4, 5, 6.7... Slot, 8, 22... Supply set 9... Second board,
10, l 1, l 2, 13, 14, 1
5.21...radiating element, 16,23.60.61...
・Conductor ball, 17...Third substrate, 18.19...Conductor.

代理人 弁理士  則 近 憲 右 同        松  山  光 之第 図 第 図 第 図 第 図 第 図Agent Patent Attorney Norihiro Kon Same pine mountain light no. figure No. figure No. figure No. figure No. figure

Claims (2)

【特許請求の範囲】[Claims] (1)複数のスロットを形成させかつ片面全体に導体を
形成させた第1の基板と、前記複数のスロットと電磁的
に結合させるための複数の放射素子及びこの放射素子に
給電する給電線が形成された第2の基板と、片面全体に
導体を形成させた第3の基板とを順次積層したトリプレ
ート構造の平面アンテナにおいて、前記第1の基板と前
記第2の基板との間に少なくとも表面が導体で形成され
たほぼ同じ大きさの複数個の球状体で前記複数の放射素
子夫々の周囲を取り囲むように設置しかつ、前記第2の
基板と前記第3の基板との間にも前記複数の球状体とほ
ぼ相対する位置に前記球状体を設置してなることを特徴
とする平面アンテナ。
(1) A first substrate on which a plurality of slots are formed and a conductor formed on the entire surface thereof, a plurality of radiating elements for electromagnetically coupling with the plurality of slots, and a feeder line feeding the radiating elements. In a planar antenna with a triplate structure, in which a second substrate formed on the substrate and a third substrate on which a conductor is formed on the entire surface of the substrate are sequentially laminated, there is at least one layer between the first substrate and the second substrate. A plurality of spherical bodies having substantially the same size and whose surfaces are made of a conductor are installed so as to surround each of the plurality of radiating elements, and also between the second substrate and the third substrate. A planar antenna characterized in that the spherical body is installed at a position substantially opposite to the plurality of spherical bodies.
(2)第1の誘電体基板に複数のスロットを形成させ、
片面全体に導体をエッチングする放射板製造工程と、 第2の誘電体基板に前記複数のスロットと電磁的に結合
される複数の放射素子及びこの放射素子に給電する給電
線を形成する給電板製造工程と、前記複数の放射素子夫
々の周囲を取り囲むように前記第2の誘電体基板の表裏
面の相対する位置に少なくとも表面が導体で形成された
ほぼ同じ大きさの球状体を複数接着する球状体接着工程
と、第3の誘電体基板の片面全体に導体を形成する地導
体板製造工程と、 前記第1の誘電体基板と前記第2の誘電体基板と前記第
3の誘電体基板とを順次積層する基板積層工程とからな
ることを特徴とする平面アンテナの製造方法。
(2) forming a plurality of slots in the first dielectric substrate;
A radiation plate manufacturing process of etching a conductor on the entire surface of one side; and a power feeding plate manufacturing process of forming a plurality of radiating elements electromagnetically coupled to the plurality of slots on a second dielectric substrate, and a feeding line for feeding power to the radiating elements. and a spherical shape in which a plurality of spherical bodies of approximately the same size each having at least a surface formed of a conductor are adhered to opposing positions on the front and back surfaces of the second dielectric substrate so as to surround each of the plurality of radiating elements. a ground conductor plate manufacturing step of forming a conductor on the entire one side of a third dielectric substrate; the first dielectric substrate, the second dielectric substrate, and the third dielectric substrate; 1. A method for manufacturing a planar antenna, comprising: a step of laminating substrates in sequence.
JP25374488A 1988-10-11 1988-10-11 Planer antenna and manufacture of planer antenna Pending JPH02101802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25374488A JPH02101802A (en) 1988-10-11 1988-10-11 Planer antenna and manufacture of planer antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25374488A JPH02101802A (en) 1988-10-11 1988-10-11 Planer antenna and manufacture of planer antenna

Publications (1)

Publication Number Publication Date
JPH02101802A true JPH02101802A (en) 1990-04-13

Family

ID=17255536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25374488A Pending JPH02101802A (en) 1988-10-11 1988-10-11 Planer antenna and manufacture of planer antenna

Country Status (1)

Country Link
JP (1) JPH02101802A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09275317A (en) * 1996-04-05 1997-10-21 Nec Corp Microstrip antenna
JP2012070237A (en) * 2010-09-24 2012-04-05 Mitsubishi Electric Corp Microstrip array antenna
JP2016127474A (en) * 2015-01-06 2016-07-11 株式会社東芝 Polarization shared antenna
JP2021536200A (en) * 2018-09-14 2021-12-23 維沃移動通信有限公司Vivo Mobile Communication Co., Ltd. Antenna for terminal device
WO2022064864A1 (en) * 2020-09-24 2022-03-31 株式会社村田製作所 Antenna element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09275317A (en) * 1996-04-05 1997-10-21 Nec Corp Microstrip antenna
JP2012070237A (en) * 2010-09-24 2012-04-05 Mitsubishi Electric Corp Microstrip array antenna
JP2016127474A (en) * 2015-01-06 2016-07-11 株式会社東芝 Polarization shared antenna
US11056794B2 (en) 2015-01-06 2021-07-06 Kabushiki Kaisha Toshiba Dual-polarized antenna
JP2021536200A (en) * 2018-09-14 2021-12-23 維沃移動通信有限公司Vivo Mobile Communication Co., Ltd. Antenna for terminal device
WO2022064864A1 (en) * 2020-09-24 2022-03-31 株式会社村田製作所 Antenna element
JPWO2022064864A1 (en) * 2020-09-24 2022-03-31

Similar Documents

Publication Publication Date Title
US11658390B2 (en) Wireless communications package with integrated antenna array
US11581661B2 (en) Dual polarized antenna and dual polarized antenna assembly comprising same
US11398673B2 (en) Package structure with antenna in package and communications device
US11081804B2 (en) Antenna-integrated type communication module and manufacturing method for the same
US10431892B2 (en) Antenna-in-package structures with broadside and end-fire radiations
KR102466972B1 (en) Switchable transmit and receive phased array antenna
KR100526585B1 (en) Planar antenna with circular and linear polarization.
US7336232B1 (en) Dual band space-fed array
TW201728002A (en) Patch antenna unit and antenna
EP3707777B1 (en) Additive manufacturing technology (amt) low profile radiator
JPH1028012A (en) Planar antenna
JP7039347B2 (en) Antenna device
CN106229658A (en) A kind of circular polarization microstrip antenna
JP2000196330A (en) Phased array antenna and manufacture of the same
WO2020237692A1 (en) Antenna in package and terminal device
JPH02101802A (en) Planer antenna and manufacture of planer antenna
WO2000039893A1 (en) Phased array antenna and its manufacturing method
JPH04284004A (en) Planer antenna
KR20050075966A (en) Omnidirectional antenna
KR100841347B1 (en) Dule polarization satellite antenna
JP2000114848A (en) Diversity antenna
JP3114676B2 (en) High frequency line structure
JP2000188511A (en) Microstrip antenna
CN117355993A (en) Dual polarized antenna and dual polarized antenna assembly including the same
KR20210113851A (en) Dipole Antenna Fed by Planar Balun