JPH02101357A - Method of driving heat pump facility - Google Patents

Method of driving heat pump facility

Info

Publication number
JPH02101357A
JPH02101357A JP1201483A JP20148389A JPH02101357A JP H02101357 A JPH02101357 A JP H02101357A JP 1201483 A JP1201483 A JP 1201483A JP 20148389 A JP20148389 A JP 20148389A JP H02101357 A JPH02101357 A JP H02101357A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer liquid
water
heat
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1201483A
Other languages
Japanese (ja)
Inventor
Dirk Ohrt
デイルク・オールト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rendamax BV
Original Assignee
Rendamax BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rendamax BV filed Critical Rendamax BV
Publication of JPH02101357A publication Critical patent/JPH02101357A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/006Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass for preventing frost
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE: To separate water easily from heat transfer liquid by employing a liquid unmixable with water as the heat transfer liquid. CONSTITUTION: Heat transfer liquid delivered from an evaporator 2 is cooled down to 11 deg.C, for example, by discharging heat to refrigerant introduced to a heat pump facility 1 in circulation cycle. The cooled heat transfer liquid is discharged to a built-in filler 7 and heated through direct contact with ambient air of +5 deg.C, for example. Condensates produced by the heat transfer liquid are entrained by the heat transfer liquid to a collecting container 9. Since the heat transfer liquid is unmixable with water, condensate being absorbed through a dropping process are separated perfectly and drained from the collecting container 9 at an appropriate time interval.

Description

【発明の詳細な説明】 本発明は、冷媒循環サイクルの蒸発器が開放サイクル内
に導かれた伝熱液体の作用を受け、この伝熱液体自体が
周辺空気により加熱される様なヒートポンプ設備の駆動
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The invention relates to heat pump installations in which the evaporator of a refrigerant circulation cycle is acted upon by a heat transfer liquid led into an open cycle, and this heat transfer liquid is itself heated by the surrounding air. This relates to a driving method.

排熱源として周辺空気で熱を送る場合概ね蒸発器は必要
とする表面が大きいため高価な構造となる。一方で冷媒
側での、そして他方でのかなりのオーダーで違う熱伝導
係数は違った大きさの表面によって補償されねばならな
い。更に材料を選択する場合、使用した冷媒と無関係に
しばしば腐食の問題を考慮しなければならないので、蒸
発器は付加的に非常に高い材料で製造しなければならな
い。
When the ambient air is used as a waste heat source, the evaporator generally requires a large surface area and is therefore an expensive structure. The heat transfer coefficients, which differ by a considerable order of magnitude on the refrigerant side on the one hand, and on the other hand, must be compensated for by surfaces of different size. Moreover, when selecting the material, corrosion problems often have to be taken into account, independent of the refrigerant used, so that the evaporator additionally has to be made of very expensive materials.

上記した困難を避けるため、伝熱液体としてブラインを
有する付加的な伝熱循環サイクルを中間に接続すること
によって、一方で排熱源である空気と他方でヒートポン
プの蒸発器との間で結合部材を作ることが既に試された
。冷媒循環サイクルの蒸発器が伝熱液体としてブライン
で作用されるので、蒸発器はかなり良い熱伝導条件のた
め比較的小さ(構成することが出来る。
In order to avoid the above-mentioned difficulties, a connecting element can be created between the waste heat source air on the one hand and the evaporator of the heat pump on the other hand by connecting an additional heat transfer circulation cycle with brine as heat transfer liquid in between. It has already been tried to make. Since the evaporator of the refrigerant circulation cycle is operated with brine as the heat transfer liquid, the evaporator can be constructed relatively small due to the fairly good heat transfer conditions.

他方空気と伝熱液体との間の熱交換のために、必要とな
る付加的な熱交換器は安い材料、例えばプラスチックで
構成することが出来る。というのは冷媒によって要請さ
れる腐食の問題も無くなり、伝熱液体の循環サイクルが
開放されて導かれるため、最早何らの耐圧性を必要とし
ないからである。空気と伝熱液体との間の熱交換はこの
場合例えば普通の冷却塔内で行うことができ、その冷却
塔では伝熱液体が組み込み填充体を介して均一に分配さ
れ、填充体に少しずつ落ちる。一方空気はファンを用い
組み込み填充体を通して吸引される。伝熱液体は冷媒循
環サイクルの蒸発器を通って通過後冷却されているので
、吸引された空気との接触によって適当な加熱が行われ
る。従って伝熱液体により周辺空気から吸収される熱量
は再び冷媒循環サイクルの蒸発器を作用させるために使
用されることになる。
On the other hand, for heat exchange between air and heat transfer liquid, the required additional heat exchanger can be constructed from cheap materials, for example plastic. This is because the corrosion problems required by the refrigerant are also eliminated and the circulation cycle of the heat transfer liquid is open and guided and no longer requires any pressure resistance. The heat exchange between the air and the heat transfer liquid can in this case take place, for example, in a conventional cooling tower, in which the heat transfer liquid is evenly distributed through the built-in packing and is gradually distributed into the packing. drop down. Air, on the other hand, is drawn through the built-in packing using a fan. Since the heat transfer liquid has been cooled after passing through the evaporator of the refrigerant circulation cycle, appropriate heating is achieved by contact with the suctioned air. The amount of heat absorbed from the surrounding air by the heat transfer liquid is therefore used again to operate the evaporator of the refrigerant circulation cycle.

伝熱液体として既に、水の氷点を下げる例えばグリコー
ルの様な添加物を混ぜた水が使用されていた。その結果
ヒートポンプ駆動はF度ここで問題となる温度状態で、
0°Cを中心としたある外気温度で可能となる。
Water has already been used as a heat transfer liquid, mixed with additives such as glycols, which lower the freezing point of the water. As a result, the heat pump drive is at a temperature of F degrees, which is the problem here.
This is possible at a certain outside temperature around 0°C.

空気と、0°C以丁の温度で冷媒循環サイクルの蒸発器
から生ずる伝熱液体との間の直接的な熱交換のため、空
気には露点をF回ることが起き、従って空気中に含まれ
る湿気が凝結し、組み込み填充体の伝熱液体により作用
さるた而で結露が生じ、そしてグリコールと水の混合物
から生ずる伝熱液体によって湿気が吸収されるという点
に今迄使用していた伝熱液体の欠点がある。従って運転
時間が増加すると共に伝熱液体は吸収された凝固水によ
って薄められ、同時に循環する伝熱液体の量が増加し、
その為空気と伝熱液体との間の熱交換のため交換装置は
好ましくない気候的条件下で凍結する。混合物濃度を一
定に保つための制御は高価であり、それぞれ水で薄めら
れた伝熱液体を連続的に処理することは費用が嵩む。
Due to the direct heat exchange between the air and the heat transfer liquid originating from the evaporator of the refrigerant circulation cycle at a temperature below 0°C, the air experiences F rotations above its dew point and therefore The condensation process that has been used up to now is such that moisture condenses and is acted upon by the heat transfer liquid in the built-in packing, resulting in condensation, and the moisture is absorbed by the heat transfer liquid resulting from a mixture of glycol and water. There are drawbacks to hot liquids. Therefore, as the operating time increases, the heat transfer liquid is diluted by the absorbed coagulated water, and at the same time the amount of heat transfer liquid circulating increases,
Therefore, the exchange device for heat exchange between air and heat transfer liquid freezes under unfavorable climatic conditions. Control to maintain a constant mixture concentration is expensive, and continuous processing of each water-diluted heat transfer liquid is expensive.

本発明は、最初に述べた欠点が無くなる駆動方法を創作
することを課題とする。
The object of the invention is to create a drive method that eliminates the drawbacks mentioned at the beginning.

この課題は本発明によれば伝熱液体として水と混ざり合
わない液体を使用することにより解決される。特に本発
明の実施形態において水と混ざり合わない伝熱液体が水
と明らかに違う比重を有していれば特に良い。このこと
は交換器装置の範囲で凝結させる空気の湿気は成る程伝
熱液体によって一緒に除かれるが、この伝熱液体によっ
て吸収されないという長所を持つものである。水はその
時伝熱液体から簡単に分離することが出来る。水と伝熱
液体との間の比重の相違がはっきりと違っていると、水
と伝熱液体との分離が特に沢山の費用を掛けずに可能と
なる。伝熱液体と凝結により伝熱液体と一緒に運ばれる
水は混合しないので、例えば簡単な取り外し水盤として
も良い分離装置を適当に形成した場合、水を例えば直接
排水路に導くことも出来る。完全な分離を行う為に色々
と準備をしなければならない。本発明の特に目的に叶っ
た構成では、伝熱液体として油が使用されるように成さ
れている。
This problem is solved according to the invention by using a water-immiscible liquid as the heat transfer liquid. In particular, in embodiments of the present invention, it is preferable that the heat transfer liquid that is immiscible with water has a specific gravity clearly different from that of water. This has the advantage that the moisture in the air that condenses in the area of the exchanger arrangement is certainly removed by the heat transfer liquid, but is not absorbed by the heat transfer liquid. The water can then be easily separated from the heat transfer liquid. The sharp difference in specific gravity between the water and the heat transfer liquid makes it possible to separate the water and the heat transfer liquid without much expense. Since the heat transfer liquid and the water carried with it by condensation do not mix, it is also possible, for example, to direct the water directly to a drain if a separating device is suitably formed, which may for example be a simple removable basin. Various preparations must be made in order to achieve complete separation. In a particularly advantageous embodiment of the invention, oil is used as the heat transfer liquid.

本発明の別の構成では、蒸発器の作用を受ける前に伝熱
液体が水を分離するための装置を介して導かれるように
成される。これにより一方で循環サイクルの駆動のため
に必要なポンプにおける伝熱液体の熱交換で吸収された
凝結水が伝熱液体で乳化されることが避けられ、また続
いて冷媒循環サイクルの蒸発器内でO″CC以ド度で冷
却のため品出し、この範囲内で着氷が起こることが避け
られる。
In a further development of the invention, it is provided that the heat transfer liquid is conducted through a device for separating water before being subjected to the action of the evaporator. This avoids, on the one hand, that the condensed water absorbed in the heat exchange of the heat transfer liquid in the pumps necessary for driving the circulation cycle is emulsified in the heat transfer liquid, and subsequently in the evaporator of the refrigerant circulation cycle. The product is shipped for cooling at a temperature below O''CC, and icing can be avoided within this range.

次に図面に基づいて本発明の実施例を詳細に説明するこ
とにする。
Next, embodiments of the present invention will be described in detail based on the drawings.

普通の構造のヒートポンプ設備lには蒸発器2が設けら
れ、これは一方でヒートポンプ設備の冷媒の通流を受け
、他方では伝熱液体の作用を受ける。
A heat pump installation l of conventional construction is provided with an evaporator 2, which on the one hand is supplied with the refrigerant of the heat pump installation and on the other hand is acted upon by a heat transfer liquid.

例えば伝熱油の様な伝熱液体は導管4を介して蒸発器2
から引き出され、熱交換装置6のノズル5を介して供給
される。熱交換装置6は組み込み填充体7を有する冷却
塔様式に構成されており、この填充体の上にノズル5を
介して伝熱液体が噴射される。ファン8を用いてドから
上へ空気が組み込み填充体7を通って引っ張られ、その
為空気は上から下へ組み込み填充体7を通って流れ落ち
る伝熱液体と直接接触する。
Heat transfer liquid, such as heat transfer oil, is passed through conduit 4 to evaporator 2.
and is supplied through the nozzle 5 of the heat exchanger 6. The heat exchange device 6 is constructed in cooling tower fashion with an integrated packing 7 onto which a heat transfer liquid is injected via nozzles 5. Air is drawn upwards through the built-in packing 7 using a fan 8 so that it is in direct contact with the heat transfer liquid which flows down through the built-in packing 7 from top to bottom.

伝熱液体は集合容器9で捕捉され、この容器から伝熱液
体はポンプlOにより吸い出され、導管3を介してヒー
トポンプ設備lの蒸発器2を通って圧縮される。
The heat transfer liquid is captured in a collection vessel 9 from which it is sucked out by a pump lO and compressed via a conduit 3 through an evaporator 2 of a heat pump installation l.

ノズル5の下側には普通の構造の水滴分離器11が設け
られ、分離器により空気流により緒に引っ張られる伝熱
液体の雫が捕捉される。
A water droplet separator 11 of conventional construction is provided below the nozzle 5, by means of which the drops of heat transfer liquid drawn together by the air flow are captured.

蒸発器2から出る伝熱液体は、循環サイクルでヒートポ
ンプ設備1に導かれた冷媒に熱放出することにより冷却
される。適当な駆動装置では例えば 11″Cの温度に
冷却される。その程度に冷却された伝熱液体は組み込み
填充体7に放出され、従って伝熱液体は例えば+5°C
の温度を有する周辺空気と直接接触することによって加
熱される。この場合伝熱液体に結露する凝結水は伝熱液
体と共に集合容器9に連行される。
The heat transfer liquid exiting the evaporator 2 is cooled by releasing heat to the refrigerant led to the heat pump equipment 1 in a circulation cycle. In a suitable drive, it is cooled to a temperature of, for example, 11"C. The heat transfer liquid cooled to that extent is discharged into the built-in packing 7, so that the heat transfer liquid is cooled to a temperature of, for example, +5°C.
heated by direct contact with the surrounding air, which has a temperature of . In this case, the condensed water condensing on the heat transfer liquid is carried into the collecting vessel 9 together with the heat transfer liquid.

例えば伝熱油においてそうである様に、伝熱液体はしか
しながら水と混ざり合わないので、■降過程を通し吸収
された凝結水の完全な分離が生じ、従ってこの凝結水は
特に集合容器9から適当な時間間隔で抜くことが出来る
Since the heat transfer liquid is however immiscible with water, as is the case for example in heat transfer oil, ■ a complete separation of the condensed water absorbed through the precipitation process occurs, so that this condensed water is especially removed from the collecting vessel 9. It can be removed at appropriate time intervals.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に従う装置のフローチャートを示すもので
ある。 図中参照番号 ■・・・・・ヒートポンプ設備 2・・・・・蒸発器、 3,4・・・導管5・・・・・
ノズル、 8・・・・・ファン6・・・・・熱交換装置 7・・・・・組み込み填充体 9・・・・・集合容器、10・・・・ポンプ11・・・
・水滴分離器
The drawing shows a flowchart of the apparatus according to the invention. Reference numbers in the diagram■...Heat pump equipment 2...Evaporator, 3, 4...Conduit 5...
Nozzle, 8... Fan 6... Heat exchange device 7... Built-in filling 9... Collection container, 10... Pump 11...
・Water droplet separator

Claims (4)

【特許請求の範囲】[Claims] (1)冷媒循環サイクルの蒸発器が開放サイクル内に導
かれた伝熱液体の作用を受け、この伝熱液体自体が周辺
空気により加熱される様なヒートポンプ設備の駆動方法
において、伝熱液体として水と混ざり合わない液体が使
用されることを特徴とする方法。
(1) In the driving method of heat pump equipment in which the evaporator of the refrigerant circulation cycle is subjected to the action of the heat transfer liquid introduced into the open cycle, and this heat transfer liquid itself is heated by the surrounding air, the heat transfer liquid is A method characterized in that a liquid that is immiscible with water is used.
(2)水と混ざり合わない伝熱液体が水とははっきり違
う比重を持っていることを特徴とする請求項1に記載の
方法。
(2) The method according to claim 1, characterized in that the heat transfer liquid that is immiscible with water has a specific gravity distinctly different from that of water.
(3)伝熱液体として油が使用されることを特徴とする
請求項1または請求項2に記載の方法。
(3) A method according to claim 1 or claim 2, characterized in that oil is used as the heat transfer liquid.
(4)伝熱液体が蒸発器の作用を受ける前に水を分離す
るための装置を介して導かれることを特徴とする請求項
1から請求項3のうちの1項に記載の方法。
4. Process according to claim 1, characterized in that the heat transfer liquid is conducted through a device for separating water before being subjected to the action of the evaporator.
JP1201483A 1988-08-05 1989-08-04 Method of driving heat pump facility Pending JPH02101357A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3826678A DE3826678A1 (en) 1988-08-05 1988-08-05 METHOD FOR OPERATING A HEAT PUMP SYSTEM
DE3826678.4 1988-08-05

Publications (1)

Publication Number Publication Date
JPH02101357A true JPH02101357A (en) 1990-04-13

Family

ID=6360326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1201483A Pending JPH02101357A (en) 1988-08-05 1989-08-04 Method of driving heat pump facility

Country Status (4)

Country Link
EP (1) EP0353410A3 (en)
JP (1) JPH02101357A (en)
DE (1) DE3826678A1 (en)
NO (1) NO892569L (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4120794A1 (en) * 1991-06-24 1992-01-16 Hans Dr Ing Hoyer Energy absorption from waste air - uses heat exchanger and heat pump to supply evaporator

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR706459A (en) * 1930-02-22 1931-06-24 Liquid heat or cold vehicle
US2146343A (en) * 1936-11-23 1939-02-07 Commercial Solvents Corp Heat transfer agent
US2413170A (en) * 1943-04-01 1946-12-24 Gen Electric Liquid stable at low temperatures
US2686407A (en) * 1952-09-05 1954-08-17 Ansul Chemical Co Method of elimination of refrigeration frost
US3224212A (en) * 1964-01-08 1965-12-21 Chicago Bridge & Iron Co Process and apparatus for continuously dehydrating gas
US3554914A (en) * 1967-09-05 1971-01-12 Continental Oil Co Heat transfer oil
FR2272350A1 (en) * 1974-05-21 1975-12-19 Lefebvre Louis Heat pump anti-freeze system - has liquid sprayer preventing ice formation on gas reheating circuit
DE2638367A1 (en) * 1976-08-26 1978-03-09 Motorheizung Gmbh Heat pump system evaporator - using secondary heat transfer fluid from atmospheric air thus avoiding icing problems
DE2659608A1 (en) * 1976-12-30 1978-07-06 Kulmbacher Klimageraete Icing preventing system for heat pump - has sprayer to discharge anti-freeze onto evaporator and collector under compressor to separate mixt.
DE2723048A1 (en) * 1977-05-21 1978-11-23 Kupczik Guenter Heat exchanger heating cycle for heat pump - extracts heat from environment using intermediate medium in evaporator under vacuum
US4239638A (en) * 1977-11-22 1980-12-16 Uniroyal, Inc. Use of synthetic hydrocarbon oils as heat transfer fluids

Also Published As

Publication number Publication date
NO892569L (en) 1990-02-06
DE3826678A1 (en) 1990-02-08
NO892569D0 (en) 1989-06-21
EP0353410A3 (en) 1990-11-14
EP0353410A2 (en) 1990-02-07

Similar Documents

Publication Publication Date Title
US6365005B1 (en) Apparatus and method for vapor compression distillation
US5695614A (en) Method for processing waste liquids in particular industrial waste water having a high solids content
EP2753405B1 (en) Method and system for concentrating solutions using evaporation
US5906714A (en) Method for treating emulsified liquids
US3443393A (en) Triple point desalination system utilizing a single low pressure vessel and a gravity sea water feed
US4314455A (en) Freeze concentration apparatus and process
AU2004211510B2 (en) Cooling system
CA2106584C (en) Process and installation for treating waste liquids, in particular industrial waste water with a high solids content
US7972423B2 (en) Rectification apparatus using a heat pump
NO334581B1 (en) Apparatus and method for simultaneously cooling and removing liquid from a gas from a compressor.
US4457769A (en) Freeze concentration apparatus and process
JPH02101357A (en) Method of driving heat pump facility
AU2014218482B2 (en) Method and system for concentrating solutions using evaporation
CN207062127U (en) A kind of high-efficiency heat pump sludge drying device
GB2360953A (en) Oil cleaner for removing water and gases from oil
US4366031A (en) Alcohol-water mixture distillation
US6080273A (en) Method and device for treating liquids by partial evaporation
CN207856361U (en) A kind of aroma recovery systems
US20220267173A1 (en) Systems and methods for separating soluble solutions
US1000931A (en) Apparatus for recovering the constituent solids of liquids and semiliquids.
CN1119950C (en) Method for concentrating fruit juices or for processing of aqueous liquids including solids and device for preforming the method
NO151910B (en) PROCEDURE AND APPARATUS FOR DRYING PRODUCTS, ISRAGES OF GRAIN OR PIECEFUL PRODUCTS
AU2012260387B2 (en) Method, apparatus and system for concentrating solutions using evaporation
JPS6071099A (en) Methane fermentation apparatus
JP2005046739A (en) Water vapor smoke prevention apparatus