JPH02101195A - Formation of thin film - Google Patents

Formation of thin film

Info

Publication number
JPH02101195A
JPH02101195A JP25304388A JP25304388A JPH02101195A JP H02101195 A JPH02101195 A JP H02101195A JP 25304388 A JP25304388 A JP 25304388A JP 25304388 A JP25304388 A JP 25304388A JP H02101195 A JPH02101195 A JP H02101195A
Authority
JP
Japan
Prior art keywords
micelle
electrolysis
film
soln
inorg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25304388A
Other languages
Japanese (ja)
Inventor
Yoshihiro Ono
大野 好弘
Fumiaki Matsushima
文明 松島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP25304388A priority Critical patent/JPH02101195A/en
Priority to EP19890304234 priority patent/EP0340968A3/en
Priority to KR1019890005597A priority patent/KR900016364A/en
Publication of JPH02101195A publication Critical patent/JPH02101195A/en
Priority to US07/714,817 priority patent/US5240797A/en
Priority to US07/714,970 priority patent/US5395678A/en
Priority to US07/724,000 priority patent/US5242558A/en
Pending legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To form a film on a substrate of a large area by a wet process with particles of a water insoluble inorg. material by dispersing the inorg. material in a micelle soln. of a surfactant which is charged by electrolysis to form colloid and by carrying out electrolysis in the micelle soln. to electrolyze the micelle. CONSTITUTION:A surfactant which forms micelle easily because of the low critical micelle concn. and is charged by electrolysis is dissolved to the critical micelle concn. or above to prepare a soln., particles of an inorg. material are dispersed in the soln. and a supporting electrolyte such as NaCl or Na2SO4 is added. Electrodes are then immersed in the soln. and electrolysis is carried out at higher electrolytic potential of the surfactant used. In the case of PEQ having +0.2V oxidation potential to a satd. calomel electrode(SCE), the deposition of the dispersed particles is initiated by impressing >+0.2V potential. The inorg. material incapable of being wet-formed into a film by the conventional technique can be wet-formed into a film.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電気化学的な方法により非水溶性の無機物質
粒子の膜を形成するものであり、これらの膜を電極上に
密着性よ(形成する方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention involves forming a film of water-insoluble inorganic particles by an electrochemical method, and forming a film of water-insoluble inorganic material particles on an electrode to improve its adhesion. (Regarding the method of forming.

[従来の技術] 従来、非水溶性の無機物粒子を水系の溶液中で電極上に
成膜する方法はメツキ法を除いて皆無であった。メツキ
法は、成膜できる金属が限られており無機化合物の成膜
は不可能であった。
[Prior Art] Conventionally, there has been no method for forming a film of water-insoluble inorganic particles on an electrode in an aqueous solution except for the plating method. The metals that can be formed into films are limited by the Metsuki method, and it is impossible to form films of inorganic compounds.

このため、無機物の膜を形成する方法としては、スパッ
タ、蒸7Fr t CVD+パイロゾル法等のいわゆる
乾式成膜が現在性なわれているにすぎない最近になり、
湿式法で有機顔料等の成膜を行う方法として佐治等(J
 、A、m、 Ohem、 Soc 、 、 1095
881 (1987)、Ohem、Lett、893(
198B))カミセルの電解法を報告しているが、一部
のアゾ系、フタロシアニン系顔料について報告している
にすぎない。
For this reason, as a method for forming inorganic films, so-called dry film formation such as sputtering and vaporization 7Fr t CVD + pyrosol method has only become popular recently.
Saji et al. (J
,A,m,Ohem,Soc, ,1095
881 (1987), Ohem, Lett, 893 (
198B)) reports on the electrolytic method of Kamicel, but only reports on some azo and phthalocyanine pigments.

我々は鋭意研究の結果、上述のミセル電解法の応用展開
により、無機物粒子の成膜も可能であることを見い出し
たためここに特許するものである[発明が解決しようと
する課題] 上述のように、従来の技術ではメツキ法による金属の成
膜を除いては、湿式法で無機材料の成膜を行うことはで
きなかった。このため、他の無機材料の成膜には、スパ
ッタ、蒸着、OVD、パイロゾル等の乾式法に頼らざる
をえないという問題点を有していた。例えば、スパッタ
、蒸着、一部のOVD等の方法は真空設θmを必要とし
、装置が高価であること、大型基板への成膜がむつかし
いこと等の問題があった。又、一部のCVD、パイロゾ
ル法等は、基板を摂氏数百度以上に加熱して成膜するた
め、成膜物質が制限される等の課題があった。
As a result of intensive research, we have discovered that it is possible to form films of inorganic particles by applying the micelle electrolysis method described above, and therefore we hereby patent this invention [Problem to be solved by the invention] As described above. With conventional techniques, it has not been possible to form a film of an inorganic material by a wet method, except for metal film formation by a plating method. For this reason, there has been a problem in that dry methods such as sputtering, vapor deposition, OVD, and pyrosol must be relied upon for film formation of other inorganic materials. For example, methods such as sputtering, evaporation, and some OVD require a vacuum setup θm, which poses problems such as expensive equipment and difficulty in forming a film on a large substrate. Further, some CVD methods, pyrosol methods, etc., have problems such as being limited in the materials that can be used to form the film, since the substrate is heated to a temperature of several hundred degrees Celsius or higher to form a film.

そこで本発明はこのような問題点を解決するためのもの
であり、その目的とするところは、無機物質粒子を湿式
法で低温で大面積基板に成膜する方法を提供するもので
ある。
SUMMARY OF THE INVENTION The present invention is intended to solve these problems, and its purpose is to provide a method for forming inorganic particles onto a large-area substrate using a wet method at low temperatures.

[課題を解決するための手段] 本発明は、電解により荷電する特性を持つ界面活性剤の
ミセル溶液中に、非水溶性の無機物質を分散コロイド化
し、核ミセル溶液中で電解を行ない、ミセルを電JIP
(、することにより電極上に無機物質粒子による膜を形
成することを特徴としている界面活性剤としては、限界
ミセル濃度が低く、容易にミセル化するものが好ましく
、電解により荷電し、界面活性剤どうしで反発がおこり
ミセル崩壊し、ミセルの中に取シ込まれていた粒子が電
極上に析出ものであればよい。例えば、一般式%式% 、C!o、Ru、Os、Pd  で示されるメタロセン
基をもつ界面活性剤があり、市販のものとしてハ、フエ
ロセンヲ導入したフェロセニルpgo等がある。
[Means for Solving the Problems] The present invention involves dispersing a water-insoluble inorganic substance into a colloid in a micelle solution of a surfactant that has the property of being charged by electrolysis, and performing electrolysis in the core micelle solution to form micelles. Den JIP
(As a surfactant that forms a film of inorganic particles on the electrode by It is sufficient that the particles collapsing due to repulsion between the micelles and the particles trapped in the micelles are deposited on the electrode. There are surfactants having a metallocene group, and commercially available ones include ferrocenyl pgo, which incorporates ferrocene.

この界面活性剤を限界ミセル濃度以上に水に溶解し、こ
の中に無機物質粒子を分散する。
This surfactant is dissolved in water to a concentration higher than the critical micelle concentration, and inorganic particles are dispersed therein.

無機物質粒子は、水溶液中でミセル中に取り込まれるこ
とにより、安定分散状態になるため無機物質粒子の表面
は疎水性になっている必要がある。
The surface of the inorganic material particles must be hydrophobic because the inorganic material particles enter a stable dispersion state by being incorporated into micelles in an aqueous solution.

また、親水性になっている場合は、疎水性の高分子膜の
コートや、有機金属化合物等で表面を疎水化処理する必
要がある。
If the material is hydrophilic, it is necessary to coat the surface with a hydrophobic polymer film or to make the surface hydrophobic using an organic metal compound.

又、支持電解質としてはNa0t、Na、、5o4Li
Br、Li□S04等電解質であれば良い。
In addition, as supporting electrolytes, Na0t, Na, 5o4Li
Any electrolyte such as Br or Li□S04 may be used.

次に、この溶液中に電極を浸漬し、電解を行うが、電解
電位は用いる界面活性剤の酸化あるいは還元電位以上で
あればよい。例えば、フェロセニルPIGは酸化電位が
飽和カロメル電極(SOE)に対して十〇、 2 Vで
あるのでそれ以上の電位をかけることで分散粒子の析出
が始まる。
Next, the electrode is immersed in this solution and electrolysis is performed, and the electrolytic potential only needs to be higher than the oxidation or reduction potential of the surfactant used. For example, since the oxidation potential of ferrocenyl PIG is 10.2 V with respect to a saturated calomel electrode (SOE), precipitation of dispersed particles begins when a higher potential is applied.

以下実施例を用いて詳細に説明する。This will be explained in detail below using examples.

[実施例] (実施例1) 界面活性剤として、Feを導入したメタロセン基を持つ
フェロセニルPEG (同位化学製)を用いた。フェロ
セニルPEGの4 m M 水溶iヲ11作り、支持電
解質としてLiBrを0.1M/lの濃度に調整した。
[Example] (Example 1) As a surfactant, ferrocenyl PEG (manufactured by Isotope Kagaku Co., Ltd.) having a metallocene group into which Fe was introduced was used. A 4 mM aqueous solution of ferrocenyl PEG was prepared, and LiBr was adjusted to a concentration of 0.1 M/l as a supporting electrolyte.

この溶液中に無機材料として粒子径0.05μmのカー
ボン粉末を15!i′加え、超音波ホモジナイザーで分
散させた。
Carbon powder with a particle size of 0.05 μm was added to this solution as an inorganic material for 15 minutes. i' and dispersed using an ultrasonic homogenizer.

次にこの分散溶液中に対極としてプラチナ板、参照極と
して飽和カロメル電極(SOE)、ITO付きガラスを
試料極として浸漬し、電解電位を対S OE+ 0.5
 Vで1時間電解した。これらの操作によりカーボン膜
がITo上に形成された。
Next, a platinum plate as a counter electrode, a saturated calomel electrode (SOE) as a reference electrode, and a glass with ITO as a sample electrode were immersed in this dispersion solution, and the electrolytic potential was set to SOE+ 0.5.
Electrolysis was carried out at V for 1 hour. Through these operations, a carbon film was formed on the ITo.

(実施例2) 実施例1と同じフェロセニルPEGの水溶液を作り、こ
の溶液中に無機材料として疎水化処理を行ったシリカゾ
ル157を加え、超音波ホモジナイザーで分散させた。
(Example 2) The same aqueous solution of ferrocenyl PEG as in Example 1 was prepared, and silica sol 157, which had been subjected to a hydrophobic treatment as an inorganic material, was added to this solution and dispersed with an ultrasonic homogenizer.

次に、この分散溶液中に対極としてプラチナ板、参照極
として飽和カロメル電極(SCE)、ITo付きガラス
を試料極として浸漬し、電解電位を対SOEで+0.5
■で1時間電解した。これらの操作によりS i 02
膜がITO上に形成された[発明の効果] 以上実施例かられかるように、従来技術では湿式法で成
膜が不可能であった無機材料の成膜が可能になった。こ
れにより今まで、乾式成膜法では固辞とされていた大面
積への成膜か容易に、安価でできるようになった。
Next, a platinum plate as a counter electrode, a saturated calomel electrode (SCE) as a reference electrode, and a glass with ITo as a sample electrode were immersed in this dispersion solution, and the electrolytic potential was +0.5 with respect to SOE.
Electrolysis was carried out for 1 hour at ■. By these operations, S i 02
A film was formed on ITO [Effect of the invention] As can be seen from the above examples, it has become possible to form a film of an inorganic material, which was impossible to form using a wet method using the conventional technology. As a result, it is now possible to easily and inexpensively form a film over a large area, which was previously considered difficult to do using dry film formation methods.

以上that's all

Claims (1)

【特許請求の範囲】[Claims] 電解により荷電する特性を持つ界面活性剤のミセル溶液
中に、非水溶性の無機物質を分散コロイド化し、該ミセ
ル溶液中で電解を行ない、ミセルを電解することにより
電極上に無機物質粒子による膜を形成することを特徴と
する薄膜形成法。
A water-insoluble inorganic substance is dispersed into a colloid in a micelle solution of a surfactant that has the property of being charged by electrolysis, and electrolysis is performed in the micelle solution. By electrolyzing the micelles, a film of inorganic particles is formed on the electrode. A thin film forming method characterized by forming.
JP25304388A 1988-04-30 1988-10-07 Formation of thin film Pending JPH02101195A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP25304388A JPH02101195A (en) 1988-10-07 1988-10-07 Formation of thin film
EP19890304234 EP0340968A3 (en) 1988-04-30 1989-04-27 Thin film device and method of manufacturing the same
KR1019890005597A KR900016364A (en) 1988-04-30 1989-04-28 Thin film former and manufacturing method thereof
US07/714,817 US5240797A (en) 1988-04-30 1991-06-13 Thin film device and method of manufacture
US07/714,970 US5395678A (en) 1988-04-30 1991-06-13 Thin film color filter for liquid crystal display
US07/724,000 US5242558A (en) 1988-04-30 1991-07-01 Method for forming a thin film device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25304388A JPH02101195A (en) 1988-10-07 1988-10-07 Formation of thin film

Publications (1)

Publication Number Publication Date
JPH02101195A true JPH02101195A (en) 1990-04-12

Family

ID=17245685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25304388A Pending JPH02101195A (en) 1988-04-30 1988-10-07 Formation of thin film

Country Status (1)

Country Link
JP (1) JPH02101195A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02236299A (en) * 1988-11-14 1990-09-19 Idemitsu Kosan Co Ltd Production of inorganic thin film

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF AMERICAN CHEMICAL SOCIETY *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02236299A (en) * 1988-11-14 1990-09-19 Idemitsu Kosan Co Ltd Production of inorganic thin film

Similar Documents

Publication Publication Date Title
Johansson et al. Fabrication of high-aspect-ratio Prussian blue nanotubes using a porous alumina template
Choi et al. Electrochemical synthesis of nanostructured ZnO films utilizing self-assembly of surfactant molecules at solid− liquid interfaces
CA2822779C (en) Dissymmetric particles (janus particles), and method for synthesizing same by means of bipolar electrochemistry
Feinberg et al. Polydopamine: a bioinspired adhesive and surface modification platform
Liu et al. Electrochemical behavior of nanosized Prussian blue self-assembled on Au electrode surface
Sheridan et al. Covalent attachment of porphyrins and ferrocenes to electrode surfaces through direct anodic oxidation of terminal ethynyl groups.
Ghilane et al. Indirect reduction of aryldiazonium salts onto cathodically activated platinum surfaces: Formation of metal− organic structures
Fattah et al. Indirect bipolar electrodeposition of polymers for the controlled design of zinc microswimmers
CN106149026A (en) The preparation of a kind of Graphene/golden nanometer particle composite and characterizing method
Truc et al. Study of the synergistic effect observed for the corrosion protection of a carbon steel by an association of phosphates
CN106222718B (en) A kind of electro-deposition method of carboxymethyl cellulose
Wang et al. Fabrication and electrochemical investigation of layer-by-layer deposited titanium phosphate/Prussian blue composite films
Haro-González et al. Synthesis of gold nanoparticles in aqueous solutions by electrochemical reduction using poly (ethylen glicol) as stabilizer
JPH02101195A (en) Formation of thin film
CN101440511B (en) Preparation of charged material horizontal gradient film
Mousavi et al. The effect of surfactant on the microstructure and corrosion resistance of electrodeposited Ni-Mo alloy coatings
Ball Electrodeposition of pyrocatechol based films: Influence of potential scan rate, pyrocatechol concentration and pH
Opallo et al. Microphase voltammetry of diluted and undiluted redox liquids deposited on sol–gel ceramic carbon electrodes
Ju et al. Electrochemistry of poly (vinylferrocene) formed by direct electrochemical reduction at a glassy carbon electrode
JPH11158691A (en) Aqueous solution for forming titanium oxide film, and production of titanium oxide film
US20130101830A1 (en) Metal Organic Complexes For Improved Smoothness And Uniformity Of Thin Films Deposited From Nanocolloids Via Electrophoresis
TW201005278A (en) Silver-carbon nanotube-perfluorinated sulfonic acid polymer thin film and electrode modified thereby
Niedziolka et al. Electrochemically assisted sol–gel process at a three phase junction
Sikolenko et al. Thickness control in electrogenerated mesoporous silica films by wet etching and electrochemical monitoring of the process
Kynclová et al. Nanostructured surface effect of electrode on doxorubicin determination