JPH02101195A - Formation of thin film - Google Patents
Formation of thin filmInfo
- Publication number
- JPH02101195A JPH02101195A JP25304388A JP25304388A JPH02101195A JP H02101195 A JPH02101195 A JP H02101195A JP 25304388 A JP25304388 A JP 25304388A JP 25304388 A JP25304388 A JP 25304388A JP H02101195 A JPH02101195 A JP H02101195A
- Authority
- JP
- Japan
- Prior art keywords
- micelle
- electrolysis
- film
- soln
- inorg
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 title claims 2
- 230000015572 biosynthetic process Effects 0.000 title description 5
- 238000000034 method Methods 0.000 claims abstract description 18
- 239000000693 micelle Substances 0.000 claims abstract description 17
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 12
- 239000004094 surface-active agent Substances 0.000 claims abstract description 10
- 239000000084 colloidal system Substances 0.000 claims abstract description 3
- 239000010954 inorganic particle Substances 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 2
- 239000010408 film Substances 0.000 claims 1
- 239000002245 particle Substances 0.000 abstract description 10
- 239000000463 material Substances 0.000 abstract description 6
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical compound Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 abstract description 4
- 239000000758 substrate Substances 0.000 abstract description 4
- 230000003647 oxidation Effects 0.000 abstract description 3
- 238000007254 oxidation reaction Methods 0.000 abstract description 3
- 239000003115 supporting electrolyte Substances 0.000 abstract description 3
- 238000007796 conventional method Methods 0.000 abstract description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 abstract 2
- 239000007832 Na2SO4 Substances 0.000 abstract 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 abstract 1
- 229940075397 calomel Drugs 0.000 abstract 1
- 230000008021 deposition Effects 0.000 abstract 1
- 239000011780 sodium chloride Substances 0.000 abstract 1
- 229910052938 sodium sulfate Inorganic materials 0.000 abstract 1
- 235000011152 sodium sulphate Nutrition 0.000 abstract 1
- 229910010272 inorganic material Inorganic materials 0.000 description 9
- 239000011147 inorganic material Substances 0.000 description 8
- 239000000243 solution Substances 0.000 description 7
- 239000007864 aqueous solution Substances 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- -1 Na0t Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- KTWOOEGAPBSYNW-UHFFFAOYSA-N ferrocene Chemical compound [Fe+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 KTWOOEGAPBSYNW-UHFFFAOYSA-N 0.000 description 1
- 229920001600 hydrophobic polymer Polymers 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Landscapes
- Oxygen, Ozone, And Oxides In General (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、電気化学的な方法により非水溶性の無機物質
粒子の膜を形成するものであり、これらの膜を電極上に
密着性よ(形成する方法に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention involves forming a film of water-insoluble inorganic particles by an electrochemical method, and forming a film of water-insoluble inorganic material particles on an electrode to improve its adhesion. (Regarding the method of forming.
[従来の技術]
従来、非水溶性の無機物粒子を水系の溶液中で電極上に
成膜する方法はメツキ法を除いて皆無であった。メツキ
法は、成膜できる金属が限られており無機化合物の成膜
は不可能であった。[Prior Art] Conventionally, there has been no method for forming a film of water-insoluble inorganic particles on an electrode in an aqueous solution except for the plating method. The metals that can be formed into films are limited by the Metsuki method, and it is impossible to form films of inorganic compounds.
このため、無機物の膜を形成する方法としては、スパッ
タ、蒸7Fr t CVD+パイロゾル法等のいわゆる
乾式成膜が現在性なわれているにすぎない最近になり、
湿式法で有機顔料等の成膜を行う方法として佐治等(J
、A、m、 Ohem、 Soc 、 、 1095
881 (1987)、Ohem、Lett、893(
198B))カミセルの電解法を報告しているが、一部
のアゾ系、フタロシアニン系顔料について報告している
にすぎない。For this reason, as a method for forming inorganic films, so-called dry film formation such as sputtering and vaporization 7Fr t CVD + pyrosol method has only become popular recently.
Saji et al. (J
,A,m,Ohem,Soc, ,1095
881 (1987), Ohem, Lett, 893 (
198B)) reports on the electrolytic method of Kamicel, but only reports on some azo and phthalocyanine pigments.
我々は鋭意研究の結果、上述のミセル電解法の応用展開
により、無機物粒子の成膜も可能であることを見い出し
たためここに特許するものである[発明が解決しようと
する課題]
上述のように、従来の技術ではメツキ法による金属の成
膜を除いては、湿式法で無機材料の成膜を行うことはで
きなかった。このため、他の無機材料の成膜には、スパ
ッタ、蒸着、OVD、パイロゾル等の乾式法に頼らざる
をえないという問題点を有していた。例えば、スパッタ
、蒸着、一部のOVD等の方法は真空設θmを必要とし
、装置が高価であること、大型基板への成膜がむつかし
いこと等の問題があった。又、一部のCVD、パイロゾ
ル法等は、基板を摂氏数百度以上に加熱して成膜するた
め、成膜物質が制限される等の課題があった。As a result of intensive research, we have discovered that it is possible to form films of inorganic particles by applying the micelle electrolysis method described above, and therefore we hereby patent this invention [Problem to be solved by the invention] As described above. With conventional techniques, it has not been possible to form a film of an inorganic material by a wet method, except for metal film formation by a plating method. For this reason, there has been a problem in that dry methods such as sputtering, vapor deposition, OVD, and pyrosol must be relied upon for film formation of other inorganic materials. For example, methods such as sputtering, evaporation, and some OVD require a vacuum setup θm, which poses problems such as expensive equipment and difficulty in forming a film on a large substrate. Further, some CVD methods, pyrosol methods, etc., have problems such as being limited in the materials that can be used to form the film, since the substrate is heated to a temperature of several hundred degrees Celsius or higher to form a film.
そこで本発明はこのような問題点を解決するためのもの
であり、その目的とするところは、無機物質粒子を湿式
法で低温で大面積基板に成膜する方法を提供するもので
ある。SUMMARY OF THE INVENTION The present invention is intended to solve these problems, and its purpose is to provide a method for forming inorganic particles onto a large-area substrate using a wet method at low temperatures.
[課題を解決するための手段]
本発明は、電解により荷電する特性を持つ界面活性剤の
ミセル溶液中に、非水溶性の無機物質を分散コロイド化
し、核ミセル溶液中で電解を行ない、ミセルを電JIP
(、することにより電極上に無機物質粒子による膜を形
成することを特徴としている界面活性剤としては、限界
ミセル濃度が低く、容易にミセル化するものが好ましく
、電解により荷電し、界面活性剤どうしで反発がおこり
ミセル崩壊し、ミセルの中に取シ込まれていた粒子が電
極上に析出ものであればよい。例えば、一般式%式%
、C!o、Ru、Os、Pd で示されるメタロセン
基をもつ界面活性剤があり、市販のものとしてハ、フエ
ロセンヲ導入したフェロセニルpgo等がある。[Means for Solving the Problems] The present invention involves dispersing a water-insoluble inorganic substance into a colloid in a micelle solution of a surfactant that has the property of being charged by electrolysis, and performing electrolysis in the core micelle solution to form micelles. Den JIP
(As a surfactant that forms a film of inorganic particles on the electrode by It is sufficient that the particles collapsing due to repulsion between the micelles and the particles trapped in the micelles are deposited on the electrode. There are surfactants having a metallocene group, and commercially available ones include ferrocenyl pgo, which incorporates ferrocene.
この界面活性剤を限界ミセル濃度以上に水に溶解し、こ
の中に無機物質粒子を分散する。This surfactant is dissolved in water to a concentration higher than the critical micelle concentration, and inorganic particles are dispersed therein.
無機物質粒子は、水溶液中でミセル中に取り込まれるこ
とにより、安定分散状態になるため無機物質粒子の表面
は疎水性になっている必要がある。The surface of the inorganic material particles must be hydrophobic because the inorganic material particles enter a stable dispersion state by being incorporated into micelles in an aqueous solution.
また、親水性になっている場合は、疎水性の高分子膜の
コートや、有機金属化合物等で表面を疎水化処理する必
要がある。If the material is hydrophilic, it is necessary to coat the surface with a hydrophobic polymer film or to make the surface hydrophobic using an organic metal compound.
又、支持電解質としてはNa0t、Na、、5o4Li
Br、Li□S04等電解質であれば良い。In addition, as supporting electrolytes, Na0t, Na, 5o4Li
Any electrolyte such as Br or Li□S04 may be used.
次に、この溶液中に電極を浸漬し、電解を行うが、電解
電位は用いる界面活性剤の酸化あるいは還元電位以上で
あればよい。例えば、フェロセニルPIGは酸化電位が
飽和カロメル電極(SOE)に対して十〇、 2 Vで
あるのでそれ以上の電位をかけることで分散粒子の析出
が始まる。Next, the electrode is immersed in this solution and electrolysis is performed, and the electrolytic potential only needs to be higher than the oxidation or reduction potential of the surfactant used. For example, since the oxidation potential of ferrocenyl PIG is 10.2 V with respect to a saturated calomel electrode (SOE), precipitation of dispersed particles begins when a higher potential is applied.
以下実施例を用いて詳細に説明する。This will be explained in detail below using examples.
[実施例]
(実施例1)
界面活性剤として、Feを導入したメタロセン基を持つ
フェロセニルPEG (同位化学製)を用いた。フェロ
セニルPEGの4 m M 水溶iヲ11作り、支持電
解質としてLiBrを0.1M/lの濃度に調整した。[Example] (Example 1) As a surfactant, ferrocenyl PEG (manufactured by Isotope Kagaku Co., Ltd.) having a metallocene group into which Fe was introduced was used. A 4 mM aqueous solution of ferrocenyl PEG was prepared, and LiBr was adjusted to a concentration of 0.1 M/l as a supporting electrolyte.
この溶液中に無機材料として粒子径0.05μmのカー
ボン粉末を15!i′加え、超音波ホモジナイザーで分
散させた。Carbon powder with a particle size of 0.05 μm was added to this solution as an inorganic material for 15 minutes. i' and dispersed using an ultrasonic homogenizer.
次にこの分散溶液中に対極としてプラチナ板、参照極と
して飽和カロメル電極(SOE)、ITO付きガラスを
試料極として浸漬し、電解電位を対S OE+ 0.5
Vで1時間電解した。これらの操作によりカーボン膜
がITo上に形成された。Next, a platinum plate as a counter electrode, a saturated calomel electrode (SOE) as a reference electrode, and a glass with ITO as a sample electrode were immersed in this dispersion solution, and the electrolytic potential was set to SOE+ 0.5.
Electrolysis was carried out at V for 1 hour. Through these operations, a carbon film was formed on the ITo.
(実施例2)
実施例1と同じフェロセニルPEGの水溶液を作り、こ
の溶液中に無機材料として疎水化処理を行ったシリカゾ
ル157を加え、超音波ホモジナイザーで分散させた。(Example 2) The same aqueous solution of ferrocenyl PEG as in Example 1 was prepared, and silica sol 157, which had been subjected to a hydrophobic treatment as an inorganic material, was added to this solution and dispersed with an ultrasonic homogenizer.
次に、この分散溶液中に対極としてプラチナ板、参照極
として飽和カロメル電極(SCE)、ITo付きガラス
を試料極として浸漬し、電解電位を対SOEで+0.5
■で1時間電解した。これらの操作によりS i 02
膜がITO上に形成された[発明の効果]
以上実施例かられかるように、従来技術では湿式法で成
膜が不可能であった無機材料の成膜が可能になった。こ
れにより今まで、乾式成膜法では固辞とされていた大面
積への成膜か容易に、安価でできるようになった。Next, a platinum plate as a counter electrode, a saturated calomel electrode (SCE) as a reference electrode, and a glass with ITo as a sample electrode were immersed in this dispersion solution, and the electrolytic potential was +0.5 with respect to SOE.
Electrolysis was carried out for 1 hour at ■. By these operations, S i 02
A film was formed on ITO [Effect of the invention] As can be seen from the above examples, it has become possible to form a film of an inorganic material, which was impossible to form using a wet method using the conventional technology. As a result, it is now possible to easily and inexpensively form a film over a large area, which was previously considered difficult to do using dry film formation methods.
以上that's all
Claims (1)
中に、非水溶性の無機物質を分散コロイド化し、該ミセ
ル溶液中で電解を行ない、ミセルを電解することにより
電極上に無機物質粒子による膜を形成することを特徴と
する薄膜形成法。A water-insoluble inorganic substance is dispersed into a colloid in a micelle solution of a surfactant that has the property of being charged by electrolysis, and electrolysis is performed in the micelle solution. By electrolyzing the micelles, a film of inorganic particles is formed on the electrode. A thin film forming method characterized by forming.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25304388A JPH02101195A (en) | 1988-10-07 | 1988-10-07 | Formation of thin film |
EP19890304234 EP0340968A3 (en) | 1988-04-30 | 1989-04-27 | Thin film device and method of manufacturing the same |
KR1019890005597A KR900016364A (en) | 1988-04-30 | 1989-04-28 | Thin film former and manufacturing method thereof |
US07/714,817 US5240797A (en) | 1988-04-30 | 1991-06-13 | Thin film device and method of manufacture |
US07/714,970 US5395678A (en) | 1988-04-30 | 1991-06-13 | Thin film color filter for liquid crystal display |
US07/724,000 US5242558A (en) | 1988-04-30 | 1991-07-01 | Method for forming a thin film device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25304388A JPH02101195A (en) | 1988-10-07 | 1988-10-07 | Formation of thin film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02101195A true JPH02101195A (en) | 1990-04-12 |
Family
ID=17245685
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25304388A Pending JPH02101195A (en) | 1988-04-30 | 1988-10-07 | Formation of thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02101195A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02236299A (en) * | 1988-11-14 | 1990-09-19 | Idemitsu Kosan Co Ltd | Production of inorganic thin film |
-
1988
- 1988-10-07 JP JP25304388A patent/JPH02101195A/en active Pending
Non-Patent Citations (1)
Title |
---|
JOURNAL OF AMERICAN CHEMICAL SOCIETY * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02236299A (en) * | 1988-11-14 | 1990-09-19 | Idemitsu Kosan Co Ltd | Production of inorganic thin film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Johansson et al. | Fabrication of high-aspect-ratio Prussian blue nanotubes using a porous alumina template | |
Choi et al. | Electrochemical synthesis of nanostructured ZnO films utilizing self-assembly of surfactant molecules at solid− liquid interfaces | |
CA2822779C (en) | Dissymmetric particles (janus particles), and method for synthesizing same by means of bipolar electrochemistry | |
Feinberg et al. | Polydopamine: a bioinspired adhesive and surface modification platform | |
Liu et al. | Electrochemical behavior of nanosized Prussian blue self-assembled on Au electrode surface | |
Sheridan et al. | Covalent attachment of porphyrins and ferrocenes to electrode surfaces through direct anodic oxidation of terminal ethynyl groups. | |
Ghilane et al. | Indirect reduction of aryldiazonium salts onto cathodically activated platinum surfaces: Formation of metal− organic structures | |
Fattah et al. | Indirect bipolar electrodeposition of polymers for the controlled design of zinc microswimmers | |
CN106149026A (en) | The preparation of a kind of Graphene/golden nanometer particle composite and characterizing method | |
Truc et al. | Study of the synergistic effect observed for the corrosion protection of a carbon steel by an association of phosphates | |
CN106222718B (en) | A kind of electro-deposition method of carboxymethyl cellulose | |
Wang et al. | Fabrication and electrochemical investigation of layer-by-layer deposited titanium phosphate/Prussian blue composite films | |
Haro-González et al. | Synthesis of gold nanoparticles in aqueous solutions by electrochemical reduction using poly (ethylen glicol) as stabilizer | |
JPH02101195A (en) | Formation of thin film | |
CN101440511B (en) | Preparation of charged material horizontal gradient film | |
Mousavi et al. | The effect of surfactant on the microstructure and corrosion resistance of electrodeposited Ni-Mo alloy coatings | |
Ball | Electrodeposition of pyrocatechol based films: Influence of potential scan rate, pyrocatechol concentration and pH | |
Opallo et al. | Microphase voltammetry of diluted and undiluted redox liquids deposited on sol–gel ceramic carbon electrodes | |
Ju et al. | Electrochemistry of poly (vinylferrocene) formed by direct electrochemical reduction at a glassy carbon electrode | |
JPH11158691A (en) | Aqueous solution for forming titanium oxide film, and production of titanium oxide film | |
US20130101830A1 (en) | Metal Organic Complexes For Improved Smoothness And Uniformity Of Thin Films Deposited From Nanocolloids Via Electrophoresis | |
TW201005278A (en) | Silver-carbon nanotube-perfluorinated sulfonic acid polymer thin film and electrode modified thereby | |
Niedziolka et al. | Electrochemically assisted sol–gel process at a three phase junction | |
Sikolenko et al. | Thickness control in electrogenerated mesoporous silica films by wet etching and electrochemical monitoring of the process | |
Kynclová et al. | Nanostructured surface effect of electrode on doxorubicin determination |