JPH02101193A - Formation of thin film - Google Patents

Formation of thin film

Info

Publication number
JPH02101193A
JPH02101193A JP25252488A JP25252488A JPH02101193A JP H02101193 A JPH02101193 A JP H02101193A JP 25252488 A JP25252488 A JP 25252488A JP 25252488 A JP25252488 A JP 25252488A JP H02101193 A JPH02101193 A JP H02101193A
Authority
JP
Japan
Prior art keywords
micelle
electrolysis
soln
inorg
org
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25252488A
Other languages
Japanese (ja)
Inventor
Yoshihiro Ono
大野 好弘
Fumiaki Matsushima
文明 松島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP25252488A priority Critical patent/JPH02101193A/en
Priority to EP19890304234 priority patent/EP0340968A3/en
Priority to KR1019890005597A priority patent/KR900016364A/en
Publication of JPH02101193A publication Critical patent/JPH02101193A/en
Priority to US07/714,817 priority patent/US5240797A/en
Priority to US07/714,970 priority patent/US5395678A/en
Priority to US07/724,000 priority patent/US5242558A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a thin film of an inorg. material and/or an org. material having superior adhesive strength on an electrode by dispersing the inorg. material and/or the org. material each having a limited particle size range in an aq. micelle soln. of a surfactant having chargeability by electrolysis to form colloid and by carrying out electrolysis in the micelle soln. CONSTITUTION:A surfactant having chargeability by electrolysis and represented by the formula is dissolved in water to the critical micelle concn. or above to prepare an aq. micelle soln. and an inorg. material and/or an org. material each having 50Angstrom -0.5mum primary particle size is dispersed in the micelle soln. to form colloid. The inorg. and org. materials may be any materials insoluble in water. A supporting electrolyte such as NaCl is added to the colloidal soln., suspended and dispersed under ultrasonic waves or by stirring. Electrodes are then immersed in the micelle soln. and electrolysis is carried out. The surfactant is positively charged, the micelle breaks and a thin film of the inorg. material and/or the org. material dispersed in the micelle soln. is formed on one of the electrodes with satisfactory adhesion.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電気化学的な方法により非水溶性の有機物ある
いは無機物粒子の膜を形成するものであり、これらの膜
を電極上に密着性よく形成する方法に関するものである
[Detailed Description of the Invention] [Industrial Application Field] The present invention forms a film of water-insoluble organic or inorganic particles by an electrochemical method, and forms a film of water-insoluble organic or inorganic particles on an electrode with good adhesion. It relates to a method of forming.

〔従来の技術〕[Conventional technology]

非水溶性の有機物あるいは無機物粒子を水系の溶液中で
電極上で形成する方法は皆無であった。
There has been no method for forming water-insoluble organic or inorganic particles on an electrode in an aqueous solution.

湿式法での有機膜の成膜方法としては、LB膜、電解重
合法が知られている。LB膜は、水の表面に親水基と疎
水基を含む分子を展開し、これを基板の上に採取する方
法であり、成膜分子が限定されるものであり、無機物粒
子等の成膜はできない。
As a wet method for forming an organic film, an LB film and an electrolytic polymerization method are known. LB film is a method in which molecules containing hydrophilic and hydrophobic groups are spread on the surface of water and collected onto a substrate.The molecules that can be deposited are limited, and the deposition of inorganic particles, etc. Can not.

電解重合法は、有機物を水系あるいは有機系の溶媒に溶
解し、電解することで電極」二に高分子化した膜を析出
させる方法である。これも有機物としては、現在までの
ところ不飽和結合を持つ分子に限定され、無機物の成膜
はてきなかった。
The electrolytic polymerization method is a method in which an organic substance is dissolved in an aqueous or organic solvent and electrolyzed to deposit a polymerized film on an electrode. Until now, organic materials have been limited to molecules with unsaturated bonds, and films of inorganic materials have not been formed.

最近になり、湿式法で有機物顔料の成膜を行なう方法と
して佐治等(J、Am、Cp em、S。
Recently, a wet method for forming organic pigment films has been proposed by Saji et al. (J, Am, Cp em, S).

c、   109.5881.(1987)、Chem
c, 109.5881. (1987), Chem.
.

Leff  893(IQ88))かミセルの電解法を
報告している。
Leff 893 (IQ88)) reported a micelle electrolysis method.

我々はすでにこのミセル電解法を用い、他の非水溶性の
有機物粒子及び非水溶性の無機物粒子の成膜が可能であ
ることを見い出している。
We have already found that it is possible to form films of other water-insoluble organic particles and water-insoluble inorganic particles using this micelle electrolysis method.

これらのミセル電解法は、電解により荷電する特性を持
つ界面活性剤のミセル中に、非水溶性の有機物、無機物
を分散あるいは可溶化させた後、ミセルを電解により破
壊し、有機物、無機物を電極上に析出させるものである
In these micelle electrolysis methods, water-insoluble organic and inorganic substances are dispersed or solubilized in surfactant micelles that have the property of being charged by electrolysis, and then the micelles are destroyed by electrolysis, and the organic and inorganic substances are transferred to the electrode. It is precipitated on top.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ミセル電解法による薄膜形成は、溶液中の微粒子材料を
電極上に析出させるもので、極めて低エネルギーの成膜
方法である。このため、溶液中に分散していた微粒子が
電極上に(”1首しているたけで、その密着力は非常に
弱く、ミセル溶液中から電極を引き上げる際にすら、成
膜部分が剥離してしまうという問題があった。
Thin film formation by micelle electrolysis involves depositing particulate material in a solution onto an electrode, and is an extremely low energy film formation method. For this reason, the fine particles dispersed in the solution are stuck on the electrode, and the adhesion is very weak, and even when the electrode is pulled out of the micelle solution, the film formed part peels off. There was a problem with this.

本発明の目的は、この成膜部の密着力をアップさせるこ
とにある。
An object of the present invention is to improve the adhesion of this film-formed portion.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はかかる課題を解決するために、1、電解により
荷電する特性を持つ界面活性剤のミセル水溶液中に、非
水溶性の有機材あるいは、無機材あるいは有機材と無機
Hの混合材料を分散コロイド化し、該ミセル水溶液中で
電解を行ない、ミセルを電解することにより電極上に有
機材料、あるいは無機441+、あるいは有機材料と無
機材料の混合物を(I1出させるミセル電解法において
、材料の1次粒子の径か50A〜0.5μmであること
を特徴としている。
In order to solve these problems, the present invention aims to: 1. Disperse a water-insoluble organic material, an inorganic material, or a mixed material of an organic material and an inorganic H into an aqueous micelle solution of a surfactant that has the property of being electrolytically charged. In the micelle electrolysis method in which organic material, inorganic 441+, or a mixture of organic and inorganic materials (I1) is produced on the electrode by electrolyzing the micelles, the primary It is characterized in that the diameter of the particles is 50A to 0.5 μm.

我々は鋭意研究の結果、ミセル電解法により成膜された
膜の中で、電極上への密着性の良い膜と悪い膜があるこ
とを見い出した。電子顕微鏡での観察により、密着性の
悪い膜の中には材料の1次粒子径がQ、51zmを越え
る粒子が多くあること、叉、密着性の良い膜の材料の1
次粒子径は0゜5μm以下の粒子て成膜されていること
を発見した。
As a result of intensive research, we discovered that among films formed by micellar electrolysis, there are films that adhere well to electrodes and films that adhere poorly to the electrodes. Observation with an electron microscope revealed that there were many particles with primary particle diameters exceeding Q,51zm in the film with poor adhesion;
It was discovered that the film was formed using particles with a secondary particle diameter of 0.5 μm or less.

この理由は、粒子の凝集力に起因していると推定される
。即ち、粒子が微粒子になる程、界面自由エネルギーが
増大し、熱力学的に不安定となり粒子が凝集しやすくな
る。これか、膜の粒子間、及び粒子と電極との密着性を
上げると推定した。
The reason for this is presumed to be due to the cohesive force of the particles. That is, as the particles become finer, the interfacial free energy increases, which makes them thermodynamically unstable and the particles tend to aggregate. It was presumed that this would increase the adhesion between the particles of the film and between the particles and the electrode.

次に本発明の薄膜形成方法を順に説明する。Next, the thin film forming method of the present invention will be explained in order.

本発明の界面活性剤は、限界ミセル濃度が低く容易にミ
セル化するもので、電解により荷電し、これにより電極
及びミセルを形成する界面活性剤どうしで反発がおこり
、ミセルが崩壊し、中にとり込まれている粒子が電極上
に析出するものであればよい。例えば、一般式CM (
C9H5) 2 〕M:Ti5V、Cr、Fe、Co、
Ni5Ru。
The surfactant of the present invention has a low critical micelle concentration and easily forms micelles, and is charged by electrolysis, which causes repulsion between the electrode and the surfactant that forms the micelles, causing the micelles to collapse and become trapped inside. It is sufficient if the contained particles are deposited on the electrode. For example, the general formula CM (
C9H5) 2]M: Ti5V, Cr, Fe, Co,
Ni5Ru.

Os、Pdをもつ界面活性剤があり、市販のものとして
は、フェロセンを導入したフェロセニルPEG等がある
There are surfactants containing Os and Pd, and commercially available ones include ferrocenyl PEG into which ferrocene is introduced.

この界面活性剤を限界ミセル濃度以上に水に溶解し、こ
の中に無機材料あるいは有機材料あるいはこれらの混合
材料を分散する。これらの材料は非水溶性であれば何で
も良い。
This surfactant is dissolved in water to a level exceeding the critical micelle concentration, and an inorganic material, an organic material, or a mixture thereof is dispersed therein. Any water-insoluble material may be used as these materials.

この後、支持電解質を加える。支持電解質としては、N
aC,9,Na、、so、l 、LiBr、LiSO4
等がある。
After this, the supporting electrolyte is added. As a supporting electrolyte, N
aC,9,Na,,so,l,LiBr,LiSO4
etc.

ミセル溶液の調整後、超音波あるいは撹拌によって懸濁
、分散させる。
After preparing the micelle solution, it is suspended and dispersed using ultrasound or stirring.

次にこの液中に電極を浸漬し、電解を行う。電解電位は
界面活性剤の種類によって異なるが、フェロセニルPE
Gを用いた場合は、飽和カロメル電極に対して、+0.
2V以上で行うのが良い。
Next, the electrodes are immersed in this solution to perform electrolysis. The electrolytic potential differs depending on the type of surfactant, but ferrocenyl PE
When using G, +0.
It is best to do this at 2V or higher.

+0.2Vは、フェロセニルPEGの酸化電位であり、
界面活性剤がプラスにチャージし、ミセルが崩壊し電極
上にミセル溶液に分散した材料が成膜される。
+0.2V is the oxidation potential of ferrocenyl PEG,
The surfactant becomes positively charged, the micelles collapse, and a film of material dispersed in the micelle solution is formed on the electrode.

次に実施例を用いて詳細に説明する。Next, a detailed explanation will be given using examples.

〔実施例1〕 界面活性剤として、Feを導入したメタロセン基を持つ
フェロセニルPEG (同口化学製)を用いた。フェロ
セニルPEGの3mM水溶液を1g作った。更に支持電
解質としてLiBrを0. 1M/Ω加えた。
[Example 1] As a surfactant, ferrocenyl PEG (manufactured by Doguchi Kagaku) having a metallocene group into which Fe was introduced was used. 1 g of a 3mM aqueous solution of ferrocenyl PEG was prepared. Furthermore, 0.0% LiBr was added as a supporting electrolyte. 1M/Ω was added.

コノ中に、有機+イ料として、フタロシアニン系顔料モ
ノクロロ銅フタロシアニンを選びサンドミルにて1次粒
子の最大粒子粒径を0.4μm以下になるまで粉砕した
。粒径は電子顕微鏡にて測定した。このフタロシアニン
をミセル溶液に3g加え、超音波ホモジナイザーにより
分散した。次に、この溶液の中へ対極としてプラチナ板
、参照極として飽和カロメル電極、ITOイ;jきガラ
スを試料極としてSCEを浸漬し、電界電位を対S、 
 C。
In the container, a phthalocyanine pigment monochlorocopper phthalocyanine was selected as an organic material and ground in a sand mill until the maximum particle size of the primary particles was 0.4 μm or less. Particle size was measured using an electron microscope. 3 g of this phthalocyanine was added to the micelle solution and dispersed using an ultrasonic homogenizer. Next, the SCE was immersed into this solution using a platinum plate as a counter electrode, a saturated calomel electrode as a reference electrode, and an ITO glass electrode as a sample electrode, and the electric field potential was adjusted to
C.

E、  +〇、  5Vとし30分間電解した。これら
の操作によりモノクロロ銅フタロシアニンが4000へ
の膜厚てITO上に成膜された。この基板を流水中で洗
浄後、エアブロ−にて水きりし、2゜0℃で1時間焼成
した。
E, +〇, 5V and electrolyzed for 30 minutes. Through these operations, a film of monochlorocopper phthalocyanine was formed on the ITO to a film thickness of 4,000 μm. This substrate was washed under running water, dried with an air blower, and baked at 2.degree. C. for 1 hour.

密着性試験として、この基板上にスコッチテブを貼り付
は引きはがしたところ、モノクロロ銅フタロシアニン膜
はまったく剥離しなかった。
As an adhesion test, when Scotch Tub was pasted on this substrate and then peeled off, the monochlorocopper phthalocyanine film did not peel off at all.

〔比較例]〕[Comparative example]

実施例1と同様の方法で調合されたミセル溶液にザンド
ミルて粉砕前のモノクロロ銅フタロシアニンを3g加え
た。フタロシアニンの1次粒子粒径は最大で10μmあ
り、粒子の7割以上は1次粒子粒径は1μm以上であっ
た。粒径は電子顕微鏡を用い+1111定した。このフ
タロシアニンを超音波ホモジナイザーにてミセル溶液の
中に分散させた。
To a micelle solution prepared in the same manner as in Example 1, 3 g of monochlorocopper phthalocyanine before pulverization using a sand mill was added. The maximum primary particle size of phthalocyanine was 10 μm, and more than 70% of the particles had a primary particle size of 1 μm or more. The particle size was determined to +1111 using an electron microscope. This phthalocyanine was dispersed in the micelle solution using an ultrasonic homogenizer.

実施例】と同様の方法でI T O(=Jきガラス基板
上にモノクロロ銅フタロシアニンの膜を形成した。
A film of monochlorocopper phthalocyanine was formed on an ITO (=J) glass substrate in the same manner as in Example.

しかし、この基板を分散溶液から引き」二げる時に、膜
の半分は剥離した。
However, when the substrate was removed from the dispersion solution, half of the film peeled off.

〔実施例2〕 フェロセニルPEGの10 m M溶液を1f!作り、
この中に無機材料として平均1次粒子粒径0.05μm
のカーボン粉を20gと支持電解質としてLiBr0.
]、Mを加え、超音波ホモジナイザーにより分散させた
。この分散溶液を用い、実施例1と同様の方法て、I 
T OfNIきガラス基板上にカボン膜を形成した。こ
の基板を静市水中で浸漬洗浄をし温風により乾燥した。
[Example 2] 1f! of a 10 mM solution of ferrocenyl PEG! Making,
Among these, as an inorganic material, the average primary particle size is 0.05 μm.
20g of carbon powder and 0.0g of LiBr as supporting electrolyte.
], M were added and dispersed using an ultrasonic homogenizer. Using this dispersion solution, I
A carbon film was formed on a TOfNI glass substrate. This substrate was washed by immersion in still water and dried with warm air.

この二り程中でカーボン膜は剥離せず密着よく形成され
た。
During these two steps, the carbon film did not peel off and was formed with good adhesion.

〔比較例2〕 実施例2と同様の方法で平均1次粒子粒子径3μmのカ
ーボン粉を同様の方法で、ミセル溶液中に分散させた。
[Comparative Example 2] Carbon powder having an average primary particle size of 3 μm was dispersed in a micelle solution in the same manner as in Example 2.

実施例1と同様の方法でITO付きガラス上にカーホン
膜を形成したが、カーボン膜の密着性が悪(、はとんと
成膜できなかった。
A carbon film was formed on the ITO-coated glass in the same manner as in Example 1, but the adhesion of the carbon film was poor (and the film could not be formed completely).

〔発明の効果〕〔Effect of the invention〕

以上の実施例よりわかるように、ミセル電解法において
分散させる材料の粒径を0.5μm以下にすることによ
り、密着よく有機・無機の材質を問わず薄膜形成するこ
とができた。
As can be seen from the above examples, by setting the particle size of the material dispersed in the micelle electrolysis method to 0.5 μm or less, it was possible to form a thin film with good adhesion regardless of whether the material was organic or inorganic.

本発明によって様々な機能性微粒子の成膜が密着よく行
なえるようになった。
The present invention has made it possible to form films of various functional fine particles with good adhesion.

以上 出願人  セイコーエプソン株式会社that's all Applicant: Seiko Epson Corporation

Claims (1)

【特許請求の範囲】[Claims] 1、電解により荷電する特性を持つ界面活性剤のミセル
水溶液中に、非水溶性の有機材あるいは、無機材あるい
は有機材と無機材の混合材料を分散コロイド化し、該ミ
セル水溶液中で電解を行ない、ミセルを電解することに
より電極上に有機材料、あるいは無機材料、あるいは有
機材料と無機材料の混合物を析出させるミセル電解法に
おいて、材料1次粒子の径が50Å〜0.5μmである
ことを特徴とする薄膜形成法。
1. A water-insoluble organic material, an inorganic material, or a mixed material of an organic material and an inorganic material is dispersed into a colloid in a micellar aqueous solution of a surfactant that has the property of being charged by electrolysis, and electrolysis is performed in the micellar aqueous solution. , a micelle electrolysis method in which an organic material, an inorganic material, or a mixture of an organic material and an inorganic material is deposited on an electrode by electrolyzing micelles, characterized in that the diameter of the primary particles of the material is 50 Å to 0.5 μm. Thin film formation method.
JP25252488A 1988-04-30 1988-10-06 Formation of thin film Pending JPH02101193A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP25252488A JPH02101193A (en) 1988-10-06 1988-10-06 Formation of thin film
EP19890304234 EP0340968A3 (en) 1988-04-30 1989-04-27 Thin film device and method of manufacturing the same
KR1019890005597A KR900016364A (en) 1988-04-30 1989-04-28 Thin film former and manufacturing method thereof
US07/714,817 US5240797A (en) 1988-04-30 1991-06-13 Thin film device and method of manufacture
US07/714,970 US5395678A (en) 1988-04-30 1991-06-13 Thin film color filter for liquid crystal display
US07/724,000 US5242558A (en) 1988-04-30 1991-07-01 Method for forming a thin film device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25252488A JPH02101193A (en) 1988-10-06 1988-10-06 Formation of thin film

Publications (1)

Publication Number Publication Date
JPH02101193A true JPH02101193A (en) 1990-04-12

Family

ID=17238569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25252488A Pending JPH02101193A (en) 1988-04-30 1988-10-06 Formation of thin film

Country Status (1)

Country Link
JP (1) JPH02101193A (en)

Similar Documents

Publication Publication Date Title
Neyret et al. The properties of polyampholyte microgel particles prepared by microemulsion polymerization
Karaman et al. Surface chemistry of emulsion polymerization
JPS6182835A (en) Microgel dispersing liquid containing finely-divided particulate body
Aslamazova Emulsifier-free latexes and polymers on their base
Morishima et al. Copolymers of 2‐acrylamido‐2‐methylpropanesulfonic acid and aromatic vinyl compounds as potential media for photosensitized electron transfer reactions
MX2007004130A (en) Surface polymerisation process and polymer product using raft agent.
US5171772A (en) Micro composite systems and processes for making same
JPS60226524A (en) Electroconductive polymer
CN110382642A (en) Manufacturing method and the silver nanowires ink and electrically conducting transparent film of silver nanowires ink
JP4471655B2 (en) Method for producing aqueous dispersed hydroxypropylmethylcellulose phthalate nanoparticles
US9790370B2 (en) Method for preparing an organic film at the surface of a solid support under non-electrochemical conditions, solid support thus obtained and preparation kit
JP2001520317A (en) Method for coating conductive particles by grafting a polymer layer onto the conductive particles and products obtained by this method
JPH02101193A (en) Formation of thin film
JPS62181328A (en) Production of conductive organic polymer
US4017372A (en) Process for electrodeposition of cross-linked polymer coatings
EP0392065B1 (en) Micro composite systems and processes for making same
Tauer The role of emulsifiers in the kinetics and mechanisms of emulsion polymerization
JP2005035809A (en) Aqueous fullerene dispersion
US20080152949A1 (en) Method for preparing an organic film at the surface of a solid support under non-electrochemical conditions, solid support thus obtained and preparation kit
CN109402177A (en) A kind of nano carrier material and preparation method thereof suitable for foreign gene transfection
US3629175A (en) Method of preparing dispersions of carboxyl-containing polymers
Yamamoto Synthesis of polymer nanoparticles using methylcellulose gel as reactor
JPH10311913A (en) Device for manufacturing color filter
JPH02101195A (en) Formation of thin film
CN114196073B (en) Cross-scale reinforcement particles and preparation method and application thereof